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Polaron efFect in resonant Raman scattering from quantum wells in a high
magnetic field: Decompensation of electron and hole contributions
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In the framework of a simple model we show that there is no compensation of electron and hole
contributions to the intensity of one-phonon resonant Raman scattering in the range of parameters
where the incoming or outgoing resonances are split by the Frohlich electron-phonon interaction
(magnetopolaron region). The difference in the penetration of electron and hole wave functions into
the barrier, usually assumed to account for the nonzero value of the one-phonon scattering intensity,
can be considered as a competing (or complementing) mechanism in the magnetopolaron range,
depending on the parameters of the quantum-well structure,

The longstanding interest in the magnetopolaron ef-
fect (see, for example, Refs. 1—4) reflects both the dif-
ficulties in its theoretical treatment and its appearance
in various experimental investigations. Among others,
optical methods have been used to study this effect in
semiconductor materials. The splitting of the electronic
excitations in the range of resonant polaron coupling in a
high magnetic field was observed in the spectra of absorp-
tion and reHection in bulk samples of TlBr.5 Similar ef-
fects have been studied in the magnetoabsorption of bulk
GaAs and CdTe (Refs. 6 and 7) and in InP by Raman
spectroscopy. Theoretical models of various types were
applied to the difficult problem of the calculation of elec-
tronic excitation spectra in the presence of the polaron
efFect. 4 Inclusion of the polaron effect in calculations
of the Raman efIiciency leads to even stronger difficulties.

The polaron splitting of resonances in the two-phonon
Raman scattering from a quantum well in a high mag-
netic field has been considered in Ref. 11. The case
of one-phonon scattering via the states of uncorrelated
electron-hole pairs has a particular feature which makes
it different from multiphonon scattering: under condi-
tions of negligible polaron coupling for Prohlich interac-
tion the amplitude of the process in the dipole approxi-
mation (i.e. , when the wave vector of the phonon is zero)
vanishes because of the compensation of the electron and
hole contributions. One-phonon resonant Raman scat-
tering in quantum wells was recently studied in Refs. 12
and 13 in the range of resonant polaron coupling between
two Landau levels. It was assumed that the electron and
hole contributions to the scattering amplitude differ only
in sign and a nonzero value of the scattering efficiency is
due to the different penetration of the electron and hole
wave functions into the barrier. With this assumption,
which is generally not correct, the electron contribution
to the amplitude was investigated.

In this paper we use a simple model based on the
effective-mass approximation to show that in the limit
of infinite barriers (complete confinement of the electron
and hole wave functions in the well) and in the range of
resonant polaron coupling for electrons (or for holes) the
electron and hole contributions to the amplitude do not
compensate each other (they do without polaron cou-

where 0 is the solid angle, c the velocity of light in vac-
uum, n(~) the refractive index, et (e, ) the polarization
vector, cut (cu, ) the frequency for incident (scattered) ra-
diation, and S~~pp the light-scattering tensor of fourth
rank. The general version of the diagrammatic technique
for calculating S~~pp has been developed in Refs. 14 and
15. We consider the scattering by optical phonons in a
single quantum well with completely confined electron
and hole wave functions. The nonrenormalized wave
functions for electrons and holes in a high magnetic field
at the Landau gauge are given by

C ~, iv, g„= [exp(ik„y)/+L„)u„(x —xg„)p~(z) vo(r),

where 1~1„is the area of a quantum well and N (n) is the
number of the size-quantized (Landau) level. The wave
function of a one-dimensional oscillator in the Landau
sublevel with quantum number n is given by

u„(x) = (m, u), /vrh) ~ (1/Vn) exp (—mu), /2hx )
x H„(x+2m.~./h) (3)

with the Hermite polynomials H (x), cu, (~) = eH/m, (g)c
being the cyclotron frequency and m, ~h~ the efFective
mass of the electron and the hole. The wave functions
for electron and hole states in the well are

io~(z) = g2/acosn. Nz/a, N = 1, 3, 5, ... , (4)

p~ (z) = g2/a sin 7rlVz/a, N = 2, 4, 6, ..., (5)

where a is the well width and z lies within the inter-
val —a/2 & z & +a/2. The position of the oscillator

pling). The decompensation is induced by the polaron
efFect and takes place in the range of magnetic fields and
laser frequencies securing the resonant coupling of the
Landau levels via electron-phonon interaction and either
incoming or outgoing resonance for optic transitions. Out
of this range, however, the decompensation is negligible.

The efficiency of Raman scattering in a general
form 5 is given by

d S/dA des, = (ur, uq/c ) [n(ur, )/n(u~)je, '„e,se~~e~qS„~op,
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center for electrons and holes is equal to xp„= ~l02k„,
respectively, lH = ghc/eH being the magnetic length
and vo(r) the Bloch function.

For the one-phonon Raman process in the dipole ap-
proximation (or in the backscattering configuration) the
in-plane component of the phonon wave vector is equal to
zero (as shown below), thus avoiding the question of the
in-plane dispersion of the Raman phonon and contribu-
tion to the scattering amplitude from interface modes.
We also assume the broadening of the phonon states
to be negligible. Under these approximations the light-
scattering tensor can be written in terms of the amplitude
as

S ~pp = ) [A ~(q )Ajp(q )/Vph cu, u) ])
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b)
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FIG. 1. The diagrams for electron (a) and hole (b) contri-
butions into the amplitude of the one-phonon resonant Raman
scattering from a quantum well in a high magnetic field. The
bold lines for the electron Green functions take into account
the renormalization with the self-energy diagram (c) shown
at the bottom.

where u~ (~Iv) is the size-quantized energy of the elec-
tron (hole) and hag the energy gap. The self-energy
:"(N,n; ~) accounts for polaron coupling. Although only
confined optical modes contribute to the one-phonon am-
plitude in the backscattering configuration, the interac-
tion with interface modes can be important for the renor-
malization of the intermediate electronic states. Here we
assume that the polaron coupling is only produced by
confined phonons and neglect by interface phonons. This
approximation should be quantitatively correct for thick
layers (see Refs. 16 and 17).

To evaluate the expression for electron (hole) -LO-
phonon vertices we take the Hamiltonian for Frohlich
electron-phonon interaction based on the hydrodynamic

confined optical vibrationsis in the form ofis
Gh(N, n;ur) = [ u) —u)~ —(n+ 2)utah

—(ug —=-"(N, n;cu)

+iPh/2] (8) model for

I

(—1)i e ii sin ( ) +exp (
—

) sinh(qzz)Hg-ph = 2

q~, m=1)3, 5& ..

where Uo is the normalization volume and A ~(q, ) the
one-phonon scattering amplitude as a function of the
quantized wave vector q, = ~m/a for confined LO
phonons.

The two diagrams contributing to the one-phonon scat-
tering amplitude are shown in Figs. 1(a) and l(b). The
full (open) circles correspond to the electron and hole
interaction with confined LO phonons (photons). The
dashed (wavy) lines are for photons (phonons) and the
upper (lower) solid lines for electrons (holes). One must
take into account the fact that the electron and the hole
should be excited in the states with the same quantized
subband index N and Landau levels n in both diagrams
for scattering amplitude in Figs. 1(a) and l(b). There
is no constraint on the value of the z component of the
Raman phonon wave vector.

To calculate the scattering amplitude we need the elec-
tron G, (N, n; w) and hole Gh (N, n; ~) Green functions
for confined states which are given by

G, (N, n; ur) = [u —u)v —(n + -)~, —:-'(N,n; ur) + ip /2]

(7)

q~ )m=2)4, 6, . ..
(—1) cos ( )

—e P (
— )cosh(qzz) )C q e P(sqz z)+ C'qee P (—iqz z)), (9)

where

Ce) = +&h4JLO (4')) Ol (h) l ee(h)/VP ) (1/l pe(h) q) 1 l p (h) each/2me(h)~LO 1

3 X/2

q = gqz~ + (xm/a)~, n is the Frohlich electron-phonon coupling constant and bt (b~) the phonon creation (annihila-
tion) operator. The upper (lower) sign corresponds to the electrons (holes). Although the values a and l„are different
for electrons and holes, the interaction C~ differs only in sign.

The matrix. elements of the Hamiltonian of Eq. (9) evaluated between the wave functions of Eq. (2) are different from
zero only for m-even confined modes because of the aforementioned selection rules for size-quantized levels number
N which allow the excitation of electrons and holes with the same N in the interband optical transitions. For even
m we obtain for transitions involving one confined LO phonon:

Il-„„,(k„,q. , q„) = (N, n', A:„'IH,-,& IN, n, A:w)

= +(4/vr)C~bh h +~ exp pil~q (A:„—q„/2) K„„(klsq„, lzqe)C'(lzqz, m, N), — (»)
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K„„~(p) = /min(n!, n'!)/max(n!, n'!)i " " ' exp( —p /4)(p/v 2) '" "
' exp i(P —1r/2)(n —n ) L",„"!„„,) (p /2), (12)

w here p is a two-dimensional in-plane wave vector written in polar coordinates p = p2 + p2, P = arctan(p„/p ),
and L (x) is the Laguerre polynomial. The function K„~ (p) is independent of the Landau number for n = n' and
p ~ 0. After integration over the z coordinate within the quantum well we found

C (lHq~, m, N) = —— 6m, 2—Ill '+ exp — sinhaqua . aq~ f 1 aq~/2
(13)aqi 2 1r N + (aq~/2) )

where N = 1, 2, 3, ... and m = 2, 4, 6, ....
The transverse component for the Raman phonon wave

vector (see Fig. 1) must be equal to zero as follows from
Eq. (11) (which gives q&

——0 for k& ——k„') and from the
sum over k„applied to the same equation which gives
q = 0. Taking into account that K (0) = 1 and eval-
uating the integral in Eq. (13) for q~ = 0 we find finally
for the vertex of the electron (hole) -phonon interaction
related to the Raman phonon

) R„„(k„,0, 0) = pC,', (L L„/27rLH)[b, 2~+2]

value 6/2, io a reasonable assumption provided the energy
of the electron in the state N, n' is not enough for emis-
sion of I 0 phonons. Note that unequal effective masses
guarantee the separation in magnetic field of polaron res-
onances for electrons and holes, allowing us to neglect the
polaron effect for holes.

Evaluating the equation for the electron self-energy in
the usual way we obtain

:-(N, n; u) = ) - (u —urLo(q, ) —(u~ —(n'+ —2')~. + i6/2'
q»

with the upper (lower) sign for electrons (holes). Note
that Eq. (14) is independent of n

From now on we consider the range of laser frequen-
cies which corresponds to either the incoming or the
outgoing resonance for scattering via the state of an
electron-hole pair with size-quantized level number N
and Landau number n and neglect optical transitions
to any other state in the well. It is also assumed that
the strength of the magnetic field ensures resonant cou-
pling of the electron state N, n with the electron state
N, n' through electron-phonon interaction (magnetopo-
laron region). This implies that the following condition
approximately holds:

4)LO = A —D 4) (15)

The Green function for electrons is taken to be the
solution of the Dyson equation with the self-energy
:-(N, n;u) calculated in the lowest approximation with
the diagram shown in Fig. 1(c). For this calculation
we restrict ourselves to the resonant electron transition
N, n ~ N, n', assuming that the broadening of the elec-
tron state N, n' is determined by some other scattering
mechanism which is approximated here by the constant

32 l„ 2e(q, ) = n ——[h~Lo(q )]

e x" "[L"," (x)] C'(x, m, N)

where x = t2Hq&2/2. After substitution of Eqs. (16) and
(17) into Eq. (7) the renormalized electron Green func-
tion [bold lines in Figs. 1(a) and 1(b)] reads

G(N, n; cu) = (ur —p)/[~ —(ui (e)] [cu —ur2(e)], (18)

where the two renormalized poles ~j and w2 correspond-
ing to the new excitation branches are

~1,2(e) = (p+ q)/2 + V [(q —p)/2]

with

p = ldLO(qz) + (z)jy + (A + 2)Cdz —Zb/2,

q = (z)1V + (A + 2 )(z)z —1 rz/2.

(20)

We calculate the two contributions to the scattering
amplitude using the renormalized Green functions:

e LzL„&~,p«~p«&[~m, 21v + 2][x ~2(0)] x —4)2(0) —&Lo(qz)
mo 21r~iH [X (o'1(e)] [X (z)1(e) ~LO(qz)] [X (z)2(e)] [X ~2(e) (z)LO(qz)]

(22)

e 2LLy
A ~(q, ) =—

2 ~ 2 &q, p«~p«. [&m, 2)v+ ]mp 7f'

x —~2 (0)
~«(q. ) [*—~1(e)][*—~2(e)]

where

x = ~1 —(ug —(u~ —(n + 2)~h, + iph, /2.

x —~2 (0) —srLo (q, )
o oo(o.) I* — (o) —toro(o. )II* —~.(*) —~ o (o.)]) ' (23)

(24)

It follows from Eqs. (22) and (23) that the electron and the hole contributions to the amplitude do not compensate
each other exactly in the range of resonant coupling for Landau levels of the electron (or hole) states. Total compen-
sation takes place only in the limit of e = 0. Adding Eqs. (22) and (23) and using Eq. (1) we obtain for the efficiency
of resonant scattering by confined optical phonon q, via the state of the electron-hole pair with quantum numbers
N, n,

+(q ) = +o(q )e (q )/I* ~1(e)
I

I* ~2(e) I'[*—~1(e) —11'I*—~2(e) —11' (25)
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where

So(q.) = (io./~i) [n(~ )/n(~i)]lp eil'Ip-e I'(e'/moc')'
x [4clJo (alp)/(A)LQ(q, ) ir m h ] [b,2iv + 2] . (26)

All variables with tildes are taken in units of cut, o(q, ).
To compare the total scattered intensity of Eq. (25)

[diagrams (a) and (b) in Fig. 1] with the separate con-
tribution of the electron part [diagram (a) in Fig. 1] we
evaluate the value t = S(q, )/S'(q, ) as a function of the
Frohlich constant ci. Using Eq. (22) for calculating S (q, )
we obtain

/I& —~2(o) I lx —~2(0) —~~o(q*) I
(27)

V)

C
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For split incoming resonance corresponding to the ex-
citation of an electron in the vicinity of the anticrossing
point [defined by (n+ ~)w, = wi, o(q, ) + (n'+ 2)io„ i.e. ,

p = q] we have [x —io2(0)] vnwi, o. Using as a rough
estimation of Eq. (17) s n~LO we thus find t n.
For laser frequencies and magnetic fields corresponding
to the resonant excitation of the electron away from the
anticrossing the value [z —io2(0)] rapidly increases; this
leads to a strong decrease in t. The same arguments can
be applied for outgoing resonance.

In Fig. 2 we show the results of calculations for the
dimensionless cross section S(q, )/So(q, ) as function of
the magnetic field for effective masses of electrons and
heavy holes corresponding to GaAs m, = 0.068mo, mh =
0.49mo, for p = ph, = 6 = 0.02wLo and z = 0.001~Lo.
The set of curves illustrate the splitting of the incom-
ing resonance for the electron-hole pair state in the Lan-
dau level n = 2 (n' = 0) at (ui —wg —ioiv —~oiv) =
1.325, 1.375, 1.425, 1.475, 1.525wLo in the range of mag-
netic fields where cu, ~r,o/2. Similar results can be
obtained for the outgoing resonance, i.e. , for laser fre-
quencies one LO-phonon frequency higher than the one
of Fig. 2.

To summarize, we have shown that the amplitude of
the one-phonon resonant Raman scattering in quantum
wells under a high magnetic field for Frohlich interaction
has a finite value in the range of resonant polaron cou-
pling for electrons or for holes even in the case of infinite
barriers and shows the split incoming and outgoing reso-

8.00 10.00 12.00 1 4.00

nances as a function of laser frequency and magnetic field.
The contribution to decompensation resulting from the
different penetration of electron and hole wave functions
into the barrier should be compared with decompensa-
tion induced by the polaron effect taking into account
parameters of the quantum-well structure. For heavy
holes in GaAs both effects add because of the smaller
penetration of the hole wave functions into the barrier
(the difference in the penetration for electrons and heavy
holes is mainly determined by the masses whereas the
difference in the barrier energy results in a smaller ef-
fect). In the case of light holes the penetration difFerence
is dominated by barriers and the two contributions sub-
tract.
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Magnetic Field (Tesla)

FIG. 2. The results of calculations for dimensionless value

S(q )/So(q, ) as function of the magnetic field in the range of
polaron splitting of the incoming resonance for five values
of the laser frequency (the numbers attached to the various
curves represent the value of ~~ —~~ —u~ —~~ in units of
~i.o).

*On leave from the A.F. Ioffe Physical-Technical Institute,
Russian Academy of Science, 194021 St. Petersburg, Russia.
E.J. Jonson and D.M. Larsen, Phys. Rev. Lett. 16, 655
(1966).
L.I. Korovin and S.T. Pavlov, Pis'ma Zh. Eksp. Teor. Fiz.
6, 525 (1967) [JETP Lett. 6, 50 (1967)].
L.I. Korovin and S.T. Pavlov, Zh. Eksp. Teor. Fiz. 53, 1708
(1967) [Sov. Phys. JETP 26, 979 (1968)].
I.B. Levinson and E.I. Rashba, Usp. Fiz. Nauk 111, 683
(1973) [Sov. Phys. Usp. 16, 892 (1974)].
J. Nakahara and A. Fujii, J. Phys. Soc. Jpn. 48, 1184
(1980).
W. Becker et al. , Proceedings of the 18th International Con
ference on the Physics of Semiconductors (World Scientific,
Singapore, 1987), p. 1713.
W. Becker et at , Proceedings of th. e 19th International Con
ference on the Physics of Semiconductors (Polish Academy
of Sciences, Warsaw, 1989), p. 1505.
T. Ruf et at. , Phys. Rev. B 39, 13378 (1989).
F.M. Peeters and J.T. Devreese, Phys. Rev. B 31, 3689

(1985).

P. Pfeffer and W, Zawadsky, Solid State Commun, 57, 847
(1986).' L.I. Korovin et al. , Fiz. Tverd. Tela (Leningrad) 33, 968
(1991) [Sov. Phys. Solid State 33, 553 (1991)].
A.O. Govorov, in Proceedings of the XIII International Con
ference on Raman Spectroscopy, edited by W. Kiefer, M.
Cardona, G, Schaack, F.W. Schneider, and H, W. Schrotter
(Wiley, New Y'ork, 1992), p. 834.
A.O. Govorov, J. Raman Spectrosc. (to be published).
E.L. Ivchenko, I.G. Lang, and S.T. Pavlov, Fiz. Tverd. Tela
(Leningrad) 19, 2751 (1977) [Sov. Phys. Solid State 19,
1610 (1977)]; Phys. Status Solidi B 85, 51 (1978).
A.V. Goltsev et aL, J. Phys. C 16, 4221 (1983).' O. Al-Dossary et al. , Semicond. Sci. Technol. 7, B91 (1992).

'"H. Rucker et al. , Phys. Rev. B 44, 3463 (1991).
M. Babiker, J. Phys. C 19, 683 (1986).
C. Trallero Giner and F. Comas, Phys. Rev. B 37, 4583
(1988).


