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Self-consistent theory of overlap interactions in the tight-binding method
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A local approach to overlap interactions in the tight-binding (TB) method is presented. The
eBects of overlap and local atomic environment on the orthogonalized interaction parameters are
determined from a set of coupled linear equations. The accuracy of the method is demonstrated by
calculations on transition metals and semiconductors having periodic and complex structures. This
theory combines efficiently the simplicity of the orthogonal TB method with the transferability of
the nonorthogonal approach, and is thus particularly useful for the study of complex systems.

Complex nonperio die systems and low-dimensional
systems (e.g. , defects, surfaces, multilayers, thin films,
and clusters) constitute, already for many years, one of
the most active fields in condensed-matter physics. The
importance of this subject for fundamental research and
technological applications has motivated the work of nu-
merous groups. Though remarkable progress has been
achieved in a wide variety of problems, the determination
of the electronic and structural properties of these ma-
terials remains a theoretical challenge. The lack of sym-
metry limits seriously the applications of conventional
first-principles methods, such as the local-density approx-
imation to density-functional theory, even if advantage is
taken of the most recent developments in simulated an-
nealing techniques. In many cases of interest, the com-
putational costs involved in such Ob initio studies are so
large that they become prohibitive. The development of
simpler yet reliable approximate methods of calculation
is therefore central to the progress in this field.

An alternative approach which has already provided
numerous significant results is the realistic tight-binding
(TB) method and related many-body models. 2 7 Here,
a minimal basis set of localized atomiclike orbitals is
considered for the valence electrons and the interac-
tions are parametrized. Comparatively modest comput-
ing resources are required, while the quantum-mechanical
essence of directional bonding and electronic correlations
is preserved. A main concern, when applying the TB
method to complex systems, has been the transferabil-
ity of the interaction parameters from the local atomic
environment where they were calculated or fitted (e.g. ,
bulk crystal) to the environment of the specific problem
under study (e.g. , defect, surface, or cluster). As pointed
out by several authors, this difBculty can be best over-
come by using nonorthogonal and thus more localized
basis orbitals. 2 However, working in an orthogonal ba-
sis remains appealing, since its simpler algebra has mul-

tiple advantages in both single-particle and many-body
theories. Therefore, and since the orthogonalization it-

self depends sensitively on the local environment of the
atoms, eFicient procedures for dealing with nonorthogo-
nal basis in complex nonperiodic systems are sought. 7 ~

In this paper we first describe a simple method of de-
termining locally the environment specific single-particle
and two-particle interaction parameters corresponding to
an orthogonal basis in terms of the interaction param-
eters and overlaps between nonorthogonal basis states.
The accuracy and applicability of the theory are then
demonstrated by calculations of the electronic spectrum
of representative transition-metal and semiconductor sys-
tems having periodic and complex structures.

The starting point of our considerations is the known
relation between the single-particle Hamiltonian matrix
elements T,~ in Lowdin's orthonormal basis and the ma-
trix elements T,~ in the underlying nonorthogonal basis
of atomiclike orbitals having overlaps S,s (S,, = 0):is

Lm

Tis = Tij ——,
' ) . (TilSlj + SilTij)

L

+ s ) (sSiiTikSkj + TilSlkSkj + SilSlkTks)
Lk

+ O(S') . (2)

The above-mentioned environment dependence of T,~ can
be clearly seen as resulting from the path summations,
which involve the orbitals Lt, k, etc. at atoms surround-

The indices i, j, etc. refer to both lattice site and atomic
orbital ci (e.g. , cr = s, p, d), and the sum runs over all
basis orbitals. T,, = e, (T,, = s, ) stand thus for the
energy levels and T,s (T,s ) with i g j for the hopping in-
tegrals in the orthogonal (nonorthogonal) basis. In order
to introduce the self-consistent local approach we for-
mally expand (1 + S) ii 2 in Taylor series around unity
and rewrite Eq. (1) as
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ing the orbitals i and j. The nth-order correction to
T,~ can be interpreted from a local point of view as the
sum over all paths connecting i and j with one "inter-
action line" T and n "overlap lines" S. This is illus-
trated in Fig. 1(a) by means of real-space diagrams for
the terms up to first order in S. Unfortunately, retain-
ing only the lowest-order terms in Eq. (2) is inadequate
for realistic applications, particularly when Sp electrons
are involved. To include infinite orders in S we proceed
in analogy to diagrammatic perturbation theory and re-
place the nonorthogonal ("undressed") interaction lines
by orthogonal ("dressed") interaction lines in the first-
order diagrams [see Fig. 1(b)]. The resulting first-order
self-consistent approximation to T,z reads

rounding orbitals l through T,
&

and T& . Such effects(&) (&)

are expected to be important particularly for complex
systems (e.g. , close to a surface or defect) where atoms
having different local environments interact.

Equation (3) can be improved systematically by tak-
ing into account higher-order diagrams. The coefficients
weighting each of these diagrams are determined by re-
quiring agreement between the self-consistent equation
and the exact result [Eqs. (1) and (2)] to the correspond-
ing order in S. The second-order self-consistent approx-
imation to T,z is thus given by

I

+-,') (&'( '~i~~ g+ &,i% &"' 2~'i&) —'~, ) .
lrn

Notice the linear coupling among the T,. -
) 's, which

amounts to a sum to infinite order in S having the same
form as Eq. (2) (i.e. , with terms S~&T~i, Sg ). Howeve. r, the
coefficients of the second-order and higher-order terms of
Eqs. (2) and (3) are not the same and, therefore, T, dif-(i)

fers from the exact result T,~, except in some particular
cases (e.g. , if [S,T] = 0). In spite of this, the solution of
Eq. (3) always satisfies an important sum rule, namely,
Tr(T(i)) = Tr(T). In other words, the center of gravity of
the electronic spectrum derived from T,. is exact. The(i)

electronic density of states (DOS) is thus free from spuri-
ous shifts which would cause errors even in quantities like
the energy or forces, which are often not very sensitive
to the details in the shape of the DOS. In contrast, the
sum rule does not hold strictly if only the first-order (or
any finite-order) corrections in Eq. (2) are retained. Fur-

thermore, the self-consistent coupling among the T, 's in
Eq. (3) provides a more detailed account of the local geo-
metrical and chemical configuration of the system, since
the overlap corrections to a given hopping T, or energy(~)

level c( ) = T,(,. also involve the environment of the sur-

Notice that, in contrast to Eq (2),. the sum of the coeK-
cients of the second-order contributions is zero in Eq. (4).
The same holds for higher-order terms. This improves
considerably the convergence to the exact result and par-
ticularly ensures that the exact trace is preserved.

As a first application of our theory and in order to
demonstrate its accuracy, we calculate the band structure
of paramagnetic Ni, as an example of a transition metal
(TM), and the band structure of Si, as an example of a
semiconductor. Notice that this is one of the most criti-
cal tests of such a theory, since the electronic spectrum is
known to be very sensitive to the value of the interaction
parameters. For the calculations, realistic parameters T,~
and overlaps S,~. are used, as reported in Ref. 16 (Ni) and
Ref. 17 (Si). In Fig. 2 results for Ni are shown, which
have been obtained by using the orthogonal parameters
T( ) derived from the simplest self-consistent approxi-

mation [Eq. (3)]. Hoppings T(, beyond fourth-nearest
neighbors (NN) have been neglected. The fit to ab ini-
tio calculations, which includes overlap effects exactly,

18

(b)
1))J

+ 10

C

r g x r z K r
FIG. 1. Diagrammatic representation of overlap interac-

tions for single-particle matrix elements: (a) Equation (2) to
first order in S,~, and (b) the corresponding self-consistent
equation (3). The double (single) lines represent the orthogo-
nal (nonorthogonal) matrix elements T~~ (T,~) and the dashed
lines the overlap integrals S,~.

FIG. 2. Band structure of Ni (paramagnetic solution, fcc
structure). The solid curves are obtained by using the orthog-
onal parameters T, given by the first-order self-consistent
equation (3). Hoppings beyond fourth neighbors were ne-
glected. The dotted curves correspond to ab initio results
(Ref. 16) including overlap effects exactly.
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FIG. 3. Band structure of Si (diamond structure). The
solid curves are obtained by using the orthogonal parameters
T~ lgiven b. y the second-order self-consistent equation (4).
Hoppings beyond fifth neighbors were neglected. The clot-
ted curves correspond to ab initio results (Ref. 17) including
overlap effects exactly.

is also given for the sake of comparison. The excellent
agreement between the outcome of Eq. (3) and the exact
result reveals the power of the self-consistent approach.
The root-mean-square error o. ranges from cr 0.1 eV
for the (100) direction to o. 0.2 eV for the (111) di-
rection. In contrast, retaining only the first few terms in
Eq. (2) yields very poor results (o 4 eV). One therefore
concludes that self-consistency is crucial for an accurate
account of overlap interactions from a local point of view.

It is interesting to take advantage of the local formula-
tion in order to gain new physical insight into the role of
overlap effects on the electronic properties and different

NN interactions. For instance, taking into account T,(1}

only up to second NN (i.e. , up to the range of the inter-
actions T,~ and S,~) (Ref. 16) yields fairly good d bands
but large discrepancies in the sp states (e.g. , 2 eV at
the F point). The inclusion of third NN T, in Eq. (3)(1) .

produces already a quite good band structure with al-

most perfect d bands. Only minor quantitative discrep-
ancies are left in the sp bands (e.g. , ~ 0.4 eV at the
I' point), which are removed in every important respect
by including the fourth NN T, in the calculation (see
Fig. 2). The fact that, the overlap effects can be grasped
as a spatially limited change in the interactions, which
depends on the specific local environment of the atoms,
is of considerable practical and conceptual importance.
This contrasts with Eq. (1) which seems to involve in-
finitely long-ranged interactions.

Results for Si are shown in Fig. 3, which have been
calculated by using the parameters T, obtained from.(2)

the second-order self-consistent equation (4). Hoppings
beyond fifth NN have been neglected. Notice that the
valence bands are very accurately given (IT = 0.16 eV).
However, somewhat larger quantitative discrepancies are
present in the conduction bands (o. 0.6 eV). These are
related to the more delocalized character of the Sp or-
bitals of Si, which causes the interactions between more
distant neighbors to be non-negligible. In fact, third NN
interactions T,~ and overlaps S,~ are involved already in
the nonorthogonal fit. 7 A higher accuracy in the con-
duction bands could be achieved by including further NN
interactions T~ in the calculations. It is worth it to men-

tion that the T, given by Eq. (3) already yield accurate
'(1}-

valence bands and is therefore a very good approxima-
tion for problems where mainly the occupied states are
relevant (e.g. , total-energy calculations, forces).

As application of the theory to complex systems we
have solved Eqs. (3) and (4) for small Ni and Si clus-
ters, which are interesting problems on their own and
for which the overlap effects on the single-particle energy
spectrum can also be calculated exactly using Eq. (1).
Notice that the fact that Eqs. (3) and (4) provide very
accurate results for the electronic structure of periodic
crystals, does not necessarily mean that this is also the
case for complex nonperiodic systems, where an inter-
play between different local environments is present. The
electronic DOS of Niis (paramagnetic) and Siis with fcc-
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FIG. 4. Density of states (DOS) of Ni$3
(paramagnetic solution, fcc-like structure).
The solid curve is calculated using the orthog-
onal parameters T, obtained by solving the
first-order self-consistent equation (3) for the
cluster environment. In the inset the DOS
of S1$3 (fcc-like structure) is given. Here the
solid curve is calculated using the orthogo-
nal parameters T, obtained from Eq. (4).
The dotted curves refer, in both cases, to
results including overlap effects exactly. A
Lorentzian width p = 0.05 eV was used to
broaden the cluster energy levels.
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like structure are shown in Fig. 4. In both cases our
results are in excellent agreement with the exact ones
[cr(Ni/3) 0.07 eV, cr(Sizs) 0.06 eV]. This is remark-
able, particularly taking into account the richness of the
energy-level structure of the clusters. Once more, the key
to the quality of our calculations is the self-consistency

between the T~ ' for the characteristic local environ-
ment of the system under study. Neither the first few
terms of Eqs. (2) nor the use of bulk T,s are adequate ap-
proximations, an exception being the d bands of TM. In-
terestingly, the approximations work better and are eas-
ier to solve for low-dimensional systems than for three-
dimensional extended systems. This brings additional
advantages for many relevant applications.

Concerning the efficiency of our local approach, notice
that, as discussed before, the changes in the local envi-
ronment of the atoms result in changes of the interaction
parameters which are of limited spatial extension. For
the applications one usually only needs to calculate the
overlap effects on a small number of parameters corre-
sponding to atoms close to the defect, interface or adsor-
bate under study. The size of problem remains thus man-
ageable even for extended systems. Furthermore, it can
be shown that the quadratic forms Q& ' )(T) obtained

by integrating Eqs. (3) and (4) with respect to T,.(12)

are positive definite. ~s Therefore, Eqs. (3) and (4) al-

ways have a unique solution which can be obtained by
minimizing Q(~'z) using iteration methods in at most N

steps, where N is the number of unknowns. In our case,
the use of the conjugate-gradient method is particularly
efficient since analytic expressions for the intermediate
line minimizations can be given. Each iteration involves
of the order of N f' operations. In practice, the actual
number of iterations n is much smaller than N (typically
n N/20). Moreover, for structural optimizations (e.g. ,

surface relaxation, chemisorption, etc.), the solution of
a previously calculated geometry provides an excellent
guess which yields convergence for very small n.

In conclusion, we have presented a simple, efficient
and accurate method of determining locally the inter-
action matrix elements corresponding to an orthogonal
basis in terms of the interaction parameters in a more
localized nonorthogonal basis. This theory combines the
advantages of orthogonality with the transferability of
the nonorthogonal approach and should, therefore, serve
as a basis for the study of a wide variety of electronic and
structural properties of complex systems.
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