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Observation of cluster-specific excitations in Xe& clusters
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The absorption spectra of Xez clusters (N=50 —500) exhibit extra absorption bands not seen in con-
densed Xe gas. They show up if the cluster radius is comparable to the radius of the electronic excita-
tion. From the sharpness of the bands and from the energy-level positions it is concluded that these ex-

citations have a character which combines features seen in molecular Rydberg states and excitons of the
solid. This interpretation is supported by simple model calculations. For small clusters (N ~ 150) the
number of extra absorption bands rejects the shell structure of the clusters.

The development of the electronic structure as single
atoms put together to form a solid has been the subject of
a great variety of research in the past decade. ' There are
fundamental questions to be answered about the appear-
ance of energy bands in clusters and the influence of
quantum size effects on the electronic structure of clus-
ters. In the case of nonmetallic clusters, the evolution of
electronically excited energy levels is particularly appeal-
ing because a gradual transition from molecular valence
and Rydberg states to the exciton bands of the solid is ex-
pected. So far, most experimental investigations in this
field have been restricted to either small clusters
(N =3—50) in a free jet or to large clusters (N ~ 800)
embedded in a matrix. Recently, experiments have been
started to investigate the evolution of electronically
excited energy levels of rare-gas clusters over a very large
mass range (N =2—10 atoms) by fluorescence excitation
spectroscopy. It turns out that the transition to solid-
state properties, namely, the appearance of excitonic ab-
sorption bands, takes place over a very large mass range,
depending on the size of the electronic excitation. ' So
far, all electronic excitations detected in rare-gas clusters
correspond either to molecular Rydberg states or to exci-
tons of the solid.

In this paper we report on the observation of rather
sharp "extra" absorption bands in medium size Xe&
(N =50—500) clusters previously not reported in con-
densed Xe gas. They show up if the cluster radius is
comparable to the radius of the electronic excitation.
From the energetic position it is concluded that these ex-
cited states are characterized by extended orbitals with a
radius somewhat larger than the nearest-neighbor dis-
tance. Model calculations in the effective-mass approxi-
mation show that the radial probability function of the
excited electron has two maxima —one inside and one
outside the cluster. The narrowing of the absorption
bands compared to the Wannier excitons of the solid in-
dicates that these excitations are a new type of electronic
excitations in nonmetallic material. Their character com-
bines features seen in molecular Rydberg states and exci-
tons of the solid. In analogy to "confined" or "zero-
dimensional"' excitons in microcrystallites and quantum
wells they may be regarded as "cluster excitons" in which
the atomic structure and the number of shells of the clus-

ter play a crucial role.
The measurements were performed at the experimental

station Clulu on the high-intensity Vacuum-UV beamline
Superlumi" at the Hamburger Synchrotronstrahlungsla-
bor HASYLAB (Hamburg). In summary, Xe& clusters
are generated in a nozzle expansion of pure gas or a gas
mixture (15%%uo Xe in Ar) using large conical nozzles (di-
ameter 250 and 500 pm, respectively, opening cone angle
24&= 30') at a temperature between 150 and 300 K and a
stagnation pressure between 0.1 and 1.5 bars. After pass-
ing a skimmer the cluster beam crosses the beam of
monochromatized synchrotron radiation ( b, A, =0.05 nm).
The size distribution in the cluster beam was analyzed
with a time-of-flight mass spectrometer in a different set
of measurements. ' Typically, the width bN [full width
at half maximum (FWHM)] of the size distribution corre-
sponds to the average number N atoms per cluster. The
fluorescence light is detected undispersed with a closed
channel-plate detector (CsTe photocathode, window
cutofF —wavelength 112 nm).

Figure 1 shows a fluorescence excitation spectrum of
Xez clusters containing approximately 150 atoms in an
energy range from the lowest excitation up to 1.5 eV
above the ionization limit. Below the ionization limit the
fiuorescence yield corresponds to the absorption
coe%cient because dark relaxation channels are of minor
importance. '' Apart from a few sharp extra bands
marked with arrows, all bands have a 1:1correspondence
in the solid Xe. Usually, excitons in rare-gas solids form
a hydrogenlike spin-orbit split exciton series. ' The
members are denoted by a main quantum number n. The
radius of the exciton which is the separation between the
electron and hole is proportional to n . Since the clusters
are relative small only the n =1 and n = 1' (Frenkel-type)
excitons contribute to the spectrum in accordance with
previously reported findings. The strong absorption
bands of the n = 1 and n =1' states (the prime denotes
the spin-orbit partner) have a substructure, which howev-
er is not well resolved in Xe+ clusters of this size: The
extra absorption bands indicated by arrows are energeti-
cally close to the n =2 and 3 (Wannier-type) excitons of
solid Xe and might, therefore, in a superficial view be as-
signed to Wannier excitons. However, the evolution of
these bands with cluster size clearly shows that they are,
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effective-mass approximation for the solid. ' Outside the
cluster the electron behaves like a weakly bound Rydberg
electron of an atom or molecule. The charge distribution
of the electron is illustrated in the lower part of Fig. 3.
The large probability of the excited electron to be outside
the cluster might explain the sharpness of some bands.
This is because scattering processes with the remaining
atoms that generally lead to a broadening of the absorp-
tion lines only take place inside the cluster. The transi-
tion energy of 9.38 eV calculated this way is somewhat
larger than the experimental values of the bands
(9.103 eV) and A2 (9.239 eV). However, a good quantita-
tive description cannot be expected because the assump-
tion of effective masses of the solid is inappropriate for
clusters of this size. Further theoretical work is needed
for a precise assignment of the A bands, in particular, the
localization of the hole inside the cluster. If the finite
mass of the hole (mh =2. 1 free-electron masses' ) is con-
sidered we assume that excitations with the hole in the
first and second shell around the central atom correspond
to A, and A2, respectively.

The simple model presented above gives some insight
into the character of cluster excitons. Due to the shell
structure the "radius" of the cluster increases stepwise.

This might explain that no continuous variation of the
energetic position of cluster excitons with the cluster size
is observed (with increasing average cluster size in the
beam additional absorption bands appear while other
bands disappear, see Fig. 2). If it is further assumed that
the hole is located in different shells of the cluster, that
means, it only moves within well-defined shells, the num-
ber of absorption bands directly rejects the number of
closed shells.

In conclusion, the appearance of cluster excitons is a
direct consequence of the limited size and the shell struc-
ture of the clusters. The spherical charge distribution of
the excited electron shown in Fig. 3 with two maxima,
one inside and one outside the cluster, nicely illustrates
the character of this new type of electronic excitation. So
far, a quantitative description is only given for s-
symmetric states where the hole is located in the center
of the cluster. Quantum chemical calculations of excita-
tions with the hole in outer shells of the cluster would be
highly desirable to check our qualitative interpretation.
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