
PHYSICAL REVIEW B VOLUME 47, NUMBER 19 15 MAY 1993-I

Biexcitonic effects in transient nonlinear optical experiments in quantum wells
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We present a model for the nonlinear optical response of quantum wells, which includes biexcitons.
We show that within this model, the interaction of two laser pulses, mediated by the nonlinear
susceptibility, results in oscillations and in coupling between o.+ and cr excitons. This explains the
temporal behavior of the differential absorption and four-wave mixing in recent experiments [Phys.
Rev. Lett. 68, 349 (1992); 68, 1880 (1992)j. The oscillations hase a.requency qual to the bie citron
binding energy, and are diferent from known interference and quantum beat phenomena.

The nonlinear optical properties of III-V semiconduc-
tors at energies close to the band gap are dominated by
excitons. These properties have been intensively investi-
gated during the past decade, especially in quantum wells
(QW's), in which the confinement of the excitons to two
dimensions increases the binding energy and oscillator
strength. i The nonlinear properties of more complex ex-
citations, in which a number of excitons are involved,
have been investigated to a lesser extent. The simplest
form of such an excitation is the biexciton. The binding
energy of the biexciton in these structures is relatively
small, 3 hence it is unstable even at low temperatures,
and therefore considered unimportant.

Time-resolved difFerential absorption (DA) and four-
wave mixing (FWM) are two nonlinear experimental
techniques which are often used in investigating the
nonlinear response of QW's. 4 s In these techniques two
pulses, delayed by t~ with respect to each other, are
incident on a sample. In a DA experiment the change
of absorption of the second pulse (probe) due to the first
pulse (pump) is measured as a function of tD. In a FWM
experiment the two pulses have wave vectors kq and k2
with a small angle between them. The integrated light
intensity in direction 2k~ —k2 is measured as a function
of tD.

Biexcitonic nonlinearity in a GaAs QW was directly
observed in a FWM experiment. Very recently, there
were several reports on oscillatory behavior in DA
(Ref. 7) and FWM (Ref. 8) experiments in GaAs QW's.
In the DA experiment, deep oscillations of the transmit-
ted probe intensity were observed for oppositely handed
circularly polarized pump and probe. In the FWM ex-
periment, the intensity of the emitted signal was shown
to oscillate with the delay between the two cross-linearly
polarized exciting pulses. These oscillations were inter-
preted as quantum beats between excitonic and biex-
citonic states, and their frequency was used to deduce
the biexciton binding energy. However, the theory of
quantum beats accounts for oscillatory behavior of states

which are very close in energy and are coherently driven
by the same laser field. g This is clearly not the case
here, since the biexciton energy is almost twice that of
the exciton.

In this paper we present a model which takes into ac-
count the biexcitonic state, and calculate the resulting
nonlinear optical behavior. We show that the biexcitonic
state introduces a channel for coupling between the o.+
and the o. exciton states, and that a manifestation of
this coupling is the appearance of oscillations whose fre-
quency is the binding energy of the biexciton. These
oscillations are of a special type, as they originate from
interference of two laser pulses, mediated by the oscil-
lating time-dependent nonlinear susceptibility y~ ~. In
contrast with known beating phenomena, these oscilla-
tions appear only as long as the two pulses overlap in
time.

Assuming that two excitons may bind to form a biex-
citon only if the z projections m of their angular momen-
turn are m = +1; that is, if they are created by circularly
polarized light of opposite handedness, we describe the
system as a four-level system (Fig. 1). The ground state
~9), with m = 0, corresponds to the state of no excitons
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FIG. 1. The four-level system consisting of a ground state
g, two exciton states cr+, and a biexciton state b with a bind-
ing energy A.
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and no biexcitons, and the states lo+), with degenerate
energy e and m = +1, correspond to one exciton with
either a right or a left polarization. The state lb) with
energy 2e —4 and m = 0 corresponds to the singlet biex-
citon, 6 being the binding energy. The Hamiltonian of
this four-level system (4LS) is

Ho ——e a~a + ~ c~c —4 a~ac~c,

where d& is the P polarization component of the third-(3) ~

order dipole moment, proportional to E(3E . Similarly,
the signal in a FWM experiment with two linear cross-
polarized pulses E (t) and E&(t) is proportional to IPI~,
where P is given by

where ai (a) and ct (c) are creation (annihilation) oper-
ators of right and left excitons, respectively. Note that
this model neglects the continuous spectrum of the biex-
citon and is valid only at low excitation densities, where
the average distance between excitons is larger than the
biexciton area.

The coupling of the 4LS with light is given by

V = —d E —dpEp,

where E p are the right and left components of the to-
tal electric field (of both pulses), and d p are the cor-
responding components of the dipole moment operator.
The nonvanishing matrix elements of these operators are

Q(s) (4)

and their complex conjugates. Here d,
„

is the dipole
moment of the exciton transition, while db corresponds
to the transition from an already existing exciton to the
biexciton state.

To calculate the nonlinear response in a DA or FWM
experiments it is necessary to evaluate the third-order
dipole moment, which is proportional to the third power
of the electric field. The change of absorption Q(s) in a
DA experiment with two oppositely handed circularly po-
larized pulses, E (t) (pump) and Ep(t) (probe), is given
by

and d(s) (t) is the relevant contribution to the third-order
dipole moment proportional to E E„.

To find d~ & we solve the equation for the time evo-
lutjon of the densjty matrjx p jteratively, ' wjth the
Hamiltonian Hp + V, expanding it in powers of E and
collecting terms of the order of E3, which give j~3~. Next,
the dipole moment is calculated from

d(s) (t) = Tr(d j( ) (t)).

Let us consider first a DA experiment with two op-
positely handed circularly polarized pulses. Calculating
Q(s) for our system and taking the detuning v = e —uo
of the center laser frequency ~p from the excitonic tran-
sition as a parameter, we find out that Q(s) oscillates in
the delay tD between the pump and probe pulses, with a
period which depends on both 4 and v. The pattern of
the oscillations, a dip at the beginning and then damped
oscillations, is in a very good agreement with the exper-
imental observation in Ref. 7, but no dependence on the
laser energy was observed in the experiment. We there-
fore consider the role of inhomogeneous broadening of
the exciton line, which occurs in many QW samples, and
in particular in the samples in which oscillations of the
differential absorption were reported. 7

To take into account the inhomogeneous broadening of
the excitonic transition we assume that there is a distri-
bution of 4LS with difFerent energies e (but with the same
6), and average d(3) over e. The width of the inhomoge-
neously broadened line Le is taken to infinity, which is
appropriate for Le && 6, v, A~p, where L~p is the spec-
tral width of the laser. For such an inhomogeneously
broadened 4LS the DA signal is

Q(s) ds(G e ' ' —1) dt
t —s

dt'( [B(t)B*(t—s)A*(t') A(t' —s) + B(t)A.*(t —s)B*(t')A*(t' —s)]) + c.c.

Here A(t) and B(t) are the slowly varying envelopes of
the pulses E (t) and Ep(t), and G = Idb„l /ld, ~l .
the omitted prefactors are positive. Calculating Q(s) for
a probe pulse B(t) delayed relative to the pump pulse
A(t), namely B(t) = A(t —t~), we find out that Q( )

oscillates in t~ with frequency A. Note that v does not
appear in Eq. (7), and there is no dependence of the
oscillation frequency on the detuning. The result of a
calculation with single-sided exponential pulses is shown
in Fig. 2, where the value of G was taken to be 5. As
will be discussed later this value agrees with theoreti-

Q(s) ds(1 —G cos As) IR'(s) I2,

(7)
I

cal estimates for the oscillator strength of the biexciton
transition. One can clearly see that the oscillations per-
sist only as long as there is overlap between the pump and
probe pulses. The inset of Fig. 2 shows the experimen-
tal data from Ref. 7. It can be seen that there is good
qualitative agreement between the calculations and the
measured signal.

For delays which are much larger than the pulse width
one can easily show that
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We now apply our model to the calculation of the sig-
nal in FWM experiments in inhomogeneously broadened
systems, where two pulses with wave vectors kr and k2,
and envelopes X(t) and Y(t), are polarized along x and
y, respectively. The Beld emitted in the direction 2k~ —k2
is polarized along y and is given by Eq. (5), where the
third-order dipole moment is

d( )(t) ~d
~

d e'( —&)
y

t
dt' X*(t')e' '

—OO

t'
dt" X*(t")Y(t'*t"—t) + c.c.

(9)

Tinre Delay (ps)

FIG. 2. The calculated differential absorption signal
—Q as a function of the time delay for single-sided expo-
nential pulses with an autocorrelation width of 1.8 ps and
assuming G = 5. The inset shows the experimental results of
Ref. 7.

where K(s) is the pulse autocorrelation function. Equa-
tion (8) clearly shows that, due to the biexcitonic cou-
pling, a differential absorption signal is obtained at large
delays. This signal reflects the transfer of oscillator
strength from the excitonic transition to the biexcitonic
transition due to the redistribution by the pump pulse
of the population in the 4LS. As some of the 4LS's are
excited by the pump to an excitonic state, the probe
pulse detects a decreased absorption at the ground state
to exciton transition, and an increased absorption at the
exciton-biexciton transition. It can be seen from Eq. (8)
that depending on the value of G and the relative size
of 6 and Duo, which defines the time scale of K(s), the
sign of Q(s) can be either positive or ne ative. In general,
large G values would tend to make Q( positive, while a
large 6 would tend to make it negative.

It follows from numerical calculations with different
pulse shapes that the main features of Q( ) vs t'ai, namely,
zero signal for large negative delays, a dip for small neg-
ative delays (of the order of the pulse width), oscillations
for positive delays within the overlap of the pulses, and,
Bnally, a constant positive value for large positive delays,
are all pulse shape independent.

lt »ould be emphasized that if one assumes a three-
level system, consisting of a ground state and two o.+

exciton states, the FWM signal in the cross-polarization
configuration vanishes. On the other hand, it can be
easily seen from Eq. (9) that in the 4LS system, for
nonoverlapping pulses, there is an echo, centered around
t = 2to.

In the calculation of the FWM signal we must con-
sider the decay and the dephasing of the biexciton. We
describe the decay 6 ~ o+ + o. by a population re-
laxation rate I', while the dephasing of the nondiagonal
matrix elements (b~ j( ) ~0+) is described by a phase re-
laxation rate p. If we further assume that the relax-
ation rates for the excitonic states are much smaller than
those associated with the biexcitonic state, we get that
I' does not enter d~3~, while the dephasing rate p appears
in Eq. (9) through the substitution 6 —+ 6 —ip.

A numerical calculation of the FWM signal with single-
sided exponential pulses and I/p = 8 ps is presented in
Fig. 3, where we plot P as a function of the delay between
the two pulses. It can clearly be seen that oscillations
with a frequency A appear as long as there is an overlap
between the pulses. The overall decay of the FWM sig-
nal is governed by the biexciton dephasing rate p. The
inset of Fig. 3 shows the experimental data of Ref. 8.
Again there is good qualitative agreement between our
calculation and the experimental data.

The origin of the oscillations in the DA and FWM
can be understood in terms of the time-dependent third-
order susceptibility y~3~, defined by the following general
expression for the third-order dipole moment:

dt2

where the polarization o can be n, )3 (when the beams
are circularly polarized) or x, y (in the case of linear po-
larizations). The nonlinear response y(3) is a function
of the time intervals t, —t (i=1,2,3), oscillating with the
eigenfrequencies of the 4LS, namely e and e —A. An

additional frequency in the system is obviously uo —the
laser frequency. As a result, d(s)(t) oscillates in t with
frequencies e, e —4, and wo, as well as with sums (and
difFerences) of these. In the special case where E(t) is
a superposition of two laser pulses with delay tD, d& ~
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FIG. 3. The calculated four-wave mixing signal ~P~ as a

function of the time delay for single-sided exponential pulses
with a width of 0.9 ps, and assuming 1/p = 8 ps. The in-
set shows the experimental results (on a logarithmic scale) of
Ref, 8.

oscillates not only in real time but also in t~. Since in
time-resolved optical experiments one measures slow time
variations of the signal (relative to the laser frequency),
the only frequency which survives is A. The oscillations
of d(s) (t) in two-pulse experiments like DA and FWM are
thus a result of interference of the two pulses, mediated

by the oscillating susceptibility y(s) (t).
For the estimation of the enhancement factor G =

~dg„~ /~d«~ used in the calculation of the DA signal
we refer to Ref. 13, according to which the ratio of the
biexcitonic absorption (from an already existing exci-
ton) to the excitonic absorption in two dimensions is
nb„/n«N«a&„, where N, „

is the sheet density of2

excitons and a1,„
is the biexciton diameter. On the other

hand, in our model we get an independent estimation
o,h„/a,„Gn„wheren, is the population of the ex-
citonic levels o.+, assuming n, « 1 and a population of
the ground state n~ —l. In our model N, = n, &0,
where No a,„2is the density of the 4LS. From these
arguments it follows that G a&„/a,„E,„/4,where
E,

„
is the binding energy of the exciton. Taking 6 2

meV and E, 10 meV for the binding energies, we get
an estimate of G 5 for the enhancement factor, as used
in the calculation of the DA signal.

In conclusion, we have shown that this simple 4LS
model of the exciton-biexciton system explains the tem-
poral oscillations and the coupling between a.+ and a.

excitons observed in nonlinear optical experiments in
GaAs QW samples. Our work emphasizes the impor-
tance of biexcitons in nonlinear optical experiments in
GaAs QW's, beyond their role in the optical Stark
effect. 4 Since the essence of this work was to examine the
effect of the biexcitonic interaction, we did not include
in this simple model exciton-exciton interaction effects
which are related to unbound excitons, and in particular
the local-field effect.
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