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Cyclotron resonance of magnetopolarons in a parabolic quantum dot in strong magnetic fields
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Cyclotron resonance of magnetopolarons in a parabolic quantum dot with a strong magnetic field nor-
mal to the plane of the quantum dot is investigated theoretically. It is shown that for a strong magnetic
field (w, >> w1 o), the cyclotron mass in a parabolic quantum dot is split into two cyclotron masses (m %

and m¥).

One (m%) is lower than the bare band mass, but increases with increasing effective

confinement length of the quantum dot, and approaches that of the two-dimensional case. The other
(m* ) is greater than the bare band mass and might be a measurable effect for small quantum dots.

I. INTRODUCTION

In recent years, there has been a great deal of interest
in the investigation of quasi-zero-dimensional electronic
systems (quantum dots) derived from originally two-
dimensional electronic systems in Al ,Ga,_,As/GaAs
heterostructures or similar systems.!”® The electron-
energy spectrum of such quantum dots is fully quantized.
These quantum dots are often referred to as artifical
atoms in which the atomic potential is the place of the
artifically constructed dot potential. Because of the po-
tential device applications and the interesting physical
effects in such structures, understanding the electronic
properties of these systems is of particular importance.

The interaction of the electrons with longitudinal-
optical (LO) phonons in quantum dots has been investi-
gated by various authors.*”® Recently, Rousignol, Ri-
card, and Flytzanis* have shown experimentally and ex-
plained theoretically that phonon broadening is quite im-
portant in very small semiconductor quantum dots.
Klein et al.’ studied the size dependence of electron-
phonon coupling in semiconductor nanospheres; they
derive the expression of the vibrational LO and SO eigen-
functions for a sphere in the continuum approximation.
Zhu and Gu’® have shown that the polaron effects on
quantum dots are larger than on lateral quantum wires.
Recently, some theoretical work on cyclotron resonance
in quantum dots has been done by several authors.!?~ 12
In this paper we consider the effect of an external mag-
netic field B (applied normal to the plane of the quantum
dot), on zero-dimensional polarons in the weak-coupling
limit. For the sake of analytic simplicity, we will model
the relevant vibrational modes by the corresponding bulk
modes, i.e., we will neglect any size quantization of the
phonons. This assumption has been used by Schmitt-
Rink, Miller, and Chemla’ and Bockelmann and Bastard®
to treat the phonon broadening of optical spectra and the
phonon scattering in quantum dots. Taking into account
the effect of phonon confinement, one would certainly
vary the results in comparison with those of the bulk-
phonon model. We will treat this effect in a forthcoming
paper. In addition, for simplicity, the polaron levels are
taken to be perfectly sharp; no phenomenological damp-
ing parameters are introduced into the calculations.!?
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II. THEORY

The electrons are much more strongly confined in one
direction (taken as the z direction) than in the other two
directions. Therefore, we will confine ourselves to con-
sider only the motion of the electrons in the x-y plane.
Kumar, Laux, and Stern'® have shown that even if the
defining cap layer is square shaped, the confining poten-
tial seen by electrons in a quantum dot has nearly circu-
lar symmetry. The energy levels are found to be insensi-
tive to the charge in the dot at a fixed-gate voltage, and
the evolution of energy levels with increasing magnetic
field is similar to that for a parabolic potential. These re-
sults make the parabolic confining-potential model very
appealing. In the presence of a magnetic field, this model
potential offers exact analytic information on the single-
particle energy states. We will use this parabolic
confining-potential model in the present work.

We assume that the confining potential in a single
quantum dot is parabolic,

Vip)=1m*wip?, (1)

where m* is the bare band mass and p is the coordinate
vector of a two-dimensional quantity. In the presence of
a magnetic field in the z direction, the Hamiltonian of
electron-phonon systems is given by

H=H,+H, , (2)

Ho=——(p+te AY+1Im*wip*+ }q‘,ﬁmmb;{bq )

H =3 (Ve +Vie 9}, @
q

where b; creates a bulk LO phonon of wave vector q,

q=(q,,q,), and r=(p,z) is the coordinate of the electron,

Vo =ifiogo/q)#/2m* o o) *(dma/ V)V, (5)

R S

a=(e?/2%w;o)2m*w; o /#)?
€, €

) (6)
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where €, is the optical dielectric constant and ¢, is the o2 1172 172
static dielectric constant. 2m*o, 1, %,
In the symmetric gauge A=(—1By,1Bx), the energy | 0.)= 1 ime 4 o
levels of the unperturbed Hamiltonian H, are given >, % ors € #n+|m|)
by15,16
xx\m|L'|'m|(x2)e—x2/ZIOq> , (8)
2 1172
1, @ where x =p[m*o_ (L +wd/w?)"?/#%]'/?, L7 are associ-
(0) — +1 L4 2 +1 c\'% 0/ %ec > Hn
E,p=2n+[m|+ Do, 4 + w? o, o ated Laguerre polynominals, and |0,) is vacuum state of

the phonon, which satisfies b, IOq) =0.

Since the electron-phonon interaction is weak in these
systems, in the sense that the Frohlich coupling constant
(a) is of the order of 0.1, we shall use the second-order
Rayleigh-Schrodinger perturbation theory to obtain the
electronic self-energy shift 8E,,,, which is given by

where o, =eB /m*c is the cyclotron frequency, m is the
angular quantum number, m =0,+1,+2,..., and »n is
the radial quantum number, n=0,1,2,.... The corre-
sponding wave functions are given by

]

P 172 1 w(z) 172
8E,,, = —alfiog o) S S Quneme (12" =)+ (M| —Im )] | +— | o, 9)
2’n*(‘)LO n' m' 4 (2
—1
+ %ﬁmc + iy o ] , (10)
where
Qnmn'm’:fomdqn[Vnmn'm'(qn)]2 ’ (11)
Nt 172
L = n.n: * Im’[+1ml+1f Im'| (52

XL,‘,mi(xz)Jm__m'(_qnlx) ) (13)

where [ =[#/m*(0}+1w?)!/?]'/? and J, are Bessel func-
tions of the first kind.

For strong magnetic field (o, >>w; ), one can neglect
all the off-diagonal (n+*n’', m*m') terms in the right-
hand side of Eq. (9), yielding!’

%

*
2m @10

172

8lgnm = ~athO Qnmnm . (14)

Therefore, the ground-state energy correction is given by
i " VvVar
2m *C()LO 21 ’

8E00=—aﬁa)L0 (15)

When only the lowest-energy level is occupied, the selec-
tion rules allow only two excitations, from the state (0,0)
to (0,—1), and from (0,0) to (0,1).13 Consequently, the
correction 8Ey; to the excited level (0,1) and the correc-
tion 8E_; to the excited level (0,—1) are given by

#

*
2m W10

172 ]1\/51—7_

8E01:8E041=_aﬁwL0 327

(16)

The relevant cyclotron resonance frequency for the

f

(0,00—(0,1) transition (i.e., when the Fermi level is in the
lowest Landau level) is given by

1 mz 172 o
_ 0 c
wc*_—coc Z“f':D?J - )
1/2 o —
# 5V 2
+aw 19
Lo 2m*CULO 321 ( )
172
_ 1 1, 48°
=w, lz + z+ 4
1/4
1, 4B*
172 1
+ 27 “Ba 4 + L } , (18)
where BP=w0/0, and u=Ily/rg, where

lo=(#/m*w,)'"? is the effective confinement length of
the quantum dot and r,=(%/2m*w;,)'/? is the polaron
radius.

The relevant cyclotron resonance frequency for the
(0,0)—(0,— 1) transition (i.e., when the Fermi level is in
the lowest Landau level) is given by
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1/4
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Equations (18) and (20) imply two renormalized cyclotron
masses given by

— 2m*
mY = ) 48" 172 ) 45 174
14,90 1/2 1 ap
1+2 4+u4 +%1r Ba 4+u4
(21)
and
m* = 2m*
- 172 174
_ 1, 48 172 1, 48
14+2 Z'f'—uT +%7T Ba 4+7
(22)

III. NUMERICAL RESULTS AND DISCUSSIONS

The numerical results of the cyclotron mass in GaAs
parabolic quantum dots are presented in Figs. 1,2, and 3.
From the conditions that the cyclotron energy is much
bigger than the LO-phonon energy, the magnetic-field
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FIG. 1. The cyclotron mass (m%) of GaAs parabolic quan-
tum dots as a function of the effective confinement length of the
quantum dot for two magnetic-field strengths (B)
[lo=(#/m*wy)'"* and ro=(#/2m*w.0)'?].

12 943

1.00 T T T T

0.95

0.85

my /fm*

0.80

0.75

0.70 1 | ] |

30 34 38 42 46 50

B(T)

FIG. 2. The cyclotron mass (m?%) of GaAs parabolic as a
function of magnetic-field strength (B) for two effective
confinement lengths. The broken curves are the results for cy-
clotron mass (m %) without the polaron correction and the chain
curve is the result for two-dimensional systems (Ref. 17)
[lo=(#/m*w)""? and ro=(#/2m *w0)"?].

range may be estimated to be B >21.3 T. Figure 1 and 2
show that for strong magnetic field, the mass renormal-
ization is negative and the cyclotron mass (m?%) is lower
than the bare band mass (approaching it as w,.— «); this
behavior is similar to the two-dimensional magnetopola-
ron. With increasing the effective confinement length of
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FIG. 3. The cyclotron mass (m%) of GaAs parabolic quan-
tum dots as a function of magnetic-field strength (B) for two
effective confinement lengths. The broken curves are the results
for cyclotron mass (m¥*) without the polaron correction
[lo=(#/m*w,)""? and ro=(#/2m *w. o) /?].
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the quantum dot, the cyclotron mass enhances and ap-
proaches that in the two-dimensional case. The broken
curves in Fig. 2 show the result for the cyclotron mass
without the polaron correction. It is obvious that the po-
laron correction to the cyclotron mass (m?%) is not very
large. The chain curve in Fig. 2 depicts the result for cy-
clotron mass in two-dimensional systems obtained by Sar-
ma.!” The cyclotron mass (m¥*) in quantum dots is al-
ways smaller than that in two-dimensional quantum sys-
tems. Figure 3 illustrates the cyclotron mass (m*) of
GaAs parabolic quantum dots as a function of the
magnetic-field strength (B) for two effective confinement
lengths. It is shown that for small quantum dots the cy-
clotron mass (m*) is greater than the bare band mass,
and increases with the enhancement of magnetic-field
strength (B). The result is qualitatively surprising be-
cause one is accustomed to thinking that for a strong
magnetic field the cyclotron mass is lower than the bare
band mass. In general, in the high-magnetic-field limit,
for larger quantum dots, transitions w}, become cyclo-
tron resonances between Landau levels #iw (n+1) and
the electron gas exhibits 2D behavior. Simultaneously,
transitions ¥ _ approach zero. As a result, m* does not
exist. However, if the quantum dot is small enough, the
cyclotron mass (m*) may be greater than the bare band
mass and might become a measurable effect. The broken
curves in Fig. 3 show the results for the cyclotron mass
without the polaron correction. We can see that the po-
laron correction to the cyclotron mass (m*) is obvious
and cannot be neglected.
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IV. CONCLUSIONS

In conclusion, we have investigated the problem of the
electron-phonon interaction effect on the cyclotron mass
of zero-dimensional electrons in GaAs parabolic quan-
tum dots. We find that for a strong magnetic field
(w, >>wy o), the cyclotron mass in a parabolic quantum
dot is split into two cyclotron masses (m ¥ and m*). One
(m?*) is lower than the bare band mass. By increasing the
effective confinement length of the quantum dot, it
enhances and approaches that in the two-dimensional
case. The other (m*) is greater than the bare band mass
and might be measurable effect for the small quantum
dots. It should be emphasized that use of the 2D disk ap-
proximation for the electronic wave function is not an
essential restriction of this paper; it has been done only
for the sake of analytic convenience and clarity of the
final results. Introduction of the finite width of the elec-
tronic wave function in the z direction into the above for-
malism is straightforward. Indeed, the width of the z
wave function would substantially (by a factor of 2-3)
reduce the effective polaronic correction.!® The actual
reduction in the effective electron-phonon coupling will
obviously depend on the details of the system involved
and can only be obtained numerically for specific systems.
However, the qualitative features in this paper are in-
dependent of this approximation. Finally, it is hoped
that this paper will stimulate more experimental work in
the high-field region which will be helpful in a better un-
derstanding of the role of electron—LO-phonon interac-
tions in quasi-zero-dimensional systems.
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