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Many years ago spectroscopic evidence based on a single-electron process, namely, field-emission reso-
nance tunneling, was reported showing the electronic structure of single atoms adsorbed on metal sur-
faces. Huge enhancements in the highly collimated tunneling current through the virtual states of the
adparticle made the single-atom spectroscopy feasible when the field-emission spectrometer was operat-
ed in the "probe-hole mode. " A related effect is currently popular in today's scanning tunneling micros-
copy and also in nanometer-cluster spectroscopy. The phenomenology and theory of the effect is
presented and the current- activity- is-considered- in- light- of-;vhat- has-been- uncovered- in- the field-emission-
work.

I. INTRODUCTION II. FIELD-EMISSION PHENOMENOLOGY

Motivated by the experimental work of Fink in which
scanning-tunneling-microscope (STM) tips were used in a
field-emission mode as a "point source" to produce nar-
row, collimated electron beams, ' Lang, Yacoby, and
Imry have analyzed "the microscopic aspects of field
emission from [suchl tips on which the primary emission
source is a single atom. " Their model for this problem is
"one used earlier to study aspects of current flow in the
STM, two planar metallic electrodes with a bias between
them, with an adsorbed atom kept fixed at its zero-field
equilibrium distance on one of the electrodes. " Calcula-
tions based on this model can predict a relatively focused,
high-current beam with a narrow energy distribution, in
agreement with experimental studies. These results have
then been interpreted physically in terms of "channel
filtering by an adiabatic constriction. "

The purpose of the present paper is to suggest some
possible connections between this e6'ect and the
phenomenon of field-emission resonance tunneling
(PERT) within the "probe-hole" mode, predicted, ob-
served, and developed into the first viable single-
electron spectroscopy of adsorbed atoms and/or mole-
cules more than 20 years ago. It will be seen that the
descriptive theory of FERT could provide a helpful com-
plement to present-day modeling of STM phenomena just
as it has in the interpretation of recent FERT experi-
ments in which the discrete electron states of Au clusters
supported on W(110) field-emission tips "and single W
atoms on nanoprotrusion tips ' ' have been observed.
Furthermore, it could be enlightening to consider single-
atom tunneling from a historical perspective as this is an
aspect of STM research that has at times been over-
looked. In order to achieve these goals, a brief review of
the relevant field-emission phenomenology is given. Then
the theory is reworked into a form that addresses the is-
sues of constricted and focused point-source electron
emission, currently under examination in STM. We con-
clude with some final commentary and observations.

A. General

z= 0
I

s

FICx. 1. (a) Energy-level/potential-energy diagram for field
emission from a metal surface. For the tunneling electron de-
picted by the dashed line, the triangle barrier, uncorrected for
image forces, extends between z =0 and z =sT. (b) Zero-
temperature total energy distribution of field-emitted electrons
given by Eq. (1).

The field-emission microscope (FEM) and its derivative
spectroscopies are based on the fact that a modest poten-
tial ( —1 —3 keV) applied between a sharpened conducting
tip (radius —100 nm) and a fiat or concentric spherical
electrode, positioned a macroscopic distance ( —1 —10
cm) away, will result in an electric field at the emitter sur-
face whose strength is F-0. 1 —1.0 V/A. If the sign of
the potential is such that the surface barrier for electrons
is "bent over, " then electrons from the tip can tunnel
through the "triangle barrier" Vs (z)
=+0(z)(EF+P eFz), where—z is the coordinate normal
to the surface which, on a scale of Angstroms, looks Hat,
not spherical. Consequently, the problem is well modeled
as a degenerate three-dimensional electron gas confined
by a tunnel barrier that varies only in one Cartesian coor-
dinate. The classical turning points for an electron with
"normal" kinetic energy = W are at z =0 and
z =sT(W)=(P+EF W)eF, where —

P is the work func-
tion and Ez the Fermi energy, as shown in Fig. 1(a).
Typically, the outer turning point of a Fermi-level elec-
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0
tron is sT-15—20 A. The field-emission theory is easily
worked out analytically ' with the triangle barrier in
contrast to the more realistic "image-potential-rounded'*
barrier, which requires some additional numerical con-
siderations that do not affect any of the physics points to
be made here. For the sake of clarity we will consider
only the triangle barrier.

A subtle point involving length scales, electron optics,
and focusing arises in the mixed Cartesian geometry of
the tunneling process and the spherical geometry of the
actual FEM. On an atomic or nanometer level, the tun-
neling barrier varies only in the z direction (ignoring
small effects due to surface corrugation' ) and thus the
distinction between normal and transverse momentum or
energy is maintained in the tunneling or field-emission
process. However, the macroscopic geometry of the
FEM provides an angular-momentum-conserving radial
accelerating field that has at least two important conse-
quences. First, note that the initial angular distribution
of the field-emitted electrons, as established by the
nanometer-scale tunneling process, is not distorted by the
macroscopic electron optics. Nonetheless, mixing of ini-
tial transverse and normal momenta of the emitted elec-
tron by the radial field at macroscopic distances from the
surface obscures this fact. Second, due to this radial field
effect, an electron energy analyzer connected to a field-
emission source measures a total, not normal energy dis-
tribution, as originally recognized by Young" and fur-
ther discussed at length by Gadzuk and Plummer. The
standard theory '" leads to an exponentially decreasing
electron total-energy distribution (TED) with a high-
energy Fermi edge,

j0 =dj o/de=(JD/d) exp(e/d)f (e),
where

Jo =(med /2~ A' ) exp( —c),
c = (2m /A'2) i i2 X (4$3n /eF) 0 683 X ($3z2/F)

(la)

(lb)

(lc)

1/d =(2m/h' )' X(2$' /eF)

= l.025 X (P' /F)eV (ld)

B. Single-atom emission

If a fIuorescent screen is introduced behind the ac-
celerating electrode, then a projection of the field-
emission tip can be imaged with a spatial resolution of a
few nanometers. Contrast in the image is due to varia-
tions in electron emission across the tip surface, histori-
cally attributed to variations in work function. Further-
more, a "small" hole, called a probe hole, can be made in

with e =ef —EI; the electron energy with respect to the
Fermi energy, J0 the total (Fowler-Nordheim) current,

f (e) the Fermi function, and P and I' given in eV and
V/A, respectively. ' The zero-temperature distribution
shown schematically in Fig. 1(b), has a full width at half
maximum given by AE'~y2 —0.69d which is -0. 1 eV for
typical field-emission conditions.

o
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FIG. 2. Probe-hole current vs time as the strontium source is
switched on and off. The step increase in current occurs when a
single Sr atom arrives upon the surface being viewed [based on
Clark and Young, Ref. 5(a); see also Ref. 6].

the screen so that electron emission from a surface region
composed of —15—30 atoms passes through the hole and
then into an energy analyzer, thus facilitating electron
spectroscopy studies. Deflection grids are used to posi-
tion the emitted current from a chosen portion of the sur-
face over the probe hole.

When a single "quantum particle" (atom, molecule, or
cluster ) is adsorbed onto that portion of the surface
emitting through the probe hole, and if the adsorbate has
an electron quasibound state near the Fermi level of the
tip, then a substantial increase in the probe-hole current
can occur due to resonance-tunneling enhancement
through the adsorbate. This phenomenon was first ob-
served by Clark and Young "in their study of Sr ad-
sorption on W field-emission tips and their key result is
reproduced in Fig. 2. Shown here is the total field-
emission current through a probe hole as a function of
time after a Sr evaporation source has been turned on.
The arrival of a single Sr atom on the emitting area re-
sults in a step-function increase in the total current.
Upon adsorption of a single atom, the source can be
turned off and an energy distribution of the probe-hole
current obtained. The structure in the observed TED
refiects the local density of electronic states of the adsor-
bate, and led to an unambiguous electron spectroscopy of
single adsorbed atoms. '

The physical origin of the effect can be understood
from the FERT-model potential-energy diagram and
wave functions shown in Fig. 3. The field-emission
configuration illustrated earlier in Fig. 1(a) is here aug-
mented by a potential well of width 2w centered at z =s,
representing the adsorbate characterized by a discrete
level broadened into a local density of states defined as

p, (e). Enhanced tunneling occurs for those tip states P
whose energy is resonant with p, (E), in which case the
sequential process of g ~g, and then f,~gf occurs
with much greater probability (by factors as large as
—10 —10 ) than for direct P ~gf tunneling. It is this
magnification which is responsible for the collimated
emission from the single adsorbate rising far above the
background emission from other parts of the field emitter
surface.
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E F

A,d,~„,~
is the effective area of the adsorbate (total) emit-

ting surface.
As a final aside, one should note that the properties of

the resonance state such as the width, depth, location of
the potential well, and consequently the eigenvalues e„
wave functions lt, (and as a result, the geometrical ex-
tent), and the level broadening impose constraints on the
resonant tunneling through the adparticle or constricted
channel; it is here that the similarities with current STM
and mesoscopic systems exist. This will be detailed in the
next section.

ST

FIG. 3. Schematic model showing the idealized potentials
relevant in field-emission resonance tunneling. The electron
wave functions are P, the unperturbed metal function; f, , the
localized adsorbate resonance function; and ltf, the emitted
electron function. The adatom centered at z =s, with diameter
equal to 2w, shows a Lorentzian-like local density of states la-
beled p, .

In considering the spectroscopic characteristics of
emission from the composite surface, it is most informa-
tive to measure and display the ratio of the change in
TED to the original TED, b j'(e)/jo(e) vs e, since in this
form the dominating but uninteresting exponential in Eq.
(1) is canceled out. For an adsorbate satisfying the
reasonable condition s «sT, "standard" theory has also
shown that this ratio, for emission from the adsorbate-
covered surface area, is

&j'(~)/jo(e)= g [p, (e)/p (e)] exp[+2ir(s+w, )],

III. COLLIMATED POINT SOURCE

A. General resonance tunneling theory

Almost all theories of resonant tunneling are based on
some type of Golden Rule or scattering-theory formula-
tion in which the tunneling process is characterized by
the sum of a nonresonant plus a resonance matrix ele-
ment'4

&FIOTI»& &loTIM &

M, = &Flo, lM &+ y ' ', (4)
e —e, —iA,

where lM &, l
2 &, and lF & are the metal, adsorbate, and

free states represented by the configuration-space wave
functions in Fig. 3 and OT is some operator whose
specification here is not yet crucial, ' but which allows
for transfer of electrons between the states in the three
separated spatial regions of the emitter (z (0), the adsor-
bate or quantum well (z =s+w, ), and free space (z )sT ).
It is not unreasonable to assume separable free and metal
states

(5a)

('1'lll' ) (5b)

where the summation is over the adsorbate states labeled
by the set of quantum numbers I a ],p, (e) is the adsorbate
density of states derived from state a, usually represented
by a Lorentzian

p, (e):——
~ (e—e, ) +b,,

with e, and 6„ the resonance position and width, de-
pending upon the particular state, p (e) the substrate
density of states, ur, the effective "radius" of the a'th
state, and Ir=[(2m/A' )(P, —e)]' . The structure in the
TED that provides the spectroscopic information arises
from p, (E). The enhancement is mainly a consequence of
the fact that the rate-limiting step is tunneling from the
adsorbate to vacuum, through a reduced barrier com-
pared to direct metal-vacuum tunneling. This enhance-
ment is accounted for by the exponential factor in Eq. (2).
When comparing with actual data, one must also account
for the "background current" from the noncovered por-
tion of the emitter that contributes to the probe-hole
current, usually by introducing a multiplicative geometri-
cal factor —A,d, /A„, -0.05 —0. 1 into Eq. (2), where

and a transfer operator OT=0, (z) which is a function of
the normal coordinate and/or momentum only.

The nonresonant field-emission current density can be
described by the Golden-Rule transition rate

w. ,=(2~/&) g 1&FIO, IM &I'~(~, —~ )

f
summed over all occupied initial states (including spin),
hence,

lo=2e g f(E~)w

With wave functions given by Eq. (5) the modulus-
squared tunneling matrix element becomes

l&Flo, lM&l'=(2m) 5 (1
ll

1 jl)l&f lo. lm. &l'.

Note that the conservation of k~~ selection rule in the un-
corrugated surface tunneling process has appeared natu-
rally in Eq. (8) as a consequence of Eq. (5) and the fact
that there are no transverse forces throughout the tunnel-
ing process when OT is a function of z only.

Proceeding with the substitution
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g~g fp/de/,

where p& is the right-hand vacuum density of states for
fixed k~~ (and similarly for the initial-state m sum), Eqs.
(6)—(8) lead to

jo= g f «If (&~)p/p 1&f.lo, lm. & I' .
k

Invoking Harrison's WKB approximation, ' the transfer
Hamiltonian' matrix element is

4''p/p 1&f, IO. Im, & I

= exp —2 f Ik(z)ldz
0

=Do( W), (10)

Equation (11) evaluated with Do( W) =exp[ —c
+(W E~)/d] yie—lds djoldcI =(JDId)f (e)exp(el d),
the standard result given by Eq. (1).

When resonance tunneling is possible, the tunneling
rate is dominated by the resonant matrix element in Eq.
(4). For (energetically) nonoverlapping resonances, the
field-emission current is now determined by the electron
occupation decay rate out of the adatom immersed in the
field which, from Eq. (4) and the golden rule, is

4, I&F o, A &I'I&Alo, lM&I'
g f(~ )

a, f, m (e —e, ) +b,,Jres =

X5(e/ e) . — (12)

Noting that the adsorbate-level width due to coupling
with the surface is '

b,.(e)=m. g I ( A
I OT IM & I'lie —e ),

Eqs. (3) and (12) can be turned into

which is a measure of the z-dependent exponential decay
of the wave-function overlap. The total-energy distribu-
tion of the emitted current implied by Eqs. (9) and (10) is

dj Idej =(e Immi)f (FI ) g.Do( W)
kll

where k (z) = [(2m/vari )[ V(z) —W]] '~ and
—A' k

~~

/2m is the so-called normal energy. "'
Finally, since at constant total energy,

g ~f (m/2m. h' )dW,
k 0

of the atom is maintained at the steady-state equilibrium
value due to strong coupling with the electron reservoir.
When all things are considered, it is seen that the main
role of the small-radius ( —1000 A) substrate tip that dis-
tinguishes resonant field emission from free-space field
ionization is to serve as a fast, unlimited electron source
and to provide the surface electrodynamic boundary con-
ditions that make attainment of the high electric fields
possible. In this way, the phenomenon of field-emission
resonance tunneling has exploited the common mecha-
nism of free-atom field ionization and mesoscopic solid-
state-constricted conductance through single atoms.

To proceed, some specifics and/or simplifications must
be imposed upon the atomic wave function used in the
matrix element in Eq. (13) based on the realization that
the role of the wave function here is mainly to introduce
the appropriate atomic-length scale (or constriction di-
ameter) into the problem. For the case of s states, the
atomic orbitals are radial functions,

I A, &~/, (r),
whereas p states are of the form

I
A &~x, l( (r) with

x, =x, y, or z and, in both cases P(r) is a spherically sym-
metric function whose mean radius is that of the relevant
shell. It is very convenient to take the radial functions as
Gaussians since both

P, (r)=(2a/ir) exp( —ar ) (14a)

itt (r)=(2a/ir) 2a' x; exp( —ar ) (14b)

are in normalized product form; i.e.,

it'j(r) = Q P, (x, ) .
i=1

With separable wave functions as specified by Eqs. (5)
and (14), the modulus-squared tunneling matrix element
of Eq. (13) becomes

I &F10
I
A &

I'=
1 &k, lw, & '1&f.lo, lp. & I',

where (k~~lg~~ &, the two-dimensional Fourier transform of
the atomic function in the surface plane, is a measure of
the transverse-momentum content of an electron passing
through the a'th resonance state of the adatom and, as
such, is the basis for "channel (or atomic excited-state)
filtering. " The term

I (f, 10, lg, & I
is essentially the one-

dimensional tunneling probability through that portion of
the triangle barrier in Fig. 3 on the vacuum side of the
adatom where z )s +w, . The modulus-squared tunnel-
ing matrix element is identically

j =
&

gf (&I)p.(&I) I &+10,1A & I',
a,f

(13)

with

l&f, 0. &, &I'=&l&f, lo. m, &l', (16a)

which has an interesting interpretation when the adatom
or resonant well is close enough to the surface so that
atom-to-metal tunneling is very fast on the time scale set
by atom-to-free-space tunneling. The decay rate implied
by Eq. (13) is basically the atomic field-ionization rate
considered initially by Oppenheimer. ' The principle
difference between field-ionization and resonant-tunneling
situations is that in the latter, the electronic occupation

R =
I &f, lo, I&, & I'/I & f, 10, lm, & I' . (16b)

In the spirit of the arguinents used with Eqs. (8) and (10),
the ratio of modulus-squared matrix elements and, thus,
tunneling probabilities given by Eq. (16b) is

sT sr
8 = exp —2f k (z)dz / exp —2 f k (z)dz
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which, with k (z) = i~ for the near-surface region 0 & z & s,
simplifies to

dj „,/def =(4irme lb )f (ef )

X g [p, (ef)/p ]
R = exp[+2~(s+w, )] . (17)

Thus, with Eqs. (10), (16), and (17), the z-dependent con-
tribution to the tunneling probability is

4' pfp I & f, IO, Ip, , & I
~ exp[2i~(s+w, )]Dp( W),

which can be further simplified with the "small-( W EF)-
expression" for Dp( W).

The atomic-overlap integrals are easily evaluated using
the Gaussian wave functions, ultimately yielding the
transverse-momentum distributions

I &I „IP, & I'='Y exp (19a)

and

I& l~i14, &I'+ I& lr„14, &I'=y, k'„ exp( ——,' r,', „k'„ ), (19b)

where 2r, ~~=(ir/2a)' is the mean diameter of the s
shell, 2r ~~=(3/2a)' is the rms diameter of the p, &p~
shell, and the (unessential) numerical values for the pro-
portionality constants in y, =c, rll and y~ =c~rll depend
upon normalization conventions, a point which will be re-
turned to later. The long-wavelength or small-kll cutoff'
in the p-wave resonance tunneling is a consequence of the
nodal structure imposed upon the wave passing through
the adatom via a p or p„ intermediate state.

X 'd8'Do 8' k

X exp[2ir(s +w, )],
which can be nicely reduced for some important exam-
ples by using the linearized exponential form for Dp( W).
Since we are considering cases in which there is a large
resonant enhancement in the field-emission current, the
ratio considered in Eq. (2) is well represented as

6j '( ef ) Ij p ( ef ) = ( dj „,Id ef ) l(dj p Id ef ) (23)

using Eqs. (1) and (22) for the denominator and numera-
tor, respectively. We now proceed to the specific cases.

(i) k~~ && 1 lr, s slowly varying. Two simplifications are
possible in Eq. (22) due to the fact that Dp( W) is large
only within a few multiples of d (the barrier penetration
decay constant) below Ez. This implies that over the lim-
ited range of W of significance in the Eq. (22) integral, not
only is kll very small but also ~ is nearly constant. Conse-
quently, the exponential is =exp[2ic(ef )(s +w, )] and
can be pulled out of the integral. Furthermore, when

k~~r~~ && 1 (as it is when A' k
~~

/2m & d =0. 1 eV and r~~ is a
typical atomic-orbital radius) then, from Eq. (19a) the
kll-overlap integral for an s-wave resonance is well ap-
proximated as a constant =y, whose value depends only
on the normalization and is here set equal to one. With
these simplifications, Eq. (22) reduces to

dj „,Id ef = (Jp Id )f ( ef ) exp( ef Id )

B. Resonance energy distributions X g [p, (ef )/p ] exp[2ir(s +w, )], (24)

To obtain explicit expressions from Eq. (13) for the to-
tal resonance field-emission current, the sum over final
states must be carried out in order to pick up the
infIuences of the "selection rules" imposed by adiabatic
passage through the adatom. Without belaboring the
point, note that in analogy with Eq. (9), the total reso-
nance current given by Eqs. (13) and (15)—(17) is

j„,= (4ire /fi)

x g f" def f(ef)pfp (ef)
a, kll

which, when combined with Eqs. (1) and (23), yields pre-
cisely Eq. (2), the long-standing resonance tunneling ex-
pression.

(ii) ir slowly varying, s resonance. If Eq. (19a), the full
s-wave Gaussian expression for the transverse-
momentum distribution, is retained in Eq. (22), then it is
straightforward to show that, upon integration, the s-
wave resonance tunneling expression can be brought to
the form

~j,'(ef)/jp(ef) c [r ~~l(I+K

X I&k~~lgp&I R I&f 10 Im (20) X g [p, (ef)/p ]exp[2i~(s+w, )],

X exp[2ir(s +w, )]] . (21)

Converting the kll sum into a normal energy integral, as
with Eq. (11),allows Eq. (21) to be written

Again using Harrison's WKB matrix element, Eq. (10),
the total-energy distribution inferred from Eq. (20) is

dj „,Idef =(e /sruti)f (ef )

x yD, (W)
a, kll

X [[p,(ef)/p ]

(25)

where g,:—4(2m/fi )/sr=0. 33/eVIA and c, is purely
numerical factor of order unity which is independent of
system parameters. The dependence of 6j,'/j o on I"

ll, the
characteristic size of the resonance orbital (or constric-
tion) is through the sigmoidal function
f,

~~

=
g, dr, l /( I +/, dr,

~~

—), which achieves a half-
maximum value at r, i( —,')=(g, d) ' =1.73$' /F' A,
with P in eV and F in V/A, as shown in the normalized
plot in Fig. 4(a). The physical implications of these re-
sults are interesting. For the smallest atom or aperture
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size, the resonance tunneling current density approaches
zero relative to the clean surface result. This follows
since a tunneling electron must have a transverse wave-
length that is comparable with the orbital size in order to
pass through the constriction/atom. However, with a
large amount of the total energy ( ~Ez) partitioned into
transverse energy, there is little normal energy left for
tunnel barrier penetration. As the size of the orbital in-
creases, electrons with larger transverse wavelengths,
hence, reduced transverse energies, are acceptable
resonant-tunneling candidates. These electrons have
larger normal energies and thus larger tunneling proba-
bilities, resulting in enhanced resonant tunneling. Ulti-
mately, the orbital size becomes sufficiently large
[r, ll( —,) —5 A] for field-emission operating conditions)
that the transverse-wavelength constraints no longer
infiuence the tunneling characteristics and thus 6j,'/j o
attains an rII-independent saturation.

(iii) a slowly varying; p„ /p resonance. Using Eq.
(19b), the full p„/p~ Gaussian expressions for the trans-
verse momentum in Eq. (22), one can show that the re-
sulting tunneling expression is similar to Eq. (25) but with
the multiplicative r~

II
dependent rescaling factor given as

4 rp
Il

1+gzdr
=0.087/eV/A . The half-maximum value of f~ ll, shown
as the normalized curves in Fig. 4(b), is achieved at

I I I
(

1 I 1

)
I I I

(
! I I ( I

0.8

rz ll( —,')=1.55(g„d) ' —5.3$' /F' A, which is much
greater than the half-maximum radius for s-wave reso-
nance. The physical origin of this consequence is also in-
teresting and related to some aspects of "mode-number
conservation" for a wave moving adiabatically along an
electronic waveguide, as discussed by Lang, Yacoby, and
Imry. Put very simply, if an electron is to pass through
a pII- rather than s- or p, -orbital resonance, then since an
additional node in the transverse component of the
resonance-state wave function occurs, the tunneling elec-
tron must arrive with a finite kl, as implied by Eq. (19b).
But this requirement takes even more away from the nor-
mal energy needed to penetrate the tunnel barrier than
for the nodeless s resonance, hence the additional
suppression of the resonance-assisted tunneling current
relative to the s-state process, as is apparent in Fig. 4, for
rII small. The tunneling characteristics become indepen-
dent of orbital or hole size only as the energy associated
with the transverse momentum needed to project onto
the pII orbital becomes &d, the characteristic energy for
barrier penetration. It is not unreasonable to imagine
that this transition occurs when the wavelengths of the
transverse motion and the orbital diameter are compara-
ble, i.e., A, II-2rII. Requiring that the associated energy
equal d, the resulting orbital size is

&ll
=(R ~ /2md)' =6.24/' /F' A which, for all

practical purposes, is identical with r~ ll( —, ) obtained from
the full theory. The consequences of the transverse-
momentum filtering have profound implications with
respect to the angular distributions of the field-emission
resonance tunneling.
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C. Angular distributions

Finally, the issue of electron-beam collimation result-
ing from resonance tunneling through single atoms or
adiabatic constrictions can be addressed. The connections
between emitted electron-beam angular profiles and the
atomic level-system properties is made clear by rewriting
Eq. (21) as

(26)
a kII

where the expression for F, (E& ) is easily deduced by com-
parison with Eq. (21). Replacing the kll sum with an in-
tegral,

d k
II

(2m. )

and converting to spherical coordinates in which
ksin8, hence d kll=klldklldg=k cos8sin8d8dg,

the angle-resolved energy distribution for the a'th reso-
nance is

10 , 15
r (A)

20
F, (e&)k cos8

d j,„,/dQde&= Do(eI, 8)~(kll~lp, ll) ~z

4m

FIG. 4. (a) s-orbital/constriction size dependence of normal-
ized change in the field-emission TED, from Eq. (25), varying P
and F as labeled. (b) Same as (a), but for p„/~ resonance.

=j,"(E~,8), (27)

where Do( W) =Do(EI, 8)=exp( —c —E~/d)exp[(e&/
d)cos 8] and e& is the total kinetic energy of the electron
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= cos8 exp[(ef /d)( cos 8—1)]

X exp( ~srs
Il
ef sin (28a)

which, in the reasonable small-0 limit (cos8-1, sin8-8),
is simply
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FIG. 5. (a) s-orbital/constriction size dependence of the
beam-width —'-angle attained on the z =(P+E~)/eF plane,

varying F within the "typical" field emission and STM range.
(b) p /~-orbital size dependence of beam maximum angle, for
conditions as in (a).

at the location of the "detector" which, for present pur-
poses, will be imagined to be in the plane parallel to the
surface at a distance z =(P+E~)/eF where the external
electrostatic potential equals the inner potential of the
emitter. As noted by Lang, Yacoby, and Imry, using a
large but still atomic-scale distance (with F =1.3 V/A,
they used 30 bohr, typical STM-scale dimensions) allows
one to concentrate on the microscopic aspects of beam
collimation due to the tunneling process, unobscured by
macroscopic field-focusing effects.

First consider the beam profile for s-resonance emis-
sion where the transverse-momentum distribution is
given by Eq. (19a). It is convenient to work with the an-
gular distribution normalized to the value at the angle of
maximum emission which, for the s-resonance, is 0=0,
the surface normal direction. The resulting profile that
follows from Eqs. (19a) and (27) is

&s (8)—=js'(8) /js'(8 =0)

&s(8)= exp( —gs8') (28b)

with t), =(1/d+(, r,
II
)ef. The emission profile is thus a

normally directed Gaussian with a full width at half max-
imum given by

58s & y2
= 1 . 66/'gs (29)

The beam width as a function of orbital size, obtained
from Eqs. (28) and (29), is shown in Fig. 5(a) for a range
of field strengths appropriate to field emission and the
STM. For field strengths typical of a FEM, 60, , &2 shows
a fairly weak dependence on orbital/aperture size, with
the beam narrowing a little as the orbital radius in-
creases. The effect is much more pronounced for STM-
magnitude fields. This observation merits some further
clarification. Certainly as r,

~~

increases, so does the max-
imum permissible wavelength associated with the trans-
verse momentum of the resonantly tunneling electron,
hence the transverse momentum decreases and the beam
sharpens. At the same time, the current density increases
as already demonstrated through Eq. (25) and Fig. 4(a).
However, as r,

~~

increases, the conditions for "freezing
out" the higher angular-momentum orbitals (with addi-
tional transverse nodes) are relaxed and these additional
resonance channels should be considered. For instance,
the beam profile for a p & resonance, from Eqs. (19b) and
(27), is j"(8)~cos8sin 8exp( —t) sin 8), a halo profile
with zero normal emission, maximum emission in the
direction 0 „=1/g', and with full width at half max-
imum given by 60~ &&2=1.16/g~ . The beam angle thus
obtained is shown in Fig. 5(b), as a function of orbital
size, also for various field strengths. The dependence
upon r

~~

is even weaker than for the s-orbital resonance,
at least within the range of realistic atomic orbital sizes
associated with the low-lying electronic states of candi-
date atomic species. Nonetheless, angle-dependent
electron-beam production due to p-orbital resonance
enhancement is expected to show characteristics that are
noticeably different from resonance tunneling via s-
orbital intermediate states. In both cases, however, the
results are in accord with expectations based on the nu-
merical studies of Lang, Yacoby, and Imry, as applied
within the context of an STM.

IV. FINAL REMARKS

A theory of field-emission resonance tunneling has
been presented here which is a fully developed version of
the original theory used more than twenty years ago in
conjunction with pioneering experimental electron-
spectroscopy studies of single adsorbed atoms. For
those adsorbates with virtual electronic states energetical-
ly near the substrate Fermi level, tremendous enhance-
ments in the single-atom tunneling current density are
both expected and observed. Furthermore, the electron
beam emerging from the single atom is expected to be
highly collimated in a predictable field-dependent manner
as a result of the microscopic tunneling process; this re-
sult is independent of any macroscopic field-focusing
electron optics. The collimated electron beam can be
realized experimentally both with ultrasharp tips ending
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with one atom, as proposed by Fink and co-workers' as
well as with a probe-hole field-emission microscope
operating in a resonant tunneling mode, using single
atoms adsorbed on the field-emission tip.

The theory developed here applies equally well to tun-
neling phenomena in scanning-tunneling microscopes as
discussed by Lang, Yacoby, and Imry, in the most
straightforward way by simply replacing the word "ada-
tom" with "STM tip" throughout this paper. The simple
analytic description provided here should serve as a use-
ful complement to numerical simulations, particularly for

quick insights into the relationships between observables
in tunneling/conduction processes through atoms and/or
narrow channels and the electronic properties of the indi-
vidual constituents of the tunneling system.
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