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Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile
of the GaAs-Al„Gat „As quantum well
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This paper suggests a simple permutation scheme to construct the Hermitian Hamiltonian utilized in
the efFective-mass equation, introduces a smoothed profile to more accurately model heterojunctions,
and illustrates the dependence of the band-offset ratio of a GaAs-Al„Gal „As quantum well on the par-
ticular Hermitian Hamiltonian used in the calculation. The permutation scheme produces the Ben-
Daniel and Duke Hamiltonian, the Bastard Hamiltonian, the Zhu and Kroemer Hamiltonian, and a
Hamiltonian termed the redistributed Hamiltonian in this paper. The heterojunction is modeled by an
error function rather than a step function to more accurately model the material transition region at the
interface between the two materials. The 11 heavy-hole (HH) transition energy obtained by BenDaniel
and Duke Hamiltonian with a particular band-offset ratio is reproduced by utilizing non-BenDaniel and
Duke Hamiltonians with appropriate band-offset ratios. This process is repeated for BenDaniel and
Duke Hamiltonian band-offset ratios varying from 0.5 to 0.8, and then proceeds to 11 light-hole (LH), 22
HH, and 22 LH transitions. It is found that the Hamiltonian dependence of the band-offset ratio is
significant.

I. INTRODUCTION

The conduction-band-offset ratio, which is the ratio of
the conduction-band offset to the total band gap of the
heteroj unction, has been investigated in GaAs-
Al Cxa, As quantum wells because of its fundamental
importance and application. The ratio has been mea-
sured by spectroscopic' and electrical methods, and
the reported value ranges from 0.88 to 0.57. From
Duggan's' and Kroemer's" review articles about the ex-
perimenta1 and theoretical work, it can be seen that spec-
troscopic techniques are preferred over electrical ones in
exploring the band-offset ratio via a quantum well, and
that researchers using spectroscopy usually try to match
their data with the theoretical results to determine the
band offset.

Recently, there have been many computational works
discussing the band-offset ratio by using the first-
principles approach. ' ' These calculations are usually
based on the microscopic atomic arrangement at the in-
terface. In these calculations, the potential energy con-
sists of three contributions: the ionic, the Hartree, and
the exchange potentials. On the other hand, the
effective-mass approach assumes a macroscopic position-
dependent potential and an effective-mass Hamiltonian. '

There is no unique representation of the kinetic-energy
operator of the single-band effective-mass Hamiltonian in
the effective-mass approach. ' ' Three frequently used
Hermitian Hamiltonians found in the literature are the
BenDaniel and Duke Hamiltonian, ' the Bastard Hamil-
tonian, ' ' and the Zhu and Kroemer Hamiltonian. In
this paper, these Hamiltonians will be shown to be ob-
tainable by a simple permutation scheme, and this
scheme suggests another Hermitian Hamiltonian termed
the redistributed Hamiltonian in this paper.

As to the macroscopic potential of a square quantum

well, the position-dependent potential is frequently
modeled by a discontinuous profile, namely, a step func-
tion. ' ' ' However, in this paper, the step change of the
profile is replaced by an error function because, in the
real world, neither the potential nor the effective mass
can change abruptly across the heterojunction.

In the work published by Chomette et a/. in 1986, ' it
was shown that the band-ofFset ratio depends on the ana-
lytic model and the interface conditions employed to
compute the transition energy. This observation initiates
an inquiry about the dependence of the band-offset ratio
on the Hamiltonian used in the effective-mass equation,
and it is this dependence which wi11 be studied in this pa-
per.

First, based on the smoothed profile, the transition lev-
els in the conduction band are calculated to illustrate the
effects of the modified profile; and second, the band-offset
ratios required for the quantum well to yield the same 11
heavy-hole (HH), 11 light-hole (LH), 22 HH, and 22 LH
transition energies are computed by using four different
Hamiltonians. The transitions of n =1(c) to n =1 (hh),
n =1(c) to n =1(lh), n =2(c) to n =2(hh), and n =2(c) to
n =2(lh) are denoted by 11 HH, 11 LH, 22 HH, and 22
LH, respectively. This paper reveals the notable Hamil-
tonian dependence of the band-offset ratio when the
quantum well with a modified profile is utilized.

II. EFFECTIVE-MASS HAMILTONIANS

The single-band effective-mass approach to a
quantum-well problem requires that the envelope func-
tion g satisfy the effective-mass equation

Hg=Ef,
where E is the energy eigenvalue and H is the Hamiltoni-
an operator consisting of the kinetic-energy operator ( T )
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and the potential-energy operator ( II ),

0= f'(z)+ P'(z) . (2)
II~= —P + P + V(z) .1 w 2 1 1

4 m(z) m(z)

Due to the compositional variation in a quantum well as
a function of location, the kinetic energy and the poten-
tial energy are expressed as position-dependent operators
in Eq. (2).

The kinetic-energy operator can be considered to be
composed of four elements: I/Vm(z), I/+m(z), P,
and p, where z and p are position and momentum opera-
tors, respectively. Because I /+m(z) and p are not com-
mutable, there are six possible permutations to represent
the kinetic-energy operator:1, p 1T, (z ) = ,' pp —=,'P-

+m(z) t/m(z)

f' (z)= —,'p p =
—,'p p

1 1

+m(z) +m(z) +m(z) +m(z)
1 1

(4)1, 1T3(z)= —,'p p= ,'p p, —+m (z ) 1/ m (z )

1 1f'~(z )=--=1
2 Vm(z)

PP
+m(z)

1 1 A, 1

2 V m(z) +m(z)

5(z)= — p p= — p p,1 1 1 1 1

+m(z} +m(z) +m(z) }/m(z)

(7)

and

6(z)= —
pp =— p

1 1 1 1 1

+m(z) +m(z)
Of the six kinetic energy operators, only two are Her-

mitian: f'3(z) and f' (z4). The third permutation f'3(z) is
the kinetic-energy part of the Hamiltonian proposed by
BenDaniel and Duke, '

] 2 1IIz~ =—
2 +m(z) Vm(z)

+ V(z) . (10)

The rest of four kinetic-energy operators, f'& (z ), T2(z ),
T5(z ), and T6(z ) are not Hermitian. However, they con-
stitute two adjoint pairs, namely, f, (z)=T6(z) and
f'z(z ) = f'&(z ) . Hermiticity can, therefore, be achieved
by averaging the adjoint kinetic-energy operator pair.

The average of TI(z) and 1'6(z) is the kinetic-energy
operator of the Hamiltonian first proposed by Gora and
Williams, ' but it is frequently termed the Bastard Hamil-
tonian, '

HIDD = p p+ V(z )
m(z)

The fourth permutation f'~(z) is the kinetic-energy
term of the Hamiltonian suggested by Zhu and Kroe-
mer,

Similarly, the average of T2(z ) and T5(z ) results in the
kinetic-energy portion of an additional Hamiltonian,

1 1 18, = —p p
+m(z) +m(z)

1 1+ u s+m (z ) 1/m (z )

+ V(z) .

In comparison with the existing Hamiltonians, the mass
operators of this Hamiltonian are redistributed among-
the momentum terms. Thus it is called the redistributed
Hamiltonian in this paper.

The single-band efFective mass Hamiltonians given in
Eqs. (9)—(12) are special cases of a general form of the
Hamiltonian introduced by von Roos,

8'„R =
—,'[m(z ) pm(z)~pm(z)~

+m(z }~Pm(z)~pm(z) ]+V(z),

d + V' (z)Q(z) =Eg(z),
2 dz m (z) dz

(14)

where V' (z) is termed the effective potential energy
whose algebraic form depends on the Hamiltonian em-
ployed. For the BenDaniel and Duke Hamiltonian,

V' (z) = V' (z) = V(z) .

For the redistributed Hamiltonian proposed in Eq. (12),

where a+P+y = —1. In works by Morrow and Brown-
stein' and Thomsen, Einevoll, and Hemmer, it is
demonstrated that the Bastard Hamiltonian and the
redistributed Hamiltonian are not valid if the heterojunc-
tion has an abrupt mass profile. Because a gradually
varying mass profile will be assumed in the next section,
these two Hamiltonians shall not be excluded from this
paper.

The form of the effective-mass Hamiltonian has been a
controversial subject due to the location dependence of
the effective mass. Morrow has a good review on this
subject in his work published in 1987. Recently, there
has been growing consensus in favor of the BenDaniel
and Duke Hamiltonian, for instance, the theoretical work
by Burt, ' the examination of heterojunctions in three
dimensions by Morrow, the exact treatment of a 5 well
in one dimension by Thomsen, Einevoll, and Hemmer,
the solution to a one-dimensional Kronig-Penney lattice
by Einevoll and Hemmer, and the low-temperature
photoluminescence data published by Galbraith and Dug-
gan.

By the correspondence in wave mechanics
P —+ ibid/dz and z~—z, the effective-mass equation (1)
together with any of the four Hamiltonians given in Eqs.
(9)—(12) can be written in a diff'erential form,
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V' (z)= V' (z) b= —,'(1+f3) . (21)

1

3 [—,'m'(z) —
—,'m(z)m "(z)]+V(z) .

m(z)
If a, P, and y take the values given in the last three
columns of Table I, the von Roos Hamiltonian reduces to
the Hamiltonian listed in the first column of the table.

For the Bastard Hamiltonian,

1
3 [m '(z) —

—,
' m (z)m "(z)]+V(z) .

m(z)

For the Zhu and Kroemer Hamiltonian,

Veff'(
)

Vefr

1
[—,'m'(z) —

—,'m(z)m "(z)]+V(z)
m(z)

(18)

The first and second derivatives of m (z) with respect to z
are denoted by m'(z) and m "(z). As shown in Eqs.
(15)—(18), the effective potential is, in fact, the sum of
the real potential profile V(z) and the modification
emerged from the location dependence of the effective
mass. A different Hamiltonian leads to a different
modification term.

All of the effective potentials given in Eqs. (15)—(18)
can be summarized in a general form of the effective po-
tential,

1Veff( )— [am'(z) —bm(z)m "(z)]+V(z),
m(z)

(19)

where the coe%cients a and b depend on the Hamiltonian
and are tabulated in Table I.

The general form of the Hamiltonian given in Eq. (13)
can also be written in a differential form such as Eq. (14),
with the effective potential given by Eq. (19). But the
coefficients a and b are related to a, P, and y by

(20)

and

TABLE I. Single-band effective-mass Hamiltonians. The
coefficients a and b of the effective potential given in Eq. (19) de-

pend on the Hamiltonian used for the effective-mass equation.
The BenDaniel and Duke Hamiltonian, the redistributed Ham-
iltonian, the Bastard Hamiltonian, and the Zhu and Kroemer
Hamiltonian are special cases of the von Roos Hamiltonian in

Eq. (13), when the exponents, a, P, and y listed in the last three
columns of the table are utilized.

Hamiltonian

III. MODIFIED SQUARE QUANTUM WELL

E (Al„Ga, As)=5+vx,

m, (A1„Ga, „As)=a, +p,x,
mhh(Al Gal — As) ahh+Phh

(22)

(23)

(24)

A square quantum well subject to no external field is
usually modeled by a step profile which is discontinuous
at the heterojunctions. The commonly used interface
conditions at the heterojunctions are (1) the continuity of
the envelope function and its first derivative, or (2) the
continuity of the envelope function and its first derivative
divided by the effective mass.

Within each Aat region of the square quantum well, the
mass is a constant, and the effective potentials of the four
Hamiltonians given in Eqs. (15)—(18) are identical be-
cause the derivatives of the mass with respect to the posi-
tion vanish. Thus envelope functions within- each- fIat re=

gion are independent of the Hamiltonian used for the
analysis. If the same interface conditions at the discon-
tinuous points between two adjacent regions are essential-
ly imposed for the four Hamiltonians, the eigensolutions
will be exactly identical. As a result, the four Hamil-
tonians produce the same transition energy, namely, the
band-offset ratio will be independent of the Hamiltonian
if the heterojunction is modeled by a step function with
essentially imposed interface conditions.

However, the discontinuity of the square quantum-well
model implies an infinite internal electric field at the
heterojunctions, and this is not physically possible. In
reality, the potential changes over a few monolayers for a
perfect microscopic interface. Stern and Sarma ' have in-
vestigated the gradually varying interface potential of a
modulation-doped heteroj unction. In this paper, the
square quantum well is modeled by a smoothed profile
and it is termed a modified square quantum well. The
heterojunction is simulated by an error function rather
than a step function, hence, the effective potential V' (z)
differs for distinct Harniltonians. The modified potential
profile is illustrated in Fig. 1 by the solid line, which re-
moves the discontinuity of the sharp square quantum
well. (The rest of the curves in the figure will be ex-
plained in Appendix A. )

In this paper, the quantum well is fabricated by GaAs
and Al„Ga, As in the [001] direction, where x is the
composition fraction of Al. For Al Ga

&
„As with

0~x 0.45, the band-gap energy, the effective mass of
the electron in the conduction band, and the effective
masses of the heavy and light holes in the valence band
take the following relations:

BenDaniel and Duke
Redistributed
Bastard

Zhu and Kroemer 1

2

—1
1

2

0

0
1

2

0
1

2

m,h(A1„Ga, „As)=a,„+p(hx, (25)

where 6= 1.424 eV, v= 1.247 eV, a, =0.067mo,
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the potential energy of the modified square quantum well
are given by

m, (z) =a, + 1+erfe 1

2 2cre

and

yo
1

Vc(z) = 1+erf
2 20 c

Iz I

——L
2

L
Iz I

——
2

(26)

(27)

with

I I I

-1.0 -0.6 0.0 0.5 1.0
NORMALIZED LOCATION z l L

and

Vc =vxQc

p, =p,x,

(28)

(29)

FIG. 1. A modified square quantum well manufactured by
GaAs and Alo 3Gao 7As with a conduction-band-offset ratio of
0.5 is illustrated. The step profiles in solid line segments are the
profiles commonly used; the smooth profiles in solid curves are
the modified profiles utilized in this paper. The effective poten-
tials of the Zhu and Kroemer Hamiltonian are depicted. Only
the envelope functions of the first eigenlevels are plotted, in
spite of the fact that there are two, three, and two levels for the
electron, the heavy hole, and the light hole, respectively. The
envelope functions and the effective potentials of the electron
and the heavy and light holes are drawn in chain-dashed,
dashed, and dotted curves, respectively.

p, =0 083mo ~hh 0 35mo phh=0 05mo cxlh 0 08mp
and plh=0. 10mp ~ The free-electron mass is denoted by
mp.

In the conduction band, the electron effective mass and

where L is the quantum-well width, which is the separa-
tion between the two inAection points of the modified
profile, and where o., and o.c are the dispersive factors
which designate the change rates of the electron effective
mass and conduction-band potential energy at the hetero-
junctions. The first derivatives of the mass and the po-
tential profiles, for either z )0 or z & 0, are normally dis-
tributed with standard deviations of o., and o.c, respec-
tively. The error function is defined by
erf( t) =2/&rr Ioexp( —s )ds. The conduction-band-
offset ratio is denoted by Qc and its relation to the
conduction-band-offset energy is Vc =Qcb Es, where
AE is the band-gap difference between Al„Ga, As and
GaAs, and AE =vx. Recall that x is the composition
fraction of Al in the barrier.

The first and second derivatives of the mass are essen-
tial to the calculation of the effective potential in Eq. (19).
They are given below:

and

P, /&2rrcr, exp[ —(z L/2) /2cr, ]
—if z )0

I —P, /+2vro, exp[ —(z+L/2) /2cr, ] if z &0

—(z L/2)P, /+2rrcr, exp—[ —(z L /2) /2cr, ] i—f z )0
m,"(z)= '

(z+L/2)P, /&2mo, exp[ —(z+L/2) /2cr, ] if z &0 .

(30)

(31)

Rigorously speaking, the first derivative of the mass is
discontinuous at the origin; that is, the mass is a C func-
tion. The slope discontinuity normalized by the ratio of
the characteristic mass (mo) and the characteristic length
(L) reads

Phh 1
mhh(z) =ahh+ 1+«f

2 2&hh

L
Iz I

——
2

the heavy and the light holes and the potential energy are
given by

m,'(0+ ) —m,'(0 )

mo/L
2p, /mo

exp
&2rr(o, /L ) 8(o, /L )

(32)

1}1 1
m)h(z) =a)h+ 1+erf Iz I

——L
2

(33)

(34)

Similarly, in the valence band, the effective masses of and
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y0
1

Vv(z) = 1+erf
2 &2o ~

with

Iz I

——L
2

(35)
tron. They are attainable by replacing the subscript e in
Eqs. (30)—(32) by the subscript hh for the heavy hole,
and by the subscript lh for the light hole.

and

Vt, =vxQi

Phh PhhX

(36)

(37)

Pi PihX (38)

where o.z&, o.
&b, and o. z are the dispersive factors which

characterize the change rates of the effective masses of
the heavy and light holes and the valence-band potential
energy at heterojunctions. Qv is the valence-band-offset
ratio and Qc+Q/, =1. From Eqs. (29), (37), and (38),
note that p, /P, =

phh//Mhh
=

pih//L/ih =x.
The first and second derivatives of the masses of the

heavy and the light holes, and the discontinuity of their
first derivatives at z =0, are similar to those of the elec-

IV. BAND-OFFSET RATIO CALCULATION

Given a modified square quantum well, the transition
energy depends on the eigenenergies of the conduction
and the valence bands. The eigenenergies, in turn, rely
on the ratio of the conduction-band offset to the total
band gap as well as on the Hamiltonian utilized in the
computation. In this section, first, the methods for calcu-
lating the transition energy will be given. Second, the
scheme employed to reveal the Hamiltonian dependence
of the band-offset ratio will be shown.

The three-dimensional form of the general Hamiltoni-
an suggested by von Roos in Eq. (13) is utilized to incorp-
orate the exciton effects. Assuming that both the
effective mass and the permittivity are isotropic, the exci-
tonic Hamiltonian reads "'

H,„=—,'[m, (z, ) p, m, ( z)~p, m( z) +rm, (z, ) pr, m, (z, )~p, m, (z, ) ]

+
I mh(zh ) Phmh(zh )~Phmh (zh )'+mh «h ) Phmh(zh ) Phmh(zh ) ]

+ v(Ir, r
I
)+ v, (z, )+—v„(z„), (39)

with a+P+y = —1, where p, =(P, ,P, «,P, , ),

ph
=(ph, ph «,ph, ), r, =(x„y„z,), and rh = (xh, yh, zh )

are the momenta and locations operators of the electron
and the hole. The operators grouped by the square
brackets of Eq. (39) are the kinetic-energy operators of
the electron and the hole. The confinement potentials of
the electron and the hole are denoted by V, (z, ) and

Vh(zh ), respectively. If the modified profiles given in Sec.
III are employed, from Eqs. (27) and (35), V, (z, )= Vc(z, )

and V/, (z/, ) = Vt (zh ).
Assume that the electron and hole interact like two

point charges. Then their Coulomb potential is given, in
MKS units, by

V(Ir, rhI)—

a'
2/M(z„zh ) Bx By

1

2 Bz, m(z) Bz,

2

4m@[x +y +(z, —
zh ) ]'

a 1 a
2 Bzh mh (zh ) Bzh

+ V; (z, )+ vh (zh ), (41)

where x =x, —x& and y=y, —
y& are the planar coordi-

nates of the electron relative to the hole. The reduced
mass becomes location dependent:

2

4~e[(x, —x„)'+(y,—yh) +(z, —zh) ]'

(40)

1 1 1

p(z„zh ) m, (z, ) mh(zh )
(42)

where e is the permittivity of the material, and e is the
absolute value of the electron charge. Equations (39) and
(40) are valid for both the heavy and the light holes.
Hence, the subscript h can be replaced by hh for the
heavy hole or by lh for the light hole, as appropriate.

Neglecting the planar translation of the mass center of
the exciton, the excitonic Hamiltonian given in Eq. (39)
can be expressed in a differential form: and

+ Vc(z, ) (43)

The effective potentials of the electron and the hole are
obtainable by the same algebra as in Eq. (19):

V; (z, )= —
3 [am,'(z, ) bm, (z, )m,"(z,—)]

m, (z, )
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Vh (zh ) = —
3 [amh (zh ) b—m h (zh )mh'(zh ) ]

mh(zh )

+ Vi, (zh ), (44)

with

Ak AkE= II

2m, (z, =0) 2mh(zh =0) (50)

(j2

2p(z, zh ) Bx By

X'a 1 a
2 Bz, m, (z, ) Bz,

+ V,' (z, )+ V' (z ) .

1 8
Bzh h( h ) Bzh

(45)

The eigenproblem,

HV(x, y, z„zh ) = (ET EG )4(x,y, z„zh )—,

can be solved by separating variables x and y from vari-
ables z, and z&, where ET and EG are the transition ener-

gy of the system and band-gap energy of GaAs, respec-
tively.

N«ing that k~~
= (k„k» ) and r~~

= (x,y ), the so lutio n «
Eq. (46) reads

V(x,y, z„zh ) =exp(ik~~ r~~ )P, (z, )gh (zh ),
where p, (z, ) and lt h (zh ) satisfy

(47)

d 1 d el( )
2 dz, m(z) dz,

+ .q, (z, ) =E, itj, (z, ) (48)
me ze

where m,'(z, ) =dm, (z, )/dz„m, "(z, ) =d m, (z, )/dz„
mh(zh ) =dmh(zh )/dzh, and mh'(zh ) =d mh(zh )/dzh.
Coefficients a and b are given in Eqs. (20) and (21).

In Fig. 8 of the paper published by Miller et al. , the
exciton binding energy is calculated for band-offset ratios
of 0.57 and 0.85 by the conventional square quantum well
and the variational method. As far as we can resolve
from the figure, by altering the band-offset ratio from
0.57 to 0.85, the exciton binding energy at zero electric
field differs by 0.04 and 0.15 meV for the heavy-hole and
the light-hole exciton, respectively. In comparison with
the transition-energy differences resulting from the em-
ployment of the Hamiltonians shown in Figs. 5 and 6 of
this paper, these exciton binding-energy differences are
an order of magnitude less. As a result, the change of the
exciton binding energy due to the band-offset ratio i,s
negligibly small in comparison with the transition-energy
difference needed to be compensated for. (The compen-
sating process will be explained in the next section. )

Therefore, the interaction term of the electron and the
hole is ignored in this paper. Under these circumstances,
the Hamiltonian becomes

1= 1 +
po m, (z, =0)

1

mh(zh =0) (51)

The transition energy is the sum of the energy eigenval-
ues of Eqs. (48) and (49) and the band-gap energy, name-
ly,

ET —E, +EI, +EG (52)

If the planar relative motion is ignored, namely, kII =0,
Eqs. (48) and (49) reduce to the single-band effective-mass
equations for the electron and the hole,

+ V,
' (z, ) Q, (z, )

and

=E,g, (z, ) (53)

+Vh (zh) ij'jh(zh)
2 dzh mh zh dzh

=Ehph(zh) . (54)

The transition energy ET is calculated by Eqs. (53),
(54), and (52). Then the band-offset ratio calculation is
performed as follows to demonstrate the band-offset ratio
variation due to the choice of the Hamiltonian.

The transition energy between a level in the conduction
band and a level in the valence band is erst obtained by
using the BenDaniel and Duke Hamiltonian with a given
band-offset ratio (Qc ). Then the band-ofFset ratios
for the redistributed Hamiltonian ( Qc ), the Bastard
Hamiltonian (Qc ), and the Zhu and Kroemer Hamil-
tonian (Qc ) are sought to reproduce the same transi-
tion energy as the BenDaniel and Duke Hamiltonian be-
tween identical transition levels. This process is repeated
for several band-offset ratios and for various transitions.
Calculation of the 11 HH, 11 LH, 22 HH, and 22 LH
transitions are performed in this paper.

Let QP be the band-offset ratio of a non-BenDaniel and
Duke Hamiltonian; that is, let Qc be Qz, Qc, or
Qc . And let EH and EHDDH be the transition energies
between identical levels obtained by a non-BenDaniel and
Duke Hamiltonian and the BenDaniel and Duke Hamil-
tonian, respectively. The non-Ben Daniel and Duke
Hamiltonian band-offset ratio is found by solving, with a
given Qc

and EH(QC ) EBDDH(QC (55)

d 1 d
2 dz„m„(z„) dz„

+ Veff( )

+ l h(zh) Ehoh(zh) i (49)
h(zh )

An interesting relation between the dependence of Qc on
QP and the dependence of EH on Qc can be es-
tablished below.

Taking derivatives of both sides of Eq. (55) with
respect to Qc, it follows that
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dgcH 1 dEBDD

dg BDDH dE /dg H dg BDDH (56)

From Eq. (56), dgc /dgc and dEBDDH /dgc
vanish at the same Qc if dEH/dgc is nonzero and
finite at Qc . Moreover, dgc /dgc and
dEBDDH/dgc have the same sign if dEH/dQc )0
for Qc in the range of interest. These behaviors will be
further examined with computational results in the next
section.

V. NUMERICAL RESULTS AND DISCUSSIONS

It was shown in Sec. II that the potential energy of the
BenDaniel and Duke Hamiltonian differs from the
effective potentials of the other Hamiltonians by a term
caused by the mass dependence on location. If the
modified square quantum well illustrated in Sec. III is
employed, the effective potential varies with the Hamil-
tonian used. Thus the solution to the effective-mass equa-
tion changes with the Hamiltonian. In Sec. VA, the
eigensolutions to various Hamiltonians are calculated in
the conduction band.

The band-offset ratio of a quantum well determines the
barrier height of the conduction and the valence bands.
The shape of the effective potential depends on the Ham-
iltonian used. Thus both the band-offset ratio and the
Hamiltonian affect the transition energies in the conduc-
tion and the valence bands. If the transition energy is as-
sumed to be fixed, and the analysis using a particular
Hamiltonian is performed to reproduce the same transi-
tion energy, then an appropriate band-offset ratio must be
incorporated with the chosen Hamiltonian. This relation
between the band-offset ratio and the Hamiltonian will be
explored in Sec. V B. The transitions investigated include
11 HH, 11 LH, 22 HH, and 22 LH.

For the calculations in both subsections, the dispersive
factors of the effective masses of the electron and the
heavy and the light holes as well as the dispersive factors
of the conduction- and valence-band potential energies
are assumed to be equal for simplicity. Namely,

~e hh ~lh ~C ~ V (57)

The efFective-mass equation with vanishing boundary
conditions is numerically solved for various Hamiltoni-
ans. Note that the differential operator in the left-hand
side of Eq. (14) is self-adjoint. A self-adjoint operator 2)
is an operator which satisfies fP2)g dz = f g2)P dz+
boundary terms, for arbitrary functions P and g. This
property facilitates the variational approach of the finite-
element method applied to the quantum-well problems.
Strictly, the finite-element scheme used in this paper re-
quires that the first derivative of the mass be continuous,
namely, that the mass be a C' function. Although the
modified square quantum well does not exactly satisfy
this requirement, the discontinuity given by Eq. (32) is
insignificant if the dispersive factor 0. is sufficiently small.
The profile symmetrically defined by two error functions
is, therefore, considered as an approximation of a C
function. The magnitude of discontinuity will be noted
for the subsequent calculations.

A. Eigensolutions in the conduction band

1.0
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O 0.6

EFF. POT.
BDDH
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BH
ZKH

O
N

O
Z,'

0.5
0.4
0.3
0.2
0.1

0.0
-0.1 I I

-1.0 -0.5 0.0 0.5 1.0
NORMALIZED LOCATION z / L

FIG. 2. The effective potentials of the four Hamiltonians are
drawn for the electron in the conduction band of a GaAs-
Alo 3Gao 7As quantum well. The effective potentials of the Ben-
Daniel and Duke Hamiltonian (BDDH), the redistributed Ham-
iltonian (RH), the Bastard Hamiltonian (BH), and the Zhu and
Kroemer Hamiltonian (ZKH) are shown in solid, dotted,
dashed, and chain-dashed curves, respectively. The potential
profiles are normalized by the barrier height of the conduction
band (V&), and the dispersive factor (o) is taken to be two
mon olayers.

In this subsection, the conduction-band calculation of
a modified square quantum well fabricated from GaAs
and Al„Ga, As is performed, to explore the effects of
the Hamiltonian on the effective potential energy and the
eigensolution.

The well width L is taken to be 67.84 A (24 monolayers
of the GaAs lattice ). The composition fraction x is 0.3,
and the conduction-band-offset ratio Qc is 0.6. The bar-
rier height of the conduction band Vc is 224.46 meV by
Eq. (28), and f3, =0.0249mo by Eq. (29). The calculations
are performed with the dispersive factor o. varying from
2.83 (one monolayer) to 14.13 A (five monolayers).

In Fig. 2, the effective potential profiles for various
Hamiltonians are depicted with cr =5.65 A (two mono-
layers). When the redistributed Hamiltonian, the Bastard
Hamiltonian, and the Zhu and Kroemer Hamiltonian are
expressed in differential forms similar to the BenDanie1
and Duke Hamiltonian, the position-dependent effective-
mass modifies the real potential energy in the fashion that
the lower half of the quantum well is narrowed and the
upper half is widened. The deviations of the effective po-
tentials of the non-BenDaniel and Duke Hamiltonians
from the BenDaniel and Duke Hamiltonian increase in
the sequence of the redistributed Hamiltonian, the Bas-
tard Hamiltonian, and the Zhu and Kroemer Hamiltoni-
an.

The conduction band of the structure calculated in this
subsection supports two eigenlevels. The eigenenergies
obtained by various Hamiltonians are plotted in Fig. 3 as
functions of the dispersive factor. We find that the
eigenenergies obtained by different Hamiltonians vary
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BAND-OFFSET RATIO FIG. 7. The band-offset ratios for the four Hamiltonians re-
quired to produce the same transition energies between the
same levels are plotted vs the BenDaniel and Duke Hamiltonian
band-offset ratio. The four transitions investigated are 11 HH,
11 LH, 22 HH, and 22 LH. The 22 LH transition no longer ex-
ists when the BenDaniel and Duke Hamiltonian band-offset ra-
tio exceeds 0.67, because the second level of the light hole disap-
pears.

FIG. 5. The transition energy differences of the non-
BenDaniel and Duke Hamiltonians from the BenDaniel and
Duke Hamiltonian are plotted for the heavy-hole transitions 11
and 22 HH.

to produce the same 11 HH, 11 LH, 22 HH, and 22 LH
transition energies as the BenDaniel and Duke Hamil-
tonian are drawn versus the band-offset ratio of the Ben-
Daniel and Duke Hamiltonian. In all of the figures, the
curves related to the 22 LH transition terminate before
the BenDaniel and Duke Hamiltonian band-offset ratio
exceeds 0.67, because the valence band supports only one
light-hole level at the band-offset ratio greater than 0.67.

In Fig. 4, as the band-offset ratio increases, the large
mass difference between the electron and the hole results
in the increase of the 11 and 22 HH transition energies.
The 11 and 22 LH transition energies first increase and
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BAND-OFFSET RATIO

FIG. 6. The transition-energy differences of the non-
BenDaniel and Duke Hamiltonians from the BenDaniel and
Duke Hamiltonian are plotted for the light-hole transitions 11
and 22 LH.

then decrease because the light-hole mass is only slightly
larger than the electron.

As shown in Figs. 5 and 6, the energies for a particular
transition obtained by different Hamiltonians at a fixed
band-offset ratio increases in the same order as in Fig. 3.
Because the effective masses of both the heavy and light
holes are larger than the electron, the transition energy
obtained by the non-BenDaniel and Duke Hamiltonian
can be lowered by decreasing the band-offset ratio. If the
non-BenDaniel and Duke Hamiltonian band-offset ratio
is continually lowered until its energy difference from the
BenDaniel and Duke Hamiltonian is compensated for,
the same transition energy as the BenDaniel and Duke
Hamiltonian is achieved. Consequently, the band-offset
ratios of distinct Hamiltonians having the same transition
energy between the same levels now run in the reverse or-
der of the transition energy; that is, they increase in the
order of the Zhu and Kroemer Harniltonian, the Bastard
Hamiltonian, the redistributed Hamiltonian and the Ben-
Daniel and Duke Hamiltonian, as shown in Fig. 7 ~

In Fig. 7, we show how band-offset ratios of the non-
BenDaniel and Duke Hamiltonians which produce the
same 11 and 22 HH transition energies as the BenDaniel
and Duke Hamiltonian monotonically increase when the
BenDaniel and Duke Hamiltonian band-offset ratio in-
creases. However, the band-offset ratios which produce
the same 11 and 22 LH transition energies first increase,
and then decrease. These behaviors can be related by Eq.
(56) to the transition energy of the BenDaniel and Duke
Hamiltonian given in Fig. 4.

From Figs. 4 and 5, it can be seen that the transition
energies (especially the 11 HH and 11 LH transitions) are
rather insensitive to the band-offset ratio and the Hamil-
tonian. Hence, the same transition energy can be repro-



47 BAND-OFFSET RATIO DEPENDENCE ON THE EFFECTIVE-. . . 12 769

duced by somewhat different band-offset ratios, as shown
in Fig. 7. Thus an attempt to determine the band-offset
ratio from experimental data would involve large inaccu-
racy.

VI. CONCLUDING REMARKS

By permuting two momentum operators (P ) and two
mass operators [1/+m(z)], the BenDaniel and Duke
Hamiltonian, the Bastard Hamiltonian, and the Zhu and
Kroemer Hamiltonian are reconstructed. Moreover, a
redistributed Hamiltonian is suggested by arguments
parallel to those which generate the Bastard Hamiltoni-
an. All of these Hamiltonians are expressed in a self-
adjoint differential form to facilitate the finite-element
analysis.

A square quantum well is modeled by a modified
profile which is smoothed at the heterojunctions, to take
account of the finiteness of the internal electric field. The
modified square quantum well is described by error func-
tions whose first derivatives are normally distributed with
a standard deviation, termed a dispersive factor (o. ) in
this paper.

The effective potential is the sum of the real potential
and a term resulting from the mass dependence on the lo-
cation. The effective potential relies on the Hamiltonian
utilized, and its deviation from the real potential in-
creases in the following sequence: the BenDaniel and
Duke Hamiltonian, the redistributed Hamiltonian, the
Bastard Hamiltonian, and the Zhu and Kroemer Hamil-
tonian.

In the interpretation of a given spectrum, the Hamil-
tonian employed in the analysis cannot be regarded in-
dependently of the band-offset ratio utilized, if the
modified profile is used. Furthermore, the band-offset ra-
tio determined by frequently used means of matching cal-

culated transition energies with spectral peaks would be
rather inaccurate.
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APPENDIX A: THE CURVES IN FIG. 1

The meanings of the remaining curves in Fig. 1 are in-
terpreted in this appendix. In Fig. 1, the modified square
quantum well with the band-offset ratio of 0.5 is
sketched. In addition to the potential profiles of the
sharp and the modified square quantum wells, the
effective potentials of the Zhu and Kroemer Hamiltonian
are plotted. In the conduction band, the effective poten-
tial of the electron is drawn in a chain-dashed curve. In
the valence band, the effective potentials of the heavy and
light holes are in dashed and dotted curves, respectively.
There are a total of two, three, and two levels for the
electron, the heavy hole, and the light hole, respectively.
However, only the envelope functions of their first levels
are shown in the figure, with line styles same as the
effective potentials.

It appears that the effective potential of the heavy hole
is not depicted in Fig. 1. In fact, the effective potential of
the heavy hole also appears in the plot, but it is so close
to the real potential profile that the two potentials cannot
be distinguished in the figure. The modification of the
potential profile of the electron is usually far greater than
that of the heavy hole, because of the order of magnitude
difference of their effective masses.
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