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Nonorthogonal tight-binding molecular-dynamics study of silicon clusters
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A universal-parameter tight-binding molecular-dynamics technique is detailed and used to obtain
equilibrium geometries, energies, and vibrational frequencies of small silicon clusters. With this
scheme there is complete agreement with ab initio results for the lowest-energy structures of clusters
of size up to N =10 (for which ab initio results are available). The frequency analysis shows that it
is important to include the effects of nonorthogonality in order to obtain reasonable estimates even
for small clusters.

I. INTRODUCTION

Since its introduction the tight-binding molecular-
dynamics scheme has been found to be very useful
in the treatment of covalent systems with tetrahedral
coordination. The computational efBciency of the tight-
binding method derives from the fact that the Hamil-
tonian can be parametrized. Harrison'~ introduction of
universal parameters has made this an a priori theory
in which atoms are characterized only by their valence
energies and their covalent radii, all of which are trans-
ferable. Tight-binding molecular dynamics incorporat-
ing Green's-function methods have been successfully used
to determine surface reconstruction, chemisorption sites
and bond lengths, defect dynamics, etc. for various semi-
conductor systems.

The conventional molecular-dynamics scheme using
the tight-binding theory, while successfully describing co-
valent systems with tetrahedral coordination, is inade-
quate when applied to systems dominated by multicen-
ter bonds. For example, it is not possible to obtain the
correct vibrational frequency for even a carbon or sili-
con dimer with this approach. Also, for fullerenes this
method yields "breathing mode" and other fundamen-
tal frequencies too far removed from experimentally de-
termined values. The problem is due to the fact that
while for tetrahedrally coordinated compounds the non-
orthogonality between atomic orbitals, responsible for re-
pulsion in the bond, can be separated out as a simple
two-body repulsion term (since single two-center bonds
dominate the electronic structure), for more general co-
ordination the nonorthogonality cannot be so isolated
and it becomes necessary to resort to matrix elements of
nonorthogonal atomic orbitals. Thus, even the inclu-
sion of next-nearest-neighbor effects requires modifica-
tions of the standard formulation. Further, in molecular
dynamics the choice of parameters of the tight-binding
Hamiltonian depends on the interaction cutoff. While
this cutoff can be easily chosen for tetrahedrally coordi-
nated structures, where the bond lengths are clearly de-
fined, no such clear-cut procedure is available for multico-
ordinated clusters where the bond length fiuctuations can

be large. Therefore, it is desirable to have a scheme which
is insensitive to the chosen cutoff distance, thereby elimi-
nating the complexities associated with arbitrary cutoffs.

With these considerations in mind, we generalize the
molecular-dynamics formulation so as to apply for non-
tetrahedral and multicoordinated systems. A brief sum-
mary of the method has already been published in a
shorter article, and we present more details here. Our
work is based on a generalization for electronic energy
calculations made by van Schilfgaarde and Harrison.
This allows this universal parameter theory to be appli-
cable (within the usual limits of a one-electron theory)
to study the molecular dynamics of molecules, crystals,
defects, and surfaces in a computationally tractable way.
This particular formulation, while equivalent in spirit to
the extended Huckel method popular among chemists,
lends itself to first-principles molecular dynamics with
significant reduction in computational effort. Explicit in-
corporation of the nonorthogonality of the basis enables
one to treat systems where interactions are dominated
by multicenter bonds. This also allows us to model far-
ther neighbor interactions while invoking only one extra
parameter, thus preserving the simplicity of the earlier
scheme. In this approach the atoms are taken to inter-
act with each other without any cutoff in the interactions
between them. This eliminates introduction of spurious
forces which could accompany incorrect use of the pa-
rameters used for the termination of the interactions.

The present method has already been proven success-
ful in its application to C60. Based on this technique
we had predicted that the lowest-energy configuration
for an oxygen atom chemisorbed on this molecule is one
where the oxygen is bonded over the short bond in C60
that is shared by two adjoining hexagons. The underly-
ing double bond is weakened into a single bond in the
process. This is termed the "epoxide" structure in chem-
istry terms, and its formation has now been established
experimentally. g'~o Our estimate of the (Azg symmetry)
"breathing mode" and "tangential mode" frequencies for
the pristine Cso are within 30% of the experimental val-
ues. Considering that we are using universal parameters
to model the interactions, the agreement is excellent.
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In this paper we give details of the present technique
both for the evaluation of the forces and binding ener-
gies. We then present results for small silicon clusters
and compare with other calculations. We stay within the
framework of the universal scheme of Harrison2 for sim-
plicity, making no effort to alter parameters to improve
quantitative results.

The past decade has seen a substantial rise in the in-
terest in small and large semiconductor clusters. 'Zhere-

have been extensive studies of bulk silicon and its sur-
faces, both experimentally and theoretically. Experimen-
tal investigations of clusters of Si, however, are mainly
limited to their mass spectra. ' 2 The theoretical cal-
culations of these clusters fall into three categories: ab
initio, s 4 local-density approximation (LDA), is s or
semiempirical. ' Another purpose of this paper is to
test the validity of our molecular-dynamics scheme by
comparing our geometries, binding energies, and frequen-
cies with the above-mentioned work and available exper-
imental results.

We find this simple exponential distance dependence ade-
quate for our purposes. The term Ub „gwill be described
later below.

We now turn our attention to the evaluation of the
electronic part of the force. Let (P ) be a set of atomic
orbitals centered on different atoms in the cluster. This
set is, therefore, nonorthogonal. One can write the vari-
ational wave function for the system as

4n = ) .c 4'a.

The characteristic equation then becomes

) (H,~
—E„S,~)c" = 0,

3

where

P,*HP~ d r

II. TECHNIQUE

The highlights of our technique have been published
elsewhere. r Here we give the details. As in most first-
principles molecular-dynamics methods, we solve New-
ton's equations for atomic motion, with forces computed
quantum mechanically (within the Born-Oppenheimer
approximation). If the total energy U of a system is
known, the force F~ associated with an atomic coordi-
nate x is given by

One can then easily do molecular-dynamics simulations
by numerically solving Newton's equation

d'x

and

P,*P~ d r. (10)

In matrix form Eq. (8) becomes

(H —E„S)C"= 0,

(H —E„S)C" + (H —E„S) C" = 0. (13)
x Bx

Multiplying on the left with C"t and using (12), we have

where C~ is a column vector. Taking the Hermitian con-
jugate of (ll),

C"t(H —E„S)= 0,

where we have used the fact that H and S are Hermitian.
DifFerentiating (11) with respect to x, we get

to obtain x as a function of time. We write U as a sum
of three terms) (H —E„S)C" =0.

Bx
(14)

U = Ue) + UIP„P + Ub/~d)

where U, ~ is the sum of the one-electron energies EA, ,

Ui=) EI,
k

and U„~is given by a repulsive pair potenial y(r):

(3) From this we get

gE C~t(BH E Bs)Cn

gz Cut SCn

(4) The C" are normalized so that

U«i, ——) ) &(r~i)
2 j()i)

Here r,~ is the separation of atoms i and j. y(r) is short
ranged and taken to scale exponentially with distance.

with P = 4/ro, and ro, a natural unit of distance in
our simulations, is taken to be one-half the dimer bond
length. d is the sum of covalent radii of interacting atoms.

The traditional approach with nearest-neighbor cut-
oIF is to set S = l, i s 7 and to use Slater-Koster form
for the Hamiltonian matrix elements. We call this the
orthogonal tight-binding approach. As mentioned above,
and discussed in detail by van Shilfgaarde and Harrison,
for multicoordinated systems the nonorthogonality can-
not be separated out as a two-body repulsion term, and
the effect of the nonorthogonality must be dealt with ex-
plicitly. The additional complication of calculating the
overlap matrix was dealt with by van Schilfgaarde and
Harrison in the spirit of extended Huckel theory, where
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a proportionality is assumed between H and S:
K

H,, = —(H, , +H, ,)S,,2
(17)

where B iH(BT) ' is real symmetric and can be solved

by standard methods. Finally, the electronic part of the
force is given by

While in extended Huckel theory S is explicitly calcu-
lated assuming Slater-type atomic orbitals, and H from
the above proportionality, in van Schilfgaarde and Har-
rison's approach H is computed as in orthogonal tight-
binding theory, using universal parameters, and S is in
turn determined from the above proportionality. Specif-
ically, if V,~ denote the Hamiltonian matrix elements in
orthogonal theory, van Schilfgaarde and Harrison showed
that

1 2H,, =V,, 1+——S,

where

(Ssso 2v 3Sspcr 3Sppo )
2 =

4
(19)

is the nonorthogonality between sp hybrids. The quan-
tities Spy

„

in turn are determined from

K(&) +&~ )
(20)

1 AA'p(d) = 1 AA'p(dp)e

where dp is the bond length for the crystal and n = 1/Tp.
This exponential scaling of parameters could easily be
modified if deemed necessary (e.g. , algebraic dependence
in the vicinity of nearest-neighbor distances, but expo-
nential dependence farther out), but we find this simple
exponential dependence adequate for our purposes.

The eigenvalues of a system with nonorthogonal basis
set, for obtaining the electronic part of the force, can
then be obtained from

The orthogonal Hamiltonian parameters Vgp „areob-
tained from the dimensionless universal parameters
through a prescription given by Harrison2 and used suc-
cessfully for tetrahedral compounds. The only additional
parameter entering this scheme is the Huckel proportion-
ality constant K, whose determination is discussed in the
next section. The complete set of V~'s necessary for the
construction of the Hamiltonian matrix in (18) are ob-
tained in terms of the parameters Vpg „and direction
cosines (t, m, n) of the bond vector d using the standard
Slater-Coster scheme. s The Vggi„(d) are taken to de-
crease exponentially with d:

III. RESULTS AND DISCUSSION

The electronic parameters we use for Si are generated
using Harrison's universal parameter scheme, and listed
in Table I. Once again we emphasize that to preserve the
a priori nature of the calculation we have chosen not to
use other parametrization schemes known to yield better
results for bulk Si, e.g. , that of Chadi and Cohen.

The two remaining parameters are the coeKcient of
the repulsive term yp [see Eq. (6)] and the overlap pa-
rameter K [see Eq. (17)]. We impose the condition that
the correct (experimental) bond length (2.24 A.) (Ref. 20)
for the silicon dimer be reproduced. This makes the two
parameters mutually dependent as shown in Fig. 1. As
can be seen in the figure, the dependence is very smooth.
It can be fitted by the quadratic form

yp(K) = —0.45K + 2.10K —1.42, (26)

where yo is in eV. We are still free to choose K, which
we fix by the requirement of obtaining the correct (ex-

k

Note that the traditional orthogonal tight-binding for-
malism can easily be recovered from the above by setting
K to a large value, and keeping only nearest-neighbor
interactions.

The first two terms on the right-hand side of (3) are not
suKcient to exactly reproduce cohesive energies of dimers
through bulk structures. This is because there are sev-
eral components contributing to the total energy in tight
binding theory. They include the promotion energy re-
quired to transform from free atom to hybrids necessary
to form covalent bonds, and covalent, metallic, polar, and
overlap energies. 2 It is possible to include all these com-
ponents in U, ~ and U„~by a proper choice of parameters
for bulk structures. For clusters of arbitrary sizes, how-
ever, where coordination of atoms varies considerably, an
extra bond-counting term, Ub „d,is necessary to repro-
duce cohesive energies accurately as shown by Tomanek
and Schluter. This term can be chosen to bring bind-
ing energies in agreement with the o,b initio values, as
described below.

det]H;~ —ES,~] = 0. (22)

Evaluation of (22) is expedited by the use of the well-
known Cholesky factorization in which S is factored into Parameters ev

TABLE I. Silicon parameters derived from universal
scheme (Ref. 2).

8 =BB (23)

det]B 'H(B~) ' —E] = 0-, (24)

This factorization is always possible provided S is posi-
tive definite. The eigenvalue problem is then equivalent
to solving

6p

&sso
&sper

+pp~
&pp

-13.55
-6.52
-2.37
2.52
3.32

-1.07
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N=6

N=7

N=9 N=10

FIG. 3. Geometries of the lowest-energy structures of
small silicon clusters from N = 5 to 10 obtained using the
present molecular-dynamics scheme.

difference between these two structures, with the latter
structure lower in energy for one set of parameters. This
orthogonal tight-binding finding is in disagreement with
the ab initio results and with our result. In all cases our
calculated bond lengths are systematically higher than
the ab initio values of Raghavachari s by 5—7'%%uo.

In Table III we compare vibrational frequencies for
the dimer and the trimer obtained by both orthogo-
nal and nonorthogonal tight-binding molecular-dynamics
schemes with ab initio values. The orthogonal theory
gives frequencies that are almost a factor of 2 higher than
the nonorthogonal theory, with the latter being in good
agreement with ab initio values. It is clear from this table
that the orthogonal scheme, while reasonably adequate
for determining structures and energies for small clusters,
cannot be relied on to give reasonable estimates for fre-
quencies, even for smaller clusters. This also appears to
be the case for larger clusters as shown by our work on
C60 "

For N = 6, the edge-capped (distorted) trigonal
bipyramid (see Fig. 3) has the lowest energy (E

—22.44 eV), although it is only 0.54 eV higher in en-
ergy compared with the face-capped trigonal bipyramid.
The ab initio method also gives close energies for these
two structures with lower energy for the first structure as
in our method. By contrast, Laasonen and Nieminen
found the latter structure to be slightly lower in energy
over the former.

In the case of Si7, we find the pentagonal bipyramid
(Fig. 3) to be the most stable with E = —26.95 eV. We
also find an energy minimum for a tricapped tetrahedron
(E = —25.34 eV) as in earlier works. These results agree
with earlier results.

For N = 8, the distorted bicapped octahedron was
found to be the lowest-energy structure (E = —28.96
eV), in agreement with ab initio result. i4 The undistorted
bicapped octahedron was also found to be an energy min-
imum (E = —27.04 eV). Another minimum was obtained
for the tetracapped tetrahedron (E = —28.16 eV), which
was the lowest-energy structure found in the orthogonal
tight-binding method.

For N = 9, we obtained lowest energy (E = —31.95
eV) for the distorted tricapped octahedron, once again in
agreement with Raghavachari. 4 The tricapped trigonal
prism was found to be another energy minimum with E =
—30.78 eV. In the orthogonal tight-binding method this
latter structure was found to be lower in energy over the
former by 1.8 eV.

For N = 10 we find two low-energy structures. Of
these, the tetracapped trigonal prism (Fig. 3) was found
to be lower in energy (E = —38.65 eV) over the tetra-
capped octahedron (E = —35.80 eV). This is in agree-
ment with the recent ab initio work and density-
functional calculations 5 which find the former structure
being the ground state with the latter slightly higher in
energy. This is also in agreement with the results of Laa-
sonen and Nieminen, ~ who find an energy difference of
about 3 eV between these two structures with the former
structure being more stable. For the tetracapped octa-
hedron we obtain a side length of 3.4 A. and a cap bond
length of 2.6 A. . This is in agreement with the results
of Tomanek and Schluter who find the bond lengths
to be 3.1 and 2.4 A. , respectively, in their tight-binding
energy minimization scheme. Their corresponding bond
lengths using the LDA energy minimization scheme are
2.5 and 2.3 A. , respectively. The ab initio work, how-
ever, seems to indicate a reversal of ordering in the bond
lengths with the corresponding bonds being 2.4 and 2.6
A. , respectively.

Another structure considered by earlier works s for
10 is the adamantane fragment (i.e. , the build-

ing block for bulk silicon). We find this structure to

TABLE III. Comparison of frequencies obtained by orthogonal and nonorthogonal tight-binding
molecular-dynamics methods with the O,b initio method.

Orthogonal TB
cm

947
520(ai ),930(b2), 1026(ai )

Nonorthogonal TB
cm

511
234(ai), 525(b2),493(ai)

ab initio
cm

507
206(ai), 560(b2),582(ai)

Reference 13.
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Cl- hence is more reliable for the treatment of larger clus-
ters with arbitrary coordinations.

INITIAL FINAL

be unstable in our simulations, distorting into a tetra-
capped trigonal prism, which is our lowest-energy struc-
ture. The initial and final stages of this simulation runs
are shown in Fig. 4. Both Raghavachari and Tomanek
and Schluter~ found the adamantane structure to be
considerably higher in energy than both the tetracapped
octahedron and the tetracapped trigonal prism, but did
not report on its stability.

We note that the orthogonal tight-binding molecular-
dynamics scheme seems to favor a close-packed struc-
ture for clusters of size N = 8 and 9. Our results,
on the other hand, favor octahedron structures over
close-packed structures, in agreement with the ab initio
work. The larger clusters tend to be multicoordinated
with many atoms forming bonds in excess of 4. As ex-
plained earlier, the traditional orthogonal tight-binding
methods become less reliable when used to treat these
systems. The present method, however, treats systems
dominated by multicenter bonds more accurately and

FIG. 4. Simulation showing the instability of the adaman-
tane fragment (building block for crystalline silicon). We
start with an ideal adamantane structure (initial) and find
this structure to be unstable, distorting into a more compact
tetracapped trigonal prism (final), our ground-state structure
for N = 10.

IV. CONCLUSION

We have presented the details of a recently developed
nonorthogonal tight-binding molecular-dynamics scheme
which correctly treats nontetrahedral and multicoordi-
nated structures, and shown its application to silicon
clusters. The present scheme maintains the simplicity of
the original orthogonal tight-binding theory and, by ex-
plicitly treating the nonorthogonality of the basis-, g.-eatly
extends the applicability of earlier orthogonal schemes
to include systems where extended Hiickel methods have
proven useful. All these have been made possible by the
addition of only one extra parameter. The absence of
any cutoff in the interactions between atoms in our the-
ory eliminates introduction of undesirable spurious forces
that are sometimes present in dynamical schemes.

The frequency analysis shows considerable improve-
ment in the estimates of vibrational frequencies for sili-
con clusters over the orthogonal tight-binding molecular-
dynamics scheme where such estimates tend to give fre-
quencies that differ by a factor of 2 or larger. It is impor-
tant to include effects of nonorthogonality for obtaining
reasonable estimates even for small clusters.

We have shown that the present scheme reproduces
lowest-energy structures obtained by ab initio methods
for clusters of size up to N = 10, in contrast to the
orthogonal tight-binding scheme which gives results in
disagreement for N = 5, 6, 8, and 9. The present scheme
can be relied on to give better results for geometries for
larger multicoordinated structures than the conventional
orthogonal tight-binding scheme.
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