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Electron intersubband relaxation in doped quantum wells
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The intersubband relaxation time of an electron is calculated by considering electron-electron
and electron-phonon (bulk LO phonon) scattering in a GaAs quantum well. The relaxation time
is derived and numerically evaluated within the random-phase approximation with full multiple
subband and frequency-dependent screening. The electron scattering due to the coupled system of
electrons and phonons is compared with the decoupled scattering where both electron-electron and
unscreened electron-phonon scattering are considered separately. It is shown that the intersubband
relaxation time is heavily influenced by the electron density in the well. It is also shown that at room
temperature it is necessary to use the finite-temperature dielectric function to accurately determine
the intersubband relaxation time.

I. INTRODUCTION

The intersubband relaxation time of an electron in
a quantum well has been the subject of recent inves-
tigations experimentally and theoretically. The goal
of much of this research has been to determine the
two-dimensional nature of the longitudinal-optical (LO)
phonons and how that infiuences the intersubband (and
intrasubband) relaxation time. There have been few
studies that have focused on how the electron density in
the quantum well affects scattering between subbands. 's

However, high electron densities have been linked to
rapid thermalization of the electron distribution func-
tion in quantum wells, indicating a general increase in
scattering with electron density. The main goal of our
research is to determine the electron-density dependence
of the intersubband relaxation time.

The intersubband relaxation time is calculated for an
electron interacting with a given thermal distribution of
electrons and/or the lattice in a single GaAs quantum
well. One of the best methods for determining the inter-
subband relaxation time involves the evaluation of the
imaginary part of the electron self-energy in the random-
phase approximation (RPA). This method allows the in-
clusion of the relevant scattering mechanisms —electron-
electron and electron-phonon (LO phonons) —in a pre-
scribed and consistent way, which is complicated by the
fact that they mutually interact and affect each other.
This is in contrast to considering electron-electron scat-
tering and unscreened electron-phonon scattering sepa-
rately, and summing the two contributions.

Due to the complicated form of the equations that de-
scribe the electronic screening in the RPA for a multiple
subband quantum well, various approximations such
as static screening, the long-wavelength limit, the elec-
tric quantum limit, or the plasmon-pole approximation.
are commonplace. These approximations overly simplify
or neglect either the single pair or plasmon excitations

which are expected to be important for inelastic scat-
tering. We numerically solve the screening equations in
the RPA for the matrix element of the effective electron-
electron interaction potential without making any of the
above approximations. Also, the overlap of the wave
functions is included in a form factor that is evaluated
algebraically.

A number of simplifying assumptions are made con-
cerning the quantum-well structure which is a single
GaAs layer between two Al Gai As regions. The states
of the electrons are calculated in the effective-mass ap-
proximation where the electrons are assumed to have
the efFective mass at the bottom of the I's conduction
band for bulk GaAs. The wave functions and energies
are approximated by assuming infinite barriers and ig-
noring any band bending. The low-frequency dielectric
function of the undoped GaAs layer is approximated by
that of the bulk lattice, therefore neglecting interface and
confined phonon modes (the validity of this approxirna-
tion is discussed in Ref. 3). The dielectric function of
the lattice is assumed to fit a single oscillator model in
which the longitudinal and transverse optical frequencies
are considered dispersionless.

In Sec. II we derive a general expression for the inter-
subband relaxation rate that is valid at finite tempera-
ture and can include either or both electron-electron and
electron-phonon scattering. In Sec. III the intersubband
relaxation time is evaluated for various electron densi-
ties, energies, and two different temperatures, and those
results are discussed. In Sec. IV the results are summa-
rized and some concluding remarks are made. All equa-
tions are given in cgs units.

II. MODEL AND EQUATIONS

A. Electronic states

The electronic states are calculated in the effective-
mass approximation. The value of the effective mass that
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is used throughout this paper is given by m* = 0.067m„
where m, is the free-electron mass. The electron wave
functions and energies for a quantum well of width a are
approximated by the infinite barrier height values and
are given by (A is the normalization area)

tijnm (q~ ~) = ~latt (~)~im~j n ~

6j„—VC„'"'(q)IIO „(q,~),
(4a)

(4b)

(electron-electron scattering), and the doped GaAs quan-
tum well including the phonons (electron scattering due
to the coupled system of electrons and phonons) is given,
respectively, by

(1a)
clatt(M)6, m6j'n —V~j„"'(q)II „(q,u). (4c)

nh, vr
En =

2m 0

B. Lattice dispersion

h'(A:.'+ k„')
E„k =E„+ 2m' (1b) The term Vc„"'(q)IIO „(q,~) gives the polarizability due

to the electrons in the quantum well and is defined below
by

The low-frequency dielectric function of undoped GaAs
is necessary to represent the dielectric properties of the
lattice in the absence of conduction-band electrons in
the quantum well. We assume dispersionless bulk LO
phonons, and a single oscillator model relating four pa-
rameters, the LO-phonon frequency wL„ the TO-phonon
frequency uT, the high-frequency dielectric constant t~,
and the static dielectric constant ~, . The lattice dielectric
function is given by

(6~ —Es )~T
ei,tt(~) = e +

T
(2)

C. Screening in quasi-two-dimensional systems

The first term in (2) is due to high-energy electronic
excitations and is a constant in the energy range of
interest, and the second term is due to the phonons.
The values used throughout this paper are uL, = 5.58 x
10 sec, aT = 5.14 x 10 sec, e~ = 10.92, and
Es —Coo(Cd j/WT)

0 & ~ g &f (Emk+q) &f (Enk)Il „~q, ~~ =2g ~ )E k+& —E k —AM —lG
(5a)

V', "'(~)

27cc
dzi dz2 @,*(zi)gj(zi)

xexp( —a'I» —»I) g (»)g*(»),
(5b)

where nf is the Fermi-Dirac function with the chemical
potential p, .

A common approximation is to assume V'„A.
&

oc V „&&,
which is good for static screening (i.e. , Thomas-Fermi).
All inelastic-scattering processes are neglected in this ap-
proximation, including electron-plasmon scattering. An-
other common approximation is the plasmon-pole ap-
proximation in which the plasmon and pair excitations
are approximated by an effective plasmon excitation. We
make no approximation in solving the linear system; in
all our calculations V'„A,

&
is determined by directly solv-

ing the linear system [Eq. (3)j by numerical methods.

The screening of a potential in a multiple sub-
band quantum well is described by a linear system of
equationsso' 1 relating the frequency and wave-vector-
dependent dielectric function e,jn (q, w), the matrix
element of the bare Coulomb potential V, i,'P'(q), and
the matrix element of the effective interaction potential
V'~&&(q, a), and is given by

V,,~~"'(C) = ) &ijnm(q, ~)VmnA, ,i(q, ~).
mn

Equation (3) gives V'+&&(q, cu) and both e,j„m(q, a) and
V~j&&"'(q) are defined below.

The dielectric properties of the conduction-band elec-
trons are given by the RPA dielectric function. Intrasub-
band and intersubband excitations are included (both
plasmon and single pair). is In addition to the dielectric
properties of the electrons, the dielectric properties of the
lattice can also be included within the RPA. This is done
through the use of a total dielectric function that includes
the polarizabilities of the electrons and the lattice. The
dielectric function e,jn (q, w) for the undoped GaAs
quantum well (unscreened electron-phonon scattering),
the doped GaAs quantum well neglecting the phonons

D. Intersubband relaxation time

The energy broadening of a state k in subband i due
to the electron-electron and electron-phonon interaction
is described by the spectral function7

A, (k, E) = —2 Im [G,, (k, E)) . (6)

The dressed Green function in subband i, G,, (k, E), is
determined from the Dyson equation7

G,, =G,'~„+G,') Z,„G„„

where the RPA self-energy, Z,n, is given by

Z,n(k, inn) = ——) ) ) V',„.(q, ivm)

x Gz (k —q, ia„—iv ).

The frequencies i~„and iv are the standard Fermi and
Bose imaginary frequencies. The function G (k, w) is the
Green function for a noninteracting electron in subband
j and is given by"
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G, (k, ~) =
hu) —Ejk+ p

The solution of Eq. (7) in matrix notation is written as

(GO —1 ~0~GO —1)—1

If the energy broadening is described by Eqs. (6) and (10)
it is not possible to characterize it with a single relaxation
rate parameter as is desired for a simple understanding
of the physical process. In Appendix A we show that a
simple approximate expression is obtained for 0,, if the
nondiagonal elements of the self-energy are small com-
pared to the energy separation between the subbands:

G,,(k, ~) = h(u —E,k+ p —Z,,(k, ~)

) ., iZ,„(k,(u) iz

hu —E„k+p —Z„„(k,w)

The primed sum extends only over the subbands with the
same symmetry as subband i. This restriction is due to
the spatial inversion symmetry of our quantum well (see
Appendix A). We see in Eq. (11) that the energy depen-
dence of the self-energy infIuences the shape of the spec-
tral function. This effect was shown to be important es-
pecially for occupied subbands. However, for the range
of densities under consideration, the state from which
the electron scatters (subband 3) has either a zero (zero-
temperature) or a very low (room-temperature) occupa;
tion probability. Therefore, we introduce a commonly
used approximation and replace the energy argument of
the self-energy by the energy of the noninteracting elec-
tron. We also assume that the maximum of the spectral
function is still close to the peak position obtained when
the nondiagonal elements of the self-energy are neglected
(i.e. , hw „=E,k —p, + Re[2,, (k, E,k —p, )]) and re-
place the energy in the last term of the denominator of
Eq. (11) by this value. With these approximations the
spectral function is a Lorenztian centered near hw ~ and
the half-width at half height p, (k) is given by

ImZ„„(k, E)""'= '-'-'" '-)-"'-(" )~'[E +R.Z (kE) E„, R.Z„„(k,E)] +[I Z„„(k,E)]
(12)

2= ——Im Z~, (k, E,k —p, ) (13)

with E = E,k —p, . The second term in Eq. (12) can be
shown to be small because the nondiagonal elements of
the self-energy are small compared with the energy sep-
aration between the subbands. Therefore we keep only
the first term and define the intersubband relaxation rate
by

factor. We note that Eq. (16) includes all possible inter-
subband and intrasubband electronic excitations as can
be seen from Eq. (3).

There is an interesting test that can be performed on
the validity of Eq. (16). The intersubband relaxation rate
for an electron scattering from one subband to another
by emitting or absorbing a bulk LO phonon is well known
and is given by

Zj, (k, uu„) = ——) ) V', , (q, ivm)
q v

xG (k —q, uu„—iv ). (14)

e~~l. f 1 11——
I [ni(~~)+ —,

' + —,']
2 (t~ t~)

x d q b(Eji,+, —E,1, + n~l, ).~ Fj*'j(q)
q

(17)

To perform the frequency summation in Eq. (14) we use
the spectral representation for Ve~ (q, iv ):

Vjiij (q) ivm) = V~ iij (q)'
&oo

dE .j . (15
ImV', + (q, E/5)

ihv —E

h (2~)2
1

d q Im —Vg", (q, u))

x [1 —n j (E,1, —hw) + n&(u)],
(16)

where h~ = E,k —Eji, ~ and ni, (~) is the Bose statistics

In Appendix B we show how this result is obtained if
Vj;,~ is defined by Eq. (3). The frequency summation
is evaluated by the standard method" and the resulting
intersubband relaxation rate is given by

The plus is for emission and the minus is for absorp-
tion, the factor e is the electronic charge, and Fj,,j (q) =
Vc, " (q)/(2+e /q). Equation (16) is indeed equivalent
to Eq. (17) when the electron density goes to zero, and
the dielectric function used is given by Eq. (4a). This
confirms that the electron-phonon scattering is correctly
included.

Another correctness check on the rate from Eq. (16)
can be obtained for the limiting case of electron-electron
scattering with the dielectric function from Eq. (4b).
This rate can be compared with the corresponding rate
determined from Fermi's Golden Rule. The Fermi's
Golden Rule result is given by Eq. (C4) in Appendix C.
For electron-electron scattering Eqs. (C4) and (16) are
almost equivalent, the only difference being the statisti-
cal factors [ni, (w)+1][1—nf(E)] and [1 —nf(E)+ni, (a)].
This difference is explained by decomposing the intersub-
band relaxation rate determined from Eq. (16) into two
terms as follows:
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Im —V~'...(q, ~) [1 —ny(E, k ~) + nb(~)]

= Im -V;,",, (q, ~) [1 —n&(~,k, )][nb(~)+1]
—Im —V~', (—q, —a) ny(& k — )nb(~) (18)

The first term yields the statistical factor and rate consis-
tent with Fermi's Golden Rule. The physical relevance of
the second term is to exclude other electrons of the same
spin from scattering into the initial state k in subband i
which is assumed to be occupied (a similar discussion is
found in Ref. 7).

III. NUMERICAL RESULTS
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Before the intersubband relaxation rate given by
Eq. (16) is numerically evaluated, a change of variables
is performed. A more suitable expression for numeri-
cal integration is arrived at by transforming the vari-
ables of integration from (q, Pq) to (q, w). This is done
by introducing an energy-conserving b function and then
performing the angular integration associated with Pq. i
We assume a three-subband quantum well and evaluate
the intersubband relaxation rate for transitions from sub-
band 3 to subband 2. The quantum-well width is 220 A.
and the subband energies are then Eq ——0.0116 eV,
E2 = 0.0464 eV, and Es ——0.1044 eV (the renormal-
ization of the subband energy through the interaction is
neglect;ed). In Sec. III A the intersubband relaxation rate
due to electron-electron scattering is numerically evalu-
ated at zero temperature using the dielectric function
given by Eq. (4b). The dependence of the rate on elec-
tron energy and density is investigated. In Sec. IIIB
the intersubband relaxation rate due to electron-electron
scattering is numerically evaluated and analyzed at finite
temperature (300 K). In Sec. III C the intersubband re-
laxation rate of an electron due to its interaction with
the coupled electron-phonon system is numerically eval-
uated at zero temperature using the dielectric function
given by Eq. (4c). The energy and density dependence
is investigated and a comparison is made with the sum
of the separate rates, electron-electron, and unscreened
electron phonon which use the dielectric functions given
by Eqs. (4b) and (4a), respectively.

A. Electron-electron scattering

The intersubband relaxation rate due to electron-
electron scattering is numerically evaluated at zero tem-
perature. In Fig. 1 the rates are plotted versus the total
electron density in the well for three different initial elec-
tron energies. It is shown that at low densities the relax-
ation rate increases with density. At higher densities the
relaxation rate reaches a maximum and then eventually
decreases, the larger energy rates having their maximum
rate at higher densities. When the Fermi level surpasses
the energy of the second subband, the availability of the
final states decreases with increasing density and there-
fore acts to reduce the rate. However, the decrease in the
rate at high densities is only due in part to the reduction

FIG. 1. Electron intersubband relaxation rate due to
electron-electron scattering for transitions from subband 3
to subband 2 versus electron density for three difI'erent en-
ergies. Squares are for E3k = 1.1E3, circles are for E'3k
1.5E3, and triangles are for Esk —— 1.9E3. The density
n = 0.974 && 10 cm is marked by the arrow and corre-
sponds to where the Fermi level equals the energy of the sec-
ond subband. The temperature is zero and the well width is
220 A. .

in the availability of final states. This is shown in Fig. 2
where the rate is calculated with and without the occu-
pancy of final states being taken into account In t. he
latter case the relaxation rate still reaches a maximum
and then decreases with increasing density.

The decrease in the rate at high densities is explained
by examining the excitation spectrum of the electrons
in the well. The plasmon dispersion is determined from
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FIG. 2. Electron intersubband relaxation rate due to
electron-electron scattering for transitions from subband 3 to
subband 2 versus electron density with and without the fi-
nal states restricted by Fermi-Dirac statistics. Triangles are
for restricted final states and circles are for unrestricted final
states. The density = 0.974 x 10 cm is marked by the
arrow and corresponds to where the Fermi level equals the en-
ergy of the second subband. The initial energy E3k —1.5E'3,
the temperature is zero, and the well width is 220 A.
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FIG. 3. Plasmon dispersion, single pair
excitation region, and the region of integra-
tion for the electron densities (a) n = 2.41 x
10 cm and (b) n = 2.74x10 cm . The
initial energy is E3k = 1.5E3 and the wave
vector is normalized to the Fermi wave vec-
tor of subband one, (a) kp = 3.26 x 10 cm
and (b) kF = 3.41 x 10 cm '. The cir-
cles and squares represent the 3 ~ 2 and
the 2 ~ 1 intersubband plasmon dispersion,
respectively. The dotted and solid lines rep-
resent the low wave-vector boundaries of the
3 ~ 2 and 2 ~ 1 single pair excitation re-
gions, respectively. The shaded region is the
region of integration.
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the poles of Im[Vs'22s(ci, u)] and the single pair excitation
regions are where Im[V3$$3(g, u)] is finite and nonzero.
The region of integration is determined from total energy
and parallel momentum (to the layer) conservation. In
Fig. 3 the plasmon dispersion and single pair excitation
region are plotted along with the region of integration for
densities n = 2.41 x 10 cm and n = 2.74x10 cm
and energy E3k ——1.5E3. It is clearly seen that at a den-
sity of approximately n = 2.74 x 10 cm and higher,
emission of the 3 +-+ 2 intersubband plasmon is forbidden
by energy conservation. This is due to the increase in
the 3 ~ 2 intersubband plasmon energy as the density
increases, especially at large wave vector.

It is of interest to compare the intersubband relaxation
rate due to electron-electron scattering with that of un-
screened polar-optical-phonon scattering. In Fig. 4 the
rates are plotted versus electron energy, and three den-
sities are considered. At the lowest density the electron-

electron rate is smaller than the rate for unscreened
phonon emission. At higher densities the electron-
electron rates can be much larger, notably at high en-
ergies. The features of Fig. 4 are explained by examin-
ing the excitation spectrum of the electrons in the well.
For the density n = 2.0 x 10 cm, the sharp rise at
E = 0.140 eV is due to the emission of the 3 ~ 2 inter-
subband plasmon becoming possible by energy conserva-
tion as shown in Fig. 5. Note that in the energy range
under consideration, the electron energy is above thresh-
old for the 2 ~ 1 intersubband plasmon. For the density
n = 4.2 x 10 cm the sharp rise at E —0.200 eV is
also due to the emission of the 3 ~ 2 intersubband plas-
mon becoming possible. However, the threshold for the
emission of the 2 ~ 1 intersubband plasmon is also at
E —0.200 eV as shown in Fig. 6. Notice that in Fig.
4 the higher the density the greater the energy at which
the rise occurs. This is consistent with the results of
Fig. 3, where the 3 ~ 2 intersubband plasmon energy in-
creases with electron density. For the electron density of
n = 2.0 x 10 cm the second subband is not populated
and therefore only the 2 ~ 1 excitations contribute. On
the other hand, there is no sharp increase in the rate for
this density at the threshold for 2 ~ 1 intersubband plas-
mon emission (see Fig. 4), indicating that 2 ~ 1 single
pair excitations are the dominant scattering mechanism.

B. Finite temperature

't .0

CI
+C CICII-I CICICICI

00 I

0. 1 00 0. 1 50 0.200 0.250 0.300
E~I,(eV)

0.350

FIG. 4. Electron inter subband relaxation rate due to
electron-electron scattering for transitions from subband 3 to
subband 2 versus initial electron energy for three different
electron densities (n). Squares are for n = 2.0 x 10" cm
circles are for n = 2.0 x 10' cm, and triangles are for
n = 4.2 x 10 cm . The solid line is for unscreened LQ-
phonon emission. The temperature is zero and the well width
is 220 A.

The intersubband relaxation rate due to electron-
electron scattering versus electron density is numerically
evaluated at finite temperature (T = 300 K). Also two
additional rates are numerically evaluated for compari-
son. The first is the corresponding zero-temperature rate
where the total electron density is the same as in the
Gnite-temperature calculation even though the electron
density in a particular subband may be diKerent. The
second additional rate is a hybrid approximation that
substitutes the zero-temperature dielectric function for
the finite-temperature dielectric function. The motiva-
tion for computing these additional rates is that the elec-
tronic part of the dielectric function IIo „(g,w) can be re-
duced to an algebraic expression for zero temperature,
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FIG. 5. Plasmon dispersion, single pair
excitation region, and the region of inte-
gration for the electron density n = 2.0 x
10' cm . The electron energies are (a)
E3+ —0.13 eV and (b) Esk = 0.145 eV.
The wave vector is normalized to the Fermi
wave vector of subband one (k~ = 0.3029 x
10 cm ). The circles and squares repre-
sent the 3 ~ 2 and the 2 ~ 1 intersubband
plasmon dispersion, respectively. The dotted
and solid lines represent the low wave-vector
boundaries of the 3 ~ 2 and 2 ~ 1 single pair
excitation regions, respectively. The shaded
region is the region of integration.
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FIG. 6. Plasmon dispersion, single pair
excitation region, and the region of inte-
gration for the electron density n = 4.2 x
10 cm . The electron energies are (a)
Esk —0.18 eV and (b) Esk = 0.21 eV.
The wave vector is normalized to the Fermi
wave vector of subband one (k~ = 0.4039 x
10 cm ). The circles and squares repre-
sent the 3 ~ 2 and the 2 +-+ 1 intersubband
plasmon dispersion, respectively. The dotted
and solid lines represent the low wave-vector
boundaries of the 3 ~ 2 and 2 ~ 1 single pair
excitation regions, respectively. The shaded
region is the region of integration.
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FIG. 7. Electron intersubband relaxation rate due to
electron-electron scattering for transitions from subband 3 to
subband 2 versus electron density for T = 300 K (circles),
T = 0 K (squares), and a hybrid approximation (triangles)
where the T = 0 K screening is used in place of T = 300 K
screening but otherwise the full Gnite-temperature calcula-
tion. The initial electron energy is E3& = 1.5&3. The solid
line through the circles is a visual aid.

FIG. 8. Electron intersubband relaxation rate due to its
interaction with the coupled electron-phonon system for tran-
sitions from subband 3 to subband 2 versus electron den-
sity. Evaluated for three difFerent energies; squares are for
E3k = 1.1E3, circles are for E3k = 1.5E3, and triangles are
for E'3g = 1.9E3. The temperature is zero and the well width
is 220 A.
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but at finite temperature the evaluation of II~„(q,u) in-
volves a numerical integration which greatly increases the
computation time.

The results plotted in Fig. 7 show that the intersub-
band relaxation rate at zero temperature is quite difFerent
from the finite-temperature rate except at very low densi-
ties. The hybrid approximation rate is close to the finite-
temperature rate only at high densities. In general there
is a large range of electron densities where neither ap-
proximation agrees very well with the finite-temperature
result.
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The intersubband relaxation rate of an electron due to
its interaction with a coupled electron-phonon system is
numerically evaluated at zero temperature using the di-
electric function given by Eq. (4c). The rate is plotted
versus electron density in Fig. 8 for three different ini-
tial electron energies. The general density dependence
of the intersubband relaxation rate is similar to that for
electron-electron scattering. At low densities the rates
increase with electron density until reaching a maximum
and then eventually decrease. The sudden decrease in the
Esk = 1.1Es rate around the density n = 2.7x 10 cm
corresponds to the Fermi level closing to within 36 meV
of E3k ~ Therefore the sudden decrease in the rate is due
to the emission of the phonon mode becoming suppressed
by Pauli exclusion.

It is of interest to compare the above rate to the rate
of an electron scattering from the uncoupled electron-
phonon system. The latter is the sum of the electron-
electron relaxation rate [evaluated using the dielectric
function given by Eq. (4b)] and the unscreened electron-
phonon relaxation rate [evaluated using the dielectric
function given by Eq. (4a)]. Figure 9 shows a direct
comparison of the rates for energies of E3+ —1 ~ 5E3,
the rates at other energies exhibit similar behavior. At
low densities the coupled and uncoupled rates agree very
well, indicating that it is a good approximation to treat
electron-electron scattering and electron-phonon scatter-
ing as independent scattering mechanisms. At high den-
sities the rates due to scattering from the uncoupled
electron-phonon system are consistently higher than that
of the coupled electron-phonon system. This reduction
in the overall coupled rate at high density indicates an
increase in the mutual interactions of the electrons and
the lattice (i.e. , screening). Similar results have been re-
ported for bulk GaAs. o

In Fig. 10 the intersubband relaxation rate of an
electron due to its interaction with a coupled electron-
phonon system is plotted versus energy for four differ-
ent densities. The results are similar to those of Fig. 4
where only electron-electron scattering and unscreened
electron-phonon scattering were considered. At the high-
est electron density n = 4.2 x 10 2 cm there are two
regions where the rate rapidly increases. An examination
of the excitation spectrum identifies these as the thresh-
olds for emission of the 2 ~ 1 and 3 ~ 2 intersubband
plasmons as shown in Fig. 11. Notice that the thresholds

for 2 +-+ 1 and 3 +-+ 2 intersubband plasrnon emission no
longer coincide as in Fig 4. This is a result of the mod-
ification of the 2 ~ 1 intersubband plasmon dispersion
due to the mutual interaction of the electrons in the well
and the lattice. ~» The threshold of the 3 ~ 2 intersub-
band plasmon explains the sharp rise in the rate for the
density n = 2.0 x 10i2 cm z. For the electron density
n = 2.0 x 10 cm, the second subband is not pop-
ulated and therefore only 2 ~ 1 excitations contribute.
The contribution to the rate due to 2 ~ 1 plasmon emis-
sion is negligible, indicating that phonon and 2 ~ 1 single
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FIG. 10. Electron intersubband relaxation rate due to its
interaction with the coupled electron-phonon system for tran-
sitions from subband 3 to subband 2 versus electron energy
for four difFerent densities. Diamonds are for n = 0.0 cm
squares are for n = 2.0 x 10 cm, circles are for n =
2.0 x 10 cm ) and triangles are for n = 4.2 x 10 cm
The temperature is zero and the well width is 220 A.

FIG. 9. Electron intersubband relaxation rate due to its
interaction with the coupled and uncoupled electron-phonon

system for transitions from subband 3 to subband 2 versus
electron density at energy E3k = 1.5E3. Squares and circles
are for the coupled and uncoupled electron-phonon system,
respectively. The temperature is zero and the well width is
220 A. .
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FIG. 11. Plasmon dispersion, single pair
excitation regions, and the regions of integra-
tion for electron density n = 4.2 && 10 cm
The electron energies are (a) E3k = 0.140 eV
and (b) E3i, = 0.200 eV. The wave vector is
normalized to the Fermi wave vector of sub-
band one (k~ = 0.4039 x 10 cm ). Cir-
cles represent the 3 +-+ 2 intersubband plas-
mon dispersion. Squares represent the 2 +-+ 1
intersubband plasmon dispersion. Diamonds
represent the phonon dispersion. The dotted
and solid lines represen~ the low-~ve-vector
boundaries of the 3 +-+ 2 and 2 ~ 1 single pair
excitation region, respectively. The shaded
area is the region of integration.

pair excitations dominate the scattering. The reduction
in the scattering rate at low energies as the density in-
creases indicates strong screening of the phonon modes
at high densities. This is consistent with our previous
result that high electron densities mutually interact with
the lattice and result in screening. It is also seen that
neglecting electron-electron scattering altogether is not a
very good approximation even at low electron densities.

IV. SUMMARY AND CONCLUSION

The intersubband relaxation time of an electron has
been determined considering electron-electron scattering
and/or electron-phonon (bulk LO phonon) scattering in
GaAs quantum wells. The intersubband relaxation time
is derived within the random-phase approximation with
full multiple subband and frequency-dependent screen-
ing. This includes numerically determining the matrix
element of the efFective interaction potential by solving a
linear system. It should be noted that the equations are
valid for the intrasubband relaxation rate as well.

The intersubband relaxation rate of an electron scat-
tering from subband 3 to subband 2 due the conduction-
band electrons in the well (coupled or uncoupled with
the lattice) increases, reaches a maximum, and then de-
creases with electron density. The reduction of the inter-
subband relaxation rate at high densities is in part due
to the restriction on the availability of final states and
in part due to the 3 +-+ 2 intersubband plasmon energy
increasing with density. Plasmon emission plays a dom-
inant role in the dependence of the intersubband relax-
ation rate on electron density and energy. At 300 K the
intersubband relaxation rate substantially differs from
the corresponding zero-temperature rate and the finite-
temperature dielectric function is necessary to accurately
determine the rate.

The relaxation rate of an electron scattering from the
coupled electron-phonon system is compared with that of
the uncoupled system. At low densities the coupled and
uncoupled rates agree very well, indicating that it is a
good approximation to treat electron-electron scattering
and electron-phonon scattering as independent scattering
mechanisms. At high densities the coupled rates are con-
sistently lower than the uncoupled rates, especially at low
energy, indicating that screening increases with electron
density. We conclude that the effect of electron-electron

scattering on the intersubband relaxation rate must be
included in quantum wells at all but the lowest densities.
A future direction of research could include interface and
confined phonon modes since they are of interest in very
thin layers and superlattices. 2 3
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We want to calculate the diagonal elements of the ma-
trix G given by Eq. {10). We introduce the following
definitions:

G —1 GO —1 GO ~C 0 —i

B,, =A, ,

n~B,q —— E;q,0,
0, =hu —Ek+P, —Z;, .

(Ala)
(Alb)

(Alc)

(Ald)

The diagonal elements of the inverse matrix B are
given by

det(B) ' ( 2)

where ~B~,, is the minor for the element B,, We use the
definition of the determinant

det(B) = ) B,ri(, ) {—1)
rr i="i

(A3)

where N is the order of the matrix, the sum is over the¹~permutations, II is the permutation operator, and P
is the order of the permutations.

In both determinants of Eq. (A2), we factorize out
the product of the diagonal elements and keep only the
lowest-order terms in the ratio of the nondiagonal ele-
ments of Z to the energy separation between the sub-
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bands. This approximation is based on the spectral func-
tion being sizable only at energies approximately equal
to the real part of the zero of 0;(k, w). We then have the
following expressions:

I'

det(B) = Ai 0, iA;+i Arv 0, —)
Vv=1

Vg$

If we neglect the second term in ~B],, we obtain Eq. (1.1.).
The primed sum in Eq. (11) comes from the fact that the
self-energy has nondiagonal elements equal to zero be-
tween subbands with opposite parity. This follows from
the fact that Vc~".' = 0 (and therefore Ve+ ) if the sub-
bands i and n lave opposite parity.

~B~,, =Bi 0, iA, ~i Aiv

(A4)

1 )-
2 - A, A~vi@=1

(A5)
I

APPENDIX B: SPECTRAL REPRESENTATION

We show in this appendix that a spectral representa-
tion can be written for the matrix element of the effective
interaction potential in a multiple subband system. With
Eqs. (3) and (4c) we can write

V'igi(q, iv ) = e, tt(ivm) &pp&" (q) + ) V, „'"'(q)II „(q,iv )V "„Ai(q, iv ) (Bl)

We introduce a simplified index notation with the follow-
ing de6nition:

v p(q» ) = ~i.tt(» )v,', ki"'(q)

Iterating Eq. (Bl) we obtain the following expression:

V'p ——V p+) V ~, ri~, v~, p
$1

With Eq. (B2), we can write the first term of Eq. (B3)
as follows:

V p(q, iv )

1 4)L, —z 1

2uL, I ivm + uL,

+ ) V~~, H~, V~, ~,H~, V~, p
(1 /2

+ ) v.„rI'„v„„rI'„v„„rI'„v„,+ ". .
'Yl'Y2 Y&

ZV~ —(dl.
(B5)

V' (q, iv ) = A(q) +) - ivm —J3 q
(B4)

(B3)
Following Ref. 7, a spectral representation can be written
for V'p if the energy dependence can be cast in the form

which has the required form. The polarization function
IIO (q, ivm) already has the correct form by definition [see
Eq. (5a)]. The product of two or more expressions of
the type of Eq. (B4) can readily be written in the same
form. Therefore a spectral representation can be written
for V,',"„,(q, ivm).

APPENDIX C: FERMI'S GOLDEN RULE

The intersubband relaxation rate of an electron due to only electron-electron scattering calculated at finite temper-
ature in the RPA using Fermi's Golden Rule 2 zs is given by

1 2
k1,i ~i'

k1k2k2 jj'
2 V,'„',(kz —kz)

x[1 —nf(E k )]nf(Ejk )[1—nf(Ej k )]6(E k +Ef k —E k —Efk ). . (Cl)

The factor of 2 next to the square of the matrix element arises from the summation over three spin indices associated
with the wave vectors kq, k1, k& and where the exchange terms are neglected. This expression for the intersubband
relaxation time can be simplified to the following expression, where fun = E,k, —E, k,

d q [1 —nf(E,k, —Fun)] ) ~V,', (q, cu)~ Im [—II, (q, ~)j [ni, (cu) + 1].
23'

With an equation similar to Eq. (B3), but with V~p(q) = V~~/&"'(q) je, the following identity can be derived:

(C2)
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—V,.;,"...(q, cu) = ) ~V;..". (q, ~)~ Im —II, (q, a) (C3)

The intersubband relaxation rate is then given by

d Z Im —V,;,,;, (q, cu) [1 —nf(E, &, —hu)] [n&(~) + 1].
2K

(C4)

D. Y. Oberli, D. R. Wake, M. V. Klein, J. Klem, T. Hen-
derson, and H. Morkog, Phys. Rev. Lett. 59, 696 (1987); A.
Seilmeier, H. J. Hiibner, G. Abstreiter, G. Weimann, and
W. Schlapp, ibid. 59, 1345 (1987); M. C. Tatham, J. F.
Ryan, and C. T. Foxon, ibid. 6$, 1637 (1989).
K. Huang and B. Zhu, Phys. Rev. B 38, 13377 (1988); H.
Riicker, E. Molinari, and P. Lugli, ibid. 44, 3463 (1991);
K. W. Kim and M. A. Stroscio, J. Appl. Phys. 68, 6289
(1990).
L. F. Register, Phys. Rev. B 45, 8756 (1992).
S. M. Goodnick and P. Lugli, Phys. Rev. B 37, 2578 (1988).
J. A. White and J. C. Inkson, Phys. Rev. B 43, 4323 (1991).
W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham,
and J. E. Henry, Phys. Rev. Lett. 61, 1290 (1988).
G. D. Mahan, Many Particle P-hysics (Plenum, New York,
1981).
L. Wendler and R. Peshtedt, Phys. Status Solidi 188, 197
(1986).
R. Jalabert and S. Das Sarma, Phys. Rev. 8 40, 9723
(1989).
Eric D. Siggia and P. C. Kwok, Phys. Rev. B 2, 1024 (1970).
J. Lee and H. Spector, J. Appl. Phys. 54, 6989 (1983).

~2J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).
~sJ. K. Jain and S. Das Sarma, Phys. Rev. B $6, 5949 (1987).' P. von Allmen, Phys. Rev. B 46, 13345 (1992).

P. J. Price, Ann. Phys. 133, 217 (1981);K. Yokoyama and
K. Hess, Phys. Rev. B 31, 6872 (1985); S. Dss Sarma and
B. Mason, Ann. Phys. 163, 78 (1985).
G. F. Giuliani and J. J. Quinn, Phys. Rev. B 26, 4421
(1982).
The 1 +-+ 1 and 3 ~ 1 plasmon and pair excitations do not
contribute to scattering and therefore are absent (because
the quantum well is symmetric).
The 3 ~ 2 intersubband plasmon has a much larger contri-
bution to the relaxation rate than the 2 +-+ 1 intersubband
plasmon for the densities under consideration. This is de-
termined by plotting 1m[V~/$3(q, u)) versus u.
F. Stern, Phys. Rev. Lett. 18, 546 (1967).
Ben Yu-Kuang Hu and S. Das Sarma, Phys. Rev. 8 44,
8319 (1991).
The renormalization of the phonon and plasmon modes due
to their interaction is small, but still shifts the threshold
of the 2 +-+ 1 intersubband plasmon significantly (compare
with Figs. 4 and 6).
The derivation is similar to those in Refs. 23 and 16 except
that in our case the electronic states given by Eqs. (la)
and (lb) are substituted for plane waves.

2sD. Pines, Elementary Ezcitations in Solids (Ben-
jamin/Cummings, Reading, MA, 1963).


