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Currently the materials with the highest thermoelectric figure of merit Z are BizTe3 alloys. There-
fore these compounds are the best thermoelectric refrigeration elements. However, since the 1960s
only slow progress has been made in enhancing Z, either in Bi2Te3 alloys or in other thermoelectric
materials. So far, the materials used in applications have all been in bulk form. In this paper, it is
proposed that it may be possible to increase Z of certain materials by preparing them in quantum-
well superlattice structures. Calculations have been done to investigate the potential for such an
approach, and also to evaluate the efFect of anisotropy on the figure of merit. The calculations show
that layering has the potential to increase significantly the figure of merit of a highly anisotropic
material such as BizTe3, provided that the superlattice multilayers are made in a particular orienta-
tion. This result opens the possibility of using quantum-well superlattice structures to enhance the
performance of thermoelectric coolers.

I. INTRODUCTION

For a material to be a good thermoelectric cooler, it
must have a high thermoelectric figure of merit Z. The
figure of merit is defined byi

may reduce the phonon thermal conductivity and there-
fore increase Z as phonons can now be scattered by the
interfaces between layers. Calculations have been per-
formed to investigate the potential of such an approach,
and also to explore the effect of using the anisotropy of
some materials to enhance Z.

where S is the thermoelectric power (Seebeck coefficient),
o is the electrical conductivity, and K is the thermal con-
ductivity.

Currently, the materials with the highest Z are Bi2Te3
alloys such as Bio 5Sb15Te3, with ZT 1.0 at 300 K.
Only small increases in Z have been achieved in the past
two decades, so it is now felt that the Biq Tes compounds
may be nearing the limit of their potential performance.

For a material to have a high Z, one requires a high
thermoelectric power S, a high electrical conductivity o.,
and a low thermal conductivity K. It is difBcult to im-
prove Z for the following reasons. Increasing the thermo-
electric power S for simple materials also leads to a simul-
taneous decrease in the electrical conductivity. Also, an
increase in the electrical conductivity leads to a compa-
rable increase in the electronic contribution to the ther-
mal conductivity. So with known conventional solids, a
limit is rapidly obtained where a modification to any one
of these parameters adversely affects the other transport
coefEcients so that the resulting Z does not vary signifi-
cantly.

In this paper, it is proposed that it may be possible to
increase Z of some materials by preparing them in the
form of multilayered superlattices. These structures may
significantly alter Z since the electrons are now confined
to move in two dimensions. In addition, the layering
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where the subscripts I and 2 denote the contributions
from bands 1 and 2, respectively. For S1 and S2 of op-
posite sign, S and Z are greatly reduced from either of
their one-band values. This is the case for an intrinsic
semiconductor, where the two bands are the conduction
and valence bands. If Si and S2 are of the same sign,
then S is still reduced from the better of the one-band
values.

The calculations are for a general, anisotropic, one-
band material (assumed to be the conduction band). The
only other assumptions are that oi a constant relaxation
time ~ and that of parabolic bands.

Note that the calculations are not restricted to semi-
conductors. The material can be a metal, semiconductor,

II. CALCULATION

The figure of merit Z has been calculated for (i) a
three-dimensional (3D) bulk material and (ii) a 2D mul-
tilayered superlattice. The calculations assume a one-
band material. This is because one-band materials (such
as heavily doped semiconductors) give the best Z. The
reason for this is as follows. For a two-band material, the
measured thermoelectric power is
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or semimetal, as long as it is effectively a one-band ma-
terial.

4.0

A. Z for a 3D bulk material
2.

The methods for calculating 9, o', K, and hence Z have
been described elsewhere. s Since parabolic bands are
assumed, the electronic dispersion relation used is

g2k2 h2y2 g2k2
~(k. , k„,k, ) = *+ "+
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For conduction along the x direction, one obtains
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where the Fermi- Dirac function F, is given by
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= (/k~T is the reduced chemical potential (relative
to the edge of the conduction band), r is the relaxation
time, m~, my, m, are the effective-mass components, p,

is the mobility in the x direction, and ~, is the electronic
thermal conductivity.

So, using

82O.

Kg + Kph

where Kph is the phonon thermal conductivity, gives

FIG. 1. Plot of ('~«vs B The .inset shows the variation
of Z3DT with (' at fixed B.

to determine the value of ('~« for this value of B. The
next step is to adjust (' so that (' = (' «: this may be
achieved by doping with suitable impurities. The maxi-
mum Z3D T attainable for this value of B can be found
from Fig. 2. Note that although doping changes g' signif-
icantly, the corresponding change in B is negligible unless
the material is very heavily doped, resulting in significant
changes in the band structure or mobility.

From the graph of Z3DT against B in Fig. 2, it is clear
that increasing B increases Z3DT. With an anisotropic
crystal in 3D, Z3DT varies with current direction and it
is possible to increase B and therefore to maximize Z3D T
by choosing the current to How along the direction x of
highest mobility p,

B. Z for a 2D quantum well

For a suitably fabricated superlattice, the electrons are
confined to move within the narrow-gap material in 2D
quantum wells. Expressions for 8, o., K, and Z are de-
rived for transport in such quantum wells. The calcu-
lations assume that the electrons occupy only the low-
est (n=l) subband of the quantum well (this is consis-
tent with the optimization of Z arising from a one-band
model), and also that there is no tunneling through the
wide-gap semiconductor. The wide-gap semiconductor

where
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For a given value of B, the reduced chemical potential
(* = g/k&T may be varied to change the value of ZsDT.
The maximum value of ZsDT occurs when (' is equal to
its optimal value (' «(inset of Fig. 1). Figure 1 shows a
graph of ('~«against B, and Fig. 2 a graph of ZsDT(g' «)
against B.

In 3D bulk materials, B is determined largely by the
intrinsic properties of the material, but g* may be varied
by doping. To maximize Z3DT for a material, one 6rst
calculates B for the intrinsic material, then uses Fig. 1

~g 1Q
N

10

1Q
10

~ ~ ~ I

1Q

I

1Q
I

1Q
. .. I

1Q

FIG. 2. Plot of Z3DT((o~«) vs B.
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does not contribute to the conduction since its carriers
have found lower-energy states in the narrow-gap semi-
conductor.

Let the multilayers be parallel to the x-y plane and the
currents flow in the x direction. The general expressions
in Ref. 3 which were used to derive 8, a, K, and Z in 3D
were also used to derive the transport coeKcients in a 2D
quantum well. The electronic dispersion relation used is

g2k2 g2k2 g2
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indicating free-electron-like motion in the x-y plane and
a bound state (for an infinite potential barrier) in the z
direction. The results of the derivation are shown below:
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FIG. 3. Plot of (*~t vs B' for a 2D quantum well.
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So ZT for a 2D quantum well becomes
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where F, is defined in Eq. (7), a is the width of a quantum
well, and

to the 3D case. B' is calculated from Eq. (17) and (~~„ is
determined from Fig. 3. (* = (*~, is achieved by doping.
Note that it is not possible to vary a to optimize (*, as
this will change the value of B' [Eq. (17)j.

Recall that in 3D, the only means available to increase
B in an anisotropic crystal is to choose the current di-
rection to be the direction of highest mobility. For 2D
quantum wells, the situation is more complex. There
are more degrees of freedom available to increase B' and
hence optimize DDT. A higher mobility current direc-
tion will still give a higher B', but so will a narrower layer
thickness a. It may also be possible to increase B' by a
judicious choice of the crystallographic plane in which to
make the layers. If the layers are made in the x-p plane
and the currents flow along the x direction, then B' will
be the expression in Eq. (17). If the layers are made in
the x-z plane and the currents still flow along the x di-
rection, then m, will replace m„ in the expression for B'.
In this orientation, B' and therefore Z2DT will be higher
than the previous case if m, & m„. So one can increase
Z2DT not only by choosing the optimum current direc-
tion, but also by using narrower layers and by choosing
the best orientation in which to make the layers.

For a given value of B', g' in Eq. (15) may be varied to
change the value of Z2DT. The variation of Z2DT with
(* at fixed B' is similar to the variation of ZsDT with (*
at fixed B shown as an inset in Fig. 1. The maximum
value of ZzDT occurs when (' = g*~t. Figure 3 shows a
graph of g* t against B', and Fig. 4 a graph of DDT((' t)
against B'.

Note that for a 2D quantum well, the expression for
(* in Eq. (15) is diferent from the expression for the

f 2 2
3D case by the term 2,& &, which is associated with
confinement in the quantum well. Thus for the 2D case,
(* may be varied both by doping and by changing the
layer thickness c. This extra degree of freedom allows an
approach to increase Z2DT above the value characteristic
of the bulk material as discussed below.

To maximize Z2DT for a given quantum-well structure
(and hence a fixed B'), one proceeds in a manner similar
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FIG. 4. Plot of Z2DT(('~t) vs B' for a 2D quantum well.
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III. EFFECT OF QUANTUM-WELL
STRUCTURES QN Biq Tes

One of the best materials for thermoelectric refriger-
ation is Bi2Te3, with a Z3DT = 0.67 at 300 K. The
expressions derived previously are now used to calculate
ZT for Bi2Te3 in both bulk form and in a quantum-well
superlattice structure.

The equations for ZT derived so far assumed a single
constant energy ellipsoid in the Brillouin zone. For mul-
tiple ellipsoids, the values of B and B' derived need to
be multiplied by a number of the order of the number of
ellipsoids. Bi2Te3 has six ellipsoids, and multiplying B
by a factor of 6 gives a value of Z3DT in good agreement
with experiment, as shown below. The exact multiplica-
tive factor will be slightly different from 6 because not
all ellipsoids are oriented in the same direction, but this
factor should not significantly affect the comparison be-
tween Z3DT and Z2DT.

A. Calculated ZT for 3D bulk BiqTe3

Bi2Tes has a trigonal structure, which can be ex-
pressed in terms of a hexagonal unit cell of lattice pa-
rameters ap = 4.3 A. and cp = 30.5 A. . The compound
has a highly anisotropic efFective-mass tensor, with effec-
tive mass components m~ = 0.021m, p, m„= 0.081mp,
and m, = 0.32m, p. The phonon thermal conductiv-
ity is r~h = 1.5 Wrn K and the direction of high-
est mobility is the along the ap axis, with p, = 1200
cm' V-' s-'. '

Substituting these values into Eq. (10), one obtains
B = 0.076 at 300 K (after multiplying by 6). This gives
a maximum Z3DT of Z3DT = 0.52. This value is slightly
difFerent from the experimental result of Z3DT = 0.67
(Ref. 1) because first the relaxation time ~ may have
a slight energy dependence, and second not all carrier
pockets contribute equally, as mentioned previously. The
maximum ZsDT occurs at (*

~
= 0.9, so the chemical

potential is just above the conduction-band edge and the
material is a partially degenerate n-type semiconductor.

B. Calculated ZT for Bi&Te3 layers
in a quantum-well superlattice structure

In a quantum-well structure, since the electrons are
confined to 2D motion parallel to the layers, there is no
scattering off the interface between layers, so the carrier
mobility in a direction parallel to the layers is unchanged.
So if the ap axis is parallel to the layers, then p 0 1200
cm s V as before. However, phonons are not con-
fined to move in 2D, so they can scatter off the interfaces.
In thin layers this may reduce the phonon thermal con-
ductivity Kph Now

—i
~ph = 3t „vl,

where l is the phonon mean free path, C is the lat-
tice heat capacity, and v is the velocity of sound in the
material. For Bi2Te~, C„= 1.2 x 106 3K i m and
v = 3x10sms ~,s giving a value ofl = 10 k. If the layer

thickness a is greater than 10 A. , then layering does not
seriously affect the mean free path l and Kph should then
be the same as its bulk value. This is a conservative as-
sumption used to make numerical estimates for Z2DT, as
interface scattering will still occur for a & 10 A. ; this will
cause a slight decrease in ~ph and an increase in DDT.
However, if a is less than 10 A. , then l and r&h are lim-
ited by phonon scattering off the interfaces and a good
estimate for Kph is obtained by setting J = 0 and using
Eq. (18). Again, this is a conservative estimate because
the surface roughness and imperfections are expected to
reduce Kph further.

From the expression for B' in Eq. (17), decreasing
the layer thickness a increases B' and therefore increases
ZqDT. Also, if a ( 10 A, then r~h is reduced from its
bulk value, resulting in an even greater increase in Z2DT.
So to achieve the best Z2DT, it is necessary to make the
layers as thin as possible.

When calculating (* t for a material, one must use Eq.
(15) to check the value of ( to make sure that it does
not lie above the energy E„2of the next to lowest sub-
band of the quantum well. If ( does lie above E„2,then—
both the n=1 and n=2 subbands would contribute signif-
icantly to Z2DT: this is inconsistent with the assumption
of a one-band system and one would need to extend the
model in order to get meaningful results. In practice,
this is not a problem for the following reasons. In order
to obtain a high Z2DT, one requires a low a. This raises

Q2 2
the energy of the n=2 subband because E„2——2" ",.
At the same time, a lower a results in a higher B' and
from Fig. 2 this means a lower (' „and hence a lower (.
So decreasing a moves E„2 up in energy and ( down
in energy. This means that for values of a below a cer-
tain characteristic thickness, ( will always lie below E„
and the model will be self-consistent. This characteristic
thickness will usually be above the values of a which are
of interest, as shown in the calculations for Bi2Te3 below.

Z2DT(g'~t) was calculated as a function of a for super-
lattice layers of Bi2Tes in two distinct orientations: (i)
layers parallel to the x-y plane (ap bp plane) an-d (ii) lay-
ers parallel to the x-z plane (ap-cp plane). The current
was assumed to flow along the high-mobility ap axis.

If the layers are made parallel to the x- plane, the
minimum possible layer thickness is 10.2, as this is
the length of the smallest repeating distance in the z
direction. Since this thickness is greater than 10 A. ,

Kph = 15 Wm K i as in 3D. If the layers are paral-
lel to the x-z (ap-cp) plane, the minimum possible layer
thickness is 3.8 A. This is because the shape of the hexag-
onal unit cell is a parallelepiped, and the height of the
cell perpendicular to the ap-cp plane (i.e. , in the y direc-
tion) is ap sin 60' = 3.8 A.. So for a & 10 A. , r~h = 1.5
Wm ~ K ~, while for a ( 10 A. , K~h = sC„vl where
l = a. Figure 3 was used to calculate Z2DT((* ~), after
multiplying B' by a factor of 6. Note that layering lowers
the symmetry of the material, so the effective number of
carrier pockets contributing to Z2DT may be less than
that for ZSDT. Since there is no reliable way to estimate
the actual number, the 3D value of 6 was assumed. The
results are shown in Fig. 5, together with a line indicat-
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important. To estimate a maximum Z2DT that can be
obtained for this layer orientation, we assume a = 3.8 A. ,
a single-layer-thick quantum well, for which Z2DT = 6.9,
a 14-fold increase over the bulk value.

0

So, in principle, a huge increase in ZT can be achieved
y using superlattices of Bi2Te3, provided the Bi2Te3 lay-

ers are oriented in the ao-co plane. Even if the layers are
prepared in the ao-bo plane, a factor of 3 increase over

3DT is still possible, provided that very thin layers are
use . o rea ize these increases a numb fm er o experimen-

roduce
a i culties must be overcome. It bmay e i cult to

pro uce ap-cp plane layers, since thin films of B' Tes grow

to prepare layers of uniform thickness if the
ew uni cells thick. However, if these potential problems

can be overcome, then a suitable lattice-matched wide-
gap semiconductor must be found h' h 'llw ic wi act as the
quantum barrier in the superlattice. The band a
barrier mamaterial and the band offsets must be such that
the electronss are confined to 2D motion in the Bi T
layers.

in e i2 e3
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FIG. 5. Plot of Z Tii2o T(P pf ) vs layer thickness a for (1) ao-

bo plane layers and (2) ap-cp plane layers. The dashed line
indicates the best ZT for 3D bulk Bi2Te3.

IV. CONCLUSIONS

Using Bi2Te3 in a quantum-well structure has th
tential to 'ial to increase ZT by a factor of 13 over the bulk

as e po-

value. This large increase depends crucially on the mate-
ria 's highly anisotropic effective-mass tensor. In order to
achieve this increase the layers mu t bt us e prepare in the
Gp-co plane and the current must flow along the high-
mobility ao axis. If, however, the multilayers are
p perpendicular to the co axis along the ao-bo plane,

bulk valu
t en there is still an increase of a f t f 3ac or o over the

u value, provided the layers can be made 10 A thick.
The results of these calculations show that quantum-

well structures can significantly modify and perhaps
great y improve the thermoelectric figure of merit of cer-
tain materials.
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ing the best 3D figure of merit of Z3DT = 0.52.

toc ec th
e ore any conclusions can be dr 't '

rawn, i is necessary
o c ec the validity of the results by making sure that (

does indeed lie below E„—2 for the values of a in Fi . 5
. For the ao-bo plane orientation, B' =

o a in ig.

0.085 at a = 90 A. , giving (op,
——0.2 from Fig. 2. Using

less than E
are valid. SimilarlSimilarly, an ao-co plane layer of thickness
a = 90 A. gives B' = 0.17 and (' = —0.05. A
ne ativgative, g must be even lower than the n=l subband,
so the one-band model results are valid.

The results show that for layers parallel to the ao be-
plane, Z2DT is higher than ZsDT for layers th' th
a ou . The maximum DDT that can be obtained
for this layer orientation is 1.5, which is about 3 times
higher than the bulk value of 0.52. This value of Z2DT
occurs at n = 10.2 A. , which is the minimum possible
layer thickness.

than Z
For layers parallel to the ao-co plane Z T ' h' his ig er
ail Z3DT for layers thinner than 85 A.. As the layers

ecomesare ma e even thinner, the increase in Z T bec
more significant, increasing sharply when a ( 10 A at
which point phonon scattering off the interfaces becomes
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