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We study the kinetics of first-order phase transitions in exciton systems in both two and three
dimensions, where the volume fraction of the condensing droplets is small but finite. The solution
of our mean-field equations gives explicit self-consistent expressions for the droplet distribution
function, the nucleation rate, and the time evolution of both the average droplet size and the total
number of droplets. The results are compared with those of the classical Ostwald ripening problem.

I. INTRODUCTION

It is known that bounded electron-hole pairs, called
excitons, can be excited optically in a semiconductor. i
At high temperatures, these pairs behave as a Bose gas
of free excitons. At high density, the gas ionizes into a
fermionic system of electron-hole plasma, and a metal-
insulator transition occurs. Below a critical tempera-
ture, a first-order phase transition may take place, which
is analogous to a liquid-gas transition, except that now
particles have a finite lifetime due to recombination of the
electron-hole pairs. The two-phase coexistence consists
of a low density exciton gas and a high density fermionic
"liquid" phase. This two-phase coexistence is a nonequi-
librium steady state, but its phase diagram is very similar
to that of liquid-gas systems.

Nucleation phenomena in this nonequilibrium phase
transition have been studied both experimentally and
theoretically. 3' i On the experimental side, many in-
teresting physical quantities have been measured, such
as the mass of excitons, the efFective surface tensions of
the droplets, the critical temperatures, the average fi-
nite lifetimes of excitons, and the average radius of ex-
citon droplets. On the theoretical side, several theories
have been proposed to study this nonequilibrium phase
transition.

A particularly interesting question is whether one can
apply the classical theory of nucleation and growth of a
liquid-gas transition to exciton systems, and what mod-
ifications one must make for such an application. In this
direction, a Becker-Doring —type theory was proposed by
Silver. In his theory, electron-hole condensation was
treated as a stochastic process where such effects as the
finite lifetime of the condensing particles, efFective sur-
face tension of the droplets, and impurities were included.
The main difference between the classical Becker-Doring
theory ~3 and that of Silver for exciton condensation is
that the latter has two additional terms in the equation of
motion for the droplet distributions. One term accounts
for the evaporation-condensation mechanism induced by
the nucleation centers; the other accounts for the decay
of excitons due to their finite lifetime and for the creation
of new excitons by optical pumping.

An alternative to the cluster dynamics of the Becker-

Doring theory is to apply a field theoretic method to the
nonequilibrium metastable states. For exciton systems,
some initial work in this direction has indeed been carried
out, 7 using techniques directly borrowed from studies
of liquid-gas transitions. ~4 As a starting point, hydrody-
namic equations similar to those of Langer and Turski24
for the classical system were proposed. Scattering of the
excitons by, say, phonons, was modeled by a damping
term added to the equation. The effects of creation and
recombination of excitons were modeled by appropriate
terms included in the continuity equation. The predic-
tions of this theory were not dramatically different from
those of the Becker-Doring theory, but this formulation
may allow studies of cases with large supersaturations.
Using this formalism, quantities such as the distribution
function of droplet size, the evaporation and recombina-
tion of excitons, and the exciton nucleation and decay
currents, were computed numerically.

While some interesting results and understanding were
gained through these studies of the nucleation and
growth in exciton systems, improvements and systematic
investigations can now be made due to recent progress in
the theoretical understanding of phase transition kinet-
ics. In particular, since the growth of an exciton droplet
depends on whether its size is larger or smaller than a
critical size, the process cannot be entirely stochastic as
assumed in some of the earlier theories. The growth dy-
namics in the metastable region during a first-order phase
transition is well-known to be described by the Lifshitz-
Slyozov theory25 in the limit of very small volume frac-
tion of the condensing phase, and one would also like to
generalize this theoretical framework to exciton systems.
We also note that in the limit that the lifetime of excitons
approaches infinity, one must recover the Lifshitz-Slyozov
theory. However, the earlier theories mentioned above
do not satisfy this condition. The kinetics of first-order
phase transitions often shows self-similar behavior, i.e. ,
various correlation functions develop into scale-invariant
forms. However, so far this idea has not been exploited
in theoretical studies of droplet growth in exciton sys-
tems. Finally, there are many recent experimental works
which have studied the electrical and optical properties of
excitons confined in very narrow quantum wells. 27 Thus
it is important to develop a theory to study the growth
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kinetics of exciton droplets in both two and three dimen-
sions. The goal of the present paper is to do so, and
thereby motivate experiments on these issues.

In a recent work, we have introduced a theoretical
approach to Ostwald ripening for both two- and three-
dirnensional systems, 2s where screening effects due to in-
teracting droplets are incorporated. The solution of our
mean-Beld equations gives both the droplet distribution
function f (R, t) oc g(R/R)/R and the growth law for

the average droplet radius R(t) = [K(P)t + R (0)]i~s,
where g(z) is the scaled distribution function, K(P) is
the coarsening rate, P is the volume fraction of droplets,
and D is spatial dimension. Both the two- and three-
dimensional results conform well to numerical simula-
tions and experiments.

In the following we shall extend our method mentioned
above to the problem of growth of droplets where the
constituent particles have a finite lifetime. In the next
section, we establish the basic equations of our theory
by considering the effect of finite droplet lifetime. In
particular, the Bnite lifetime of the excitons provides a
mechanism for droplets to lose particles, and we assume
that the rate of process is proportional to the droplet
volume. As a result, droplets cannot grow to form a
single macroscopic phase. Furthermore, because of the
conservation law and the recombination of excitons inside
of droplets, nucleation will not stop even at late times. It
is, therefore, necessary to supplement a nucleation term
(source term) in the continuity equation. In Sec. III,
we will solve the basic equations and discuss the results.
Section IV gives a conclusion.

II. THE MODEL

In this section, we will present the model for the
droplet growth in an exciton system. To make the deriva-
tion clear, we will first briefly review our model for clas-
sical Ostwald ripening with finite volume fractions of the
minority phase. ~s The appropriate equations for the ex-
citon systems will be a generalization of the classical the-
ory.

Our study makes use of dimensionless variables. Units
of length and time are given in terms of the capillary
length l~ = (D —1)pV~/R'T and a characteristic time
t' = l, /('DC V ). These quantities involve the surface
tension p, the molar volume V~, the gas constant B',
the temperature T, the diffusion coefBcient V, and the
solute concentration in the matrix at a flat interface C
It is also convenient to introduce a dimensionless con-
centration field 8(r) = [C(r) —C~]/C~, where C(r) is
the concentration field at point r outside the droplets.
For small volume fraction of the condensing phase, it is
reasonable to assume that the droplets are of spherical
shape as observed in classical systems. s

In the classical nucleation theory, using a mean-field
approximation, the growth law of droplet radius B at
late times is given by 8

d vR~ = I(R) [8 —8(R)],

where v = m ~ /I'(D/2+ 1). To write down this equa-
tion, we have assumed that the material flux of the con-
densing phase which determines the growth rate of the
droplet is only proportional to the diEerence between the
average bulk concentration 8 „and the concentration at
the droplet boundary 8(R). The curvature-dependent co-
efficient I(R) is unknown a priori, but can be determined
self-consistently (see below).

The concentration of the condensing phase satisfies a
many-droplet diffusion equation. In steady state this
equation is written as

(2)

Noticing the similarity of the last two equations to
those of the homogeneous electron gas, we introduce a
Thomas-Fermi approximation to reduce the steady-state
many-body diffusion equation to an one-body Helmhotz
equation,

7' 8(r) —( 8(r) + ( 8 = aB;b(r —r, )

in the vicinity of the ith droplet. The screening length
( is determined by

G=v f(R, t) /V(R/(, R)dR,

where V (R/(, R) = exp (—R/()/R for D = 3;
V(R/(, R) = Ko(R/() for D = 2, and Ko is the zeroth
order modified Bessel function, f (R, t) is the distribution
function of droplet size, normalized to the total number
of droplets in the system, and V' is the system volume.
According to Eq. (2), the growth law also satisfies the
following relationship. 28

d(vR~)
dt

=aB, .

Using the Gibbs-Thomson boundary condition

and imposing the concentration far from the droplet
lim„8(r) = 8, the solution of Eq. (4) gives

1/R, = 8~ —B;V(R,/(, R)

for i = 1, . . . , N. Substituting the solution of Eqs. (3)
and (8) into Eq. (6) and comparing with Eq. (1), we
obtain the following expressions:

I(R) = a/V(R/(, R)

where a = 2++~2/I'(D/2), N is the total number of the
droplets, r, gives the location of the ith droplet, s,nd
B, is the growth or shrink rate of the ith droplet. The
conservation of the total concentration requires

N

) B, =O.
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and

av = f(R, t)
RV(R/(, R)

f(R, t)
V(R/(, R)

(10)
f~ f(R, t)AdR

Jo f(R, t)dR
(14)

where we have used Eqs. (1), (7), (9), and (10). The
quantity with an overbar is defined as

Finally, the continuity equation can be written as

and the conservation law Eq. (3) can be rewritten as

'U

U' R f(R, t)dR = P, (12)

where P is the volume fraction of droplets and the overdot
means derivative with respect to time. Equations (1),
(5), (11), and (12) completely specify the droplet growth
problem in the classical Ostwald ripening in both two and
three dimensions. For further details of various stages of
th.e derivation, see Ref. 28.

The above equations can be generalized to exciton sys-
tems in a reasonably simple fashion. First, the finite life-
time of an exciton provides a mechanism for droplets to
lose particles. The rate of the reduction is inversely pro-
portional to the lifetime of the exciton 7.. We further
assume that this rate is also proportional to the droplet
volume since a larger droplet has more excitons. There-
fore, the growth law for exciton systems should satisfy

dRD D [RV(R/(, R)]
dt V(R/(, R) [V (R/g, R)] i-

8f(R, t) 0+ [Rf(R, t)] = J (R, t) . (15)

The nucleation rate J(R, t) can be determined self-
consistently by imposing the steady-state condition at
large times. Taking a derivative of the volume fraction
P, defined in Eq. (12), with respect to time and using the
continuity equation (15), we obtain

g OO

R f(R, t)dR =— R [Rf(R, t)]dR

+ R J(R, t)dR . (16)

Second, we shall study the situation that the system ap-
proaches a steady state at large times, i.e., the total num-
ber of excitons approaches a constant as t —+ oo. This
is only possible when the system is continuously illumi-
nated by an external radiation source, such that excitons
are created at a rate equal to that for the annihilation
of excitons in the droplets. The creation of new excitons
leads to a continuous nucleation of droplets even at late
times. It is, therefore, necessary to supplement a nu-
cleation source term, J(R, t), in the continuity equation,
l.e.,

(13) Integrating by parts we obtain

R f(R t)dR = RRf(R t—) +
0

daD
f(R, t)dR+ R J(R, t)dR .

The first term on the right-hand side of (17) vanishes. Substituting the growth law (13) into the second term, we
obtain

R~f(R t)dR = ' —— f(R, t)dR+ R J(R t) — '
~

dR.
0 V(R/( R) [V(R/( R)] R '

0
(18)

Agajn, the first term on the right-hand side of Eq. (18)
is zero; therefore, Eq. (18) becomes

J(R, t) = f(R, t)
(20)

R f(R, t)dR

The left-hand side is a time derivative of the volume frac-
tion, which does not depend on time at late times, thus
the simplest self-consistent nucleation rate J(R, t) is

So far, we have made two assumptions for the model:
one is that the rate for droplets to lose a particle is pro-
portional to the volume of the droplets, inversely propor-
tional to the mean lifetime of the excitons, i.e. , the term
—vRD/~ in the growth law equation (13); the other is
that the system approaches a steady state at t ~ oo,
and this is possible when the system is continuously illu-
minated by an external radiation such that nucleation of
new droplets occurs even at late times, which compen-
sates for the loss of excitons due to recombination, i.e.,
the term J(R, t) = f(R, t)/r in the continuity equation
(15). These assumptions are physically motivated and
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allow us to solve the problem in closed form without any
further approximation or assumption.

Finally, substituting Eq. (20) into Eq. (15) and rewrit-
ing Eq. (13), we obtain the continuity equation and the
growth law as follows:

to(zo, A) = 0 and
du)(z, A)

dz

The separation factor A and the least upper bound zo
satisfy

0f(R, t) e)
[Rf(R, t)] = f(R, t) /r (21)

The average droplet radius R(t) follows an ordinary dif-
ferential equation:

and

dR Ri ~ [RV(R/( R)] i 1
dt V(R/(, R) [V(R/g, R)]—i R Dr

R (t) 1 dR (t)
D +3 dt

whose solution is

(25)

(22)

The second term on the right-hand side of Eq. (22) con-
tributes a decreasing rate for each droplet. This leads to
droplet radii being modified by a time-dependent factor,
compared with classical Ostwald ripening. Furthermore,
Eq. (21) implies that new droplets created by the source
term follow the same distribution as old ones. There-
fore, we anticipate that the scaled droplet distribution
function g(R/R) retains the same form as that of clas-
sical Ostwald ripening, although the growth law must
change, since the droplets eventually decay due to exci-
ton recombination. This anticipation can be verified by
solving equations (5), (12), (21), and (22).

III. SOLUTION AND RESULTS

Although the basic equations (5), (12), (21), and (22)
are very complicated, they are, fortunately, exactly inte-
grable. In particular, we seek a solution to the droplet
distribution function f(R, t) in a scaling form. As in
the classical Ostwald ripening problem, ' ' a scal-
ing solution of the droplet distribution f(R, t) exists for
P & 0.085 in D = 2 and P & 0 06 in D. = 3. The scaling
distribution function f(R, t) can be obtained in a similar
way to Ref. 28, satisfying

(z)f(R, t) oc

—s ( 3ti
R(t) = R (0) exp ~—Dr)

f 3t&+Dr A 1 —exp (—
0 Dr) (26)

20 I I I I

I
I I I

I

I I

]
1

If P ) 0 085 in D = 2 or P ) 0 06 in D = 3, there exists
no solution for f(R, t) This .gives the valid range of our
model.

R(t) has been plotted in Fig. 1 for difFerent values of
the lifetime r at P = 0.05 in D = 3. The average radius
first grows and then saturates at an asymptotic value
(DKr/3) ~, as determined by Eq. (26), where the coars-
ening rate K(P) = 3A is plotted in Fig. 2. Similar to the
classical Ostwald ripening problem, K(P) shows consid-
erable dependence on the volume fraction P. Thus the
value of B in the steady state, i.e. , at t && 7, depends
not only on the finite lifetime r but also on the volume
fraction P. Our conclusion qualitatively differs from Sil-
ver's theory in which B ~. His result is due to his
simple assumption that electron-hole condensation is a
stochastic process. Consequently, the probability for a
droplet to absorb excitons is proportional to its surface
4vrB2. On the other hand, the probability for a droplet to
lose excitons due to the finite lifetime mechanism is pro-
portional to 4vrRs/(3r). Thus the droplet growth rate

with z = R/R(t). The scaled, normalized distribution
function g(z) is identical to that of classical Ostwald
ripening, obeying

(,
"

~) exp [AD J~' m (z', A)dz'] if 0 ( z ( zo

0 otherwise,

(24)

where

ur(z, A) = z' /V(z/i), z)(cr —z ') —Az,

10

g(z)
zV(z/g, z)

(z)
V(z/il, z)

0 I I I I

10 15 20

PD

jo z~g(z)dz
g(z)

V(z/i), z)

FIG. 1. The time evolution of R (t) for different finite
lifetimes r, P = 0.05, and D = 3. The results for D = 2 are
qualitatively the same.



1274 JIAN HUA YAO, HONG GUO, AND MARTIN GRANT 47

1..0 I I I I

I

I I I I
I

I I I I l..0 I I I I

I

~ I I I

I

I I I I

I

I I 1 ~

I

I I I I

x=10
x=20

&=100

0.5
0.5

0.0 I I I I I I I I I I I I I

0.0 2.0 4.0 6.0x 10-2
I I l j I I I I ~ I I I I I I I I I0 A

0 10 20 30 40 50

FIG. 2. A plot of the coarsening rate K(P) vs the volume
fraction P in D = 2 and 3.

d(4mRs/3)/dt oc 4vrRs —4m'Rs/(3+), and when the sys-
tem reaches a steady state, B oc ~.

For times t « w, the behavior of R(t) is very close to
the one-third power law. This is understandable since if
the recombination of excitons is negligible, our system is
very similar to that of a classical system undergoing Ost-
wald ripening. Indeed, for very large lifetime w, or very
small time t, Eq. (26) agrees with the result of Lifshitz-

Slyozov theory, 2s lim R(t) = [R (0) + K(P)t]~~s.
The distribution function of droplet size is obtained by

inserting R(t) and g[R/R(t)] into Eq. (23); we obtain

g[R/R(t)]
R (t)

Figure 3 shows the distribution functions at different
times with P = 0.05 and w = 5, in D = 3. At early times,
the area underneath the distribution function curve de-

FIG. 4. The time evolution of the total number of droplet
for different finite lifetimes v. , P = 0.05, and D = 3, where
R (0) = 1.5. The results for D = 2 are qualitatively the
same.

N(t) = f(R ')dR= N(0)R (0)
R (t)

(28)

which is shown in Fig. 4.
Finally, the nucleation rate is obtained as

cays rapidly, and then approaches an asymptotic value.
On the other hand, the peak position of the distribu-
tion function and the maximal radius R „(t) increase
rapidly, and then saturates. Thus the total number of
droplets decreases steadily in time while average droplet
size increases, until a balance is arrived between the re-
combination and creation of excitons, due to finite life-
time 7. and continuous illumination of the system, respec-
tively. The total number of droplets N(t) can be easily
obtained,

1.0 I I I

I

I I I

I

I I I I

t=0

f(R, t) g [R/R(t)]
~R (t)

gg 0.5—

'~

lr ~

/ /

t=4

t=8
and its late time behavior is given by

g(R/[DK~/3] '~s)

~(DK~/3)&~+»~s

We have seen that due to the finite lifetime of the in-
dividual excitons, all statistical quantities of interest sat-
urate at late times. While each droplet evolves in time,
no droplet can grow to form a single macroscopic phase.
This is entirely different from that of the classical theory
of nucleation and growth.

0.0
0.0 1.0 2.0 3.0 IV. CONCLUSIONS

FIG. 3. The time evolution of the distribution function
of droplet radii for the volume fraction P = 0.05, r = 5,
and D = 3, where R (0) = 1.5. The results for D = 2 are
qualitatively the same.

In conclusion, we have extended our theory of classical
Ostwald ripening to describe droplet growth in exciton
systems, in both two and three dimensions with finite vol-
ume (area) fraction. There are two basic assumptions for
the model: one is that the rate for droplets to lose parti-
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cle is proportional to the volume of the droplets, inversely
proportional to the mean lifetime of the excitons, i.e. , the
term —vR+/~ in the growth law equation (13); the other
is that the system approaches a steady state at t —+ oo,
and this is possible when the system is continuously illu-
minated by an external radiation such that nucleation of
new droplets occurs even at late times, which compen-
sates the loss of excitons due to recombination, i.e. , the
term J(R, t) = f(R, t)/~ in the continuity equation (21).
These assumptions are physically motivated and allow
us to solve the problem in closed form. In fact, as we
have shown in previous sections, the nucleation current
J(R, t) is actually determined self-consistently by impos-
ing the steady-state condition at late times, i.e. , the form
of J(R, t) makes Eqs. (5), (12), (21), and (22) consistent
with each other.

Our model predicts that both the distribution function

and the nucleation rate have scaling forms as shown in
Eqs. (23) and (29). All statistical quantities of interest
saturate at late times when the steady state is reached.
In particular, the average radius R(t) = (DK~/3) ~Is and
the total number jV(t) —V'P/(DKr/3) Is at late times.
These results are obtained in closed form. In principle,
these quantities can be obtained experimentally, thereby
testing our theoretical predictions.
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