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Deusity of states for a weakly coupled disordered array
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A technique for the calculation of the density of states for a one-dimensional array of rectangular
quantum wells in the weak-coupling limit is described, at various degrees of disorder. It is found that in
the limit that the degree of disorder grows large, the smooth component of the density of states of this
configuration is well approximated by the polynomial function

D(c)=7.4 —1.8m+0. 50' —0.098m,

where c represents the absolute value of energy measured in units of 10 A /2ma, m is particle mass,
and a is well width. The function D(c, ) exhibits a localization of energies at the maximum bound-state
energy c.=0. A calculation is included which addresses the distribution of nearest-neighbor spacings of
energies for the present configuration. The distribution obtained illustrates strong attraction between ei-

genvalues and is found to be well approximated by an exponential (Poissonian) fit.

I. INTRODUCTION

One-dimensional modeling has found wide application
in superlattice study' and the modeling of the Mott
and Anderson metal-insulator transitions. " In the
latter area, one speaks of glass (or liquid) vs alloy one-
dimensional models. In the glass model, quantum wells
of the array are identical with wells randomly displaced
from one another. In the alloy model, interwell displace-
ments are equal to potential-well depths randomly dis-
tributed. A study of the density of states likewise divides
into two categories: vibrational' ' and electronic.
Attention has also been given to Fibonacci, ' as well as
Thue-Morse' ' superlattices. In works closely allied
with the present analysis, the density of states for a one-
dimensional disordered array of 5-function potentials
were studied' and employed in the modeling of im-
purities in a semiconductor. The resulting density of
states is relevant to interactions, each of which have only
one bound state and thus cannot readily be compared to
the present findings.

The present work addresses the smooth component of
the density of electronic states for an alloy configuration
in the weak-coupling approximation, in which electrons
are localized at quantum-well sites with negligible wave-
function overlap. A technique of analysis is introduced,
based in large part on a graphical display of energies. In
the ensuing numerical work, a polynomial expression for
the density of states is obtained for varying degrees of dis-
order of the potential array. In the limit that the degree
of disorder grows large, this polynomial expression is
found to more accurately fit the density of states.

The measure of disorder in the present study is given
by the number X of uniformly distributed distinct
potential-well depths in a given array. Four values of X
were considered, ranging from 1V =100 to 4500. For any
choice of %, the resulting density expression is appropri-
ate either to the ensemble average density for a disor-

II. ANALYSIS

A. Review

In a previous work by the authors, an analytic ex-
pression for the energies of N ~ 1 coupled, common quan-
tum wells was obtained. This dispersion relation appears
as

g+(f», k r)) =o,
2ma V$2+ ~2 —2

Q2
(lb)

dered array of X quantum wells with X varying potential
depths, or an infinite chain of quantum wells with N vary-
ing potential depths randomly distributed over the poten-
tial array.

A calculation is included addressing the distribution of
nearest-neighbor spacings of energies for the present
configuration. The distribution obtained illustrates
strong attraction between eigenvalues and is found to be
well approximated by an exponential (Poissonian) fit.
This observation is an example of the extension of the ap-
plication of the Berry-Tabor theorem to one-
dimensional motion.

As noted above, the present analysis is valid in the
weak-coupling approximation, in which electrons are lo-
calized at individual quantum-well sites with virtually no
coupling between wells. It should be noted that with
finite coupling between quantum wells, as described in
the linear combination of atomic orbitals (LCAO) ap-
proximation, energy levels split about unperturbed
values. As the coupling approaches zero, the splitting of
levels also goes to zero. Thus, for infinitesimal coupling,
energy levels closely resemble those of isolated wells.
With this observation, one may infer that the present
analysis offers a reasonable approximation for the density
of states in the given weak-coupling limit.
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3.5 TABLE I. Values of the coefficients A; at different N values
in Fig. 3.

5 e ~

100
500

1500
4500

Ao

1.50
2.78
4.45
7.37

35.3
9.05
3.82
1.76

A2

576
27.1

3.53
0.500

—A 3

3751
39.3

1.88
0.0986

0.5

3.5

1.5

(b)

0.02 0.04 0.06 0.08 0.1
troduction, for each such value of N, D(E,N) has a dual
interpretation: (a) The ensemble average density of states
for a disordered array of X quantum wells, with N vary-
ing potential depths. (b) The density of states of an
infinite chain of quantum wells, with X varying potential
depths randomly distributed over the potential array.
For all values of X considered, the related density func-
tion exhibits localization of energies about the maximum
bound-state energy, c =0.

C. Density of nearest-neighbor energies

0.5

. (c)

0.1 0.2 0.3 0.4 0.5

The topic of the density of nearest-neighbor spacing of
energies has received much attention in the recent
past. This problem is returned to for the present
configuration. The distribution obtained illustrates
strong attraction between eigenvalues and is found to be
well approximated by the exponential relation

P (s)=6.25 X 10 e (6)

10

0.5

where s represents nearest-neighbor incremental energy
spacing and P(s) is its probability density. (For the
present situation, s =kg .) The density (6) is plotted in
Fig. 4.

As has been found by Berry and Tabor, for quantum
systems of dimension greater than 1, with corresponding
integrable classical motion whose energy curves in action
space are curved, P(s) is roughly Poissonian. Thus the
present findings suggest that the Berry-Tabor theorem is
valid for one-dimensional motion as well.
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FIG. 3. Fit of the third-order polynomial curve

D(c.)= Ao —A&c.+ A2c, —A3c

to the histogram of energies for N= (a) 100, (b) 500, (c) 1500,
and (d) 4500. Values of the coefficients A, at different N values
are given in Table I.

FIG. 4. The density of nearest-neighbor energy spacings,
P(s), corresponding to the disorder parameter N=4500. The
values of P (s) shown have been divided by 10'. Both power-law
(dashed line) and exponential (solid line) fits are shown, from
which it is evident that the exponential form better approxi-
mates P (s).
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III. CONCLUSIONS

To conclude, we have introduced a technique for es-
timating the smooth component of the density of states of
an array of one-dimensional rectangular quantum wells in
the weak-coupling limit. The validity of this model was
argued on the basis of LCAO results. For the various de-
grees of disorder considered, the density of states was
found to be well approximated by a third-order polyno-
mial. This polynomial fit was noted to grow more accu-
rate with increase in the degree of disorder of the system.
The resulting expression for the density of states, (5a), is

appropriate to the large-disorder, weak-coupling limit.
This result may be considered as a limiting case, in which
studies of a disordered array with positive coupling
should reduce as the coupling goes to zero. The analysis
concludes with a study of the distribution of nearest-
neighbor spacings of energies which, for the present
configuration, was found to exhibit strong attraction be-
tween eigenvalues. This distribution was found to be well
represented by an exponential fit, which, as noted, sug-
gests that the Berry-Tabor theorem is valid for one-
dimensional motion as well as higher dimensions.
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