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Ballistic conductance of interacting electrons in the quantum Hall regime
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We propose a quantitative electrostatic theory for a gate-confined narrow channel of the two-
dimensional electron gas in the integer and fractional quantum Hall regimes. Our theory is based on the
zero-magnetic-field electrostatic solution, which yields a domelike profile of electron density. This solu-
tion is valid when the width of the channel is larger than the Bohr radius in the semiconductor. In a
strong magnetic field H, alternating strips of compressible and incompressible liquids are formed in the
channel. When the central strip in the channel is incompressible, the conductance 6 is quantized in

units of e /2M, i.e., there are plateaus in 6 as a function of the magnetic field H. However, we have
found that in a much wider range of magnetic fields there is a compressible strip in the center of the
channel. We also argue, based on the exact solution in a simple case, that conductance, in units of
e /2', of a short and "clean" channel is given by the filling factor in the center of the channel, allowing
us to calculate conductance as a function of magnetic field and gate voltage, including both the positions
of the plateaus and the rises between them. We apply our theory to a quantum point contact, which is
an experimental implementation of a narrow channel.

I. INTRODUCTION

Magnetotran sport of the high-mobility two-
dimensional electron gas (2DEG) in narrow channels has
attracted significant theoretical and experimental atten-
tion in recent years. ' The quantization of conductance
has been observed as a function of the magnetic field and
channel width, and can be explained by employing the
concept of edge states that are formed along the lines of
constant potential in a high-mobility 2DEG. ' Accord-
ing to the Landauer-Buttiker transmission approach, ' if
one ignores backscattering, conductance is given by the
number of edge states which pass through a narrow chan-
nel.

The one-electron picture of a channel is based on the
assumption that a smooth parabolic potential bends the
Landau levels; the position of the edge states is given by
the intersection of the Landau levels with the constant
Fermi level [see Figs. 1(a)—1(c)]. According to this pic-
ture, as the magnetic field is lowered, narrow edge chan-
nels appear in pairs in the middle of the channel. At any
given magnetic field there is an even number of edge
channels, with half of them going in one direction and
the other half in the opposite direction; conductance is
strictly quantized in units of e /2mB. Thus, the two-
terminal conductance G as a function of magnetic field
should vary in a steplike manner, with the plateaus con-
nected by steep rises. This prediction of the one-electron
picture does not agree with experiment very well even for
short and "clean" channels: rises can have the same ex-
tent as the plateaus or be even wider. This disagreement
casts doubts on the applicability of the one-electron pic-
ture of edge states.

The effect of screening in the presence of a magnetic

field was included in a qualitative picture of edge states
by Beenakker and Chang. They divided the electron
gas, confined by a slowly varying external potential, into
alternating strips of incompressible and compressible
liquids, the former originating from the discontinuities of
the chemical potential dependence on the filling factor
p(v). [For the integer quantum Hall eFect (IQHE), in-
compressible and compressible strips correspond to in-
teger and noninteger numbers of filled Landau levels, re-
spectively. ] Screening is almost perfect within the
compressible strips, which behave like metal strips at
constant potential. They are separated by insulatorlike
incompressible strips where all the potential drops occur.
The works of Beenakker and Chang offer only a qualita-
tive picture of edge channels, but leave open the question
of the widths of compressible and incompressible strips.
The quantitative approach was developed recently by
Chklovskii, Shklovskii, and Glazman, ' who showed that
the width of a strip of incompressible liquid is much
smaller than the width of an adjacent strip of compressi-
ble liquid.

Chklovskii, Shklovskii, and Glazman solved analytical-
ly the electrostatics problem for the gate-induced edge of
the 2DEG, exploiting the smallness of the screening
length in the 2DEG in comparison with the width 21 of
depletion layer between the gate and the 2DEG. In the
absence of a magnetic field, I is the only relevant scale for
the electron-density distribution. The application of a
magnetic field does not change this distribution on a
rough scale. The only exceptions are narrow strips near
the lines where an integer number of Landau levels is ful-
ly occupied. A small portion of charge is redistributed
forming incompressible dipolar strips in the vicinity of
those lines. The dipolar strip produces a steep drop in
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FIG. l. Structure of a narrow 2DEG channel in the IQHE regime. (a) —(c), One-electron picture of the edge states. (a) Top view of
the narrow 2DEG channel. Arrows designate electron flow direction in the edge states. (b) Adiabatic bending of Landau levels by a
smooth external potential. Energy is measured from the Fermi level. Circles represent local filling of the Landau levels: ~, occupied
and o, empty. (c) Electron-density distribution in the channel. (d) —(i) Self-consistent electrostatic picture. (d) —(f) Narrow channel
of the 2DEG in the I state. (d) Top view of the 2DEG channel. Shaded strips represent areas with a noninteger filling factor
(compressible strips). Unshaded strips represent integer filling factor regions (incompressible liquid). (e) Bending of the electrostatic
potential energy and the Landau levels. Circles represent local filling of the Landau levels: , occupied; , partially occupied; and
0, empty. (f) Electron-density distribution in the channel. (g) —(i) Narrow channel of the 2DEG in the C state. (g) Top view of the
2DEG channel. (h) Bending of the electrostatic potential energy and the Landau levels. (i) Electron-density distribution in the chan-
nel.

the electrostatic potential which brings the next Landau
level to the Fermi level. Chklovskii, Shklovskii, and
Glazman obtained a complete analytical description of
the dipolar strip, which agreed with the calculations per-
formed by Kane" for a slightly different geometry. Simi-
lar results have been obtained by Efros' in the theory of
screening of a random long-range potential.

In this paper we present a quantitative electrostatic
treatment of the narrow channel formed by the gate-
induced depletion. In this case the electron density has a
domelike shape with characteristic width b which is still
much larger than the screening length rD (equal to the
effective Bohr radius az in the semiconductor). At the
periphery of the channel our results do not differ qualita-
tively from the description of the edge of the 2DEG oc-
cupying a half plane. New phenomena appear in the
center of the channel near the maximum in electron den-
sity. Depending on the situation in the center, the chan-
nel can be in two different states. In the first state, there
is a strip of incompressible liquid in the center of the
channel and the total number of compressible strips is
even [see Figs. 1(d)—1(f)j. We refer to this situation as an
I state. In the second state the center is occupied by
compressible liquid and there is an odd number of
compressible strips, Figs. 1(g)—1(i). We call this a C
state.

Let us start from the C state at a strong magnetic field

and consider a transition to the I state with decreasing
magnetic field. When the magnetic field is lowered, the
topmost Landau level becomes completely filled in the
middle, which signals the appearance of the new in-
compressible strip in the center (C-I transition). Elec-
trons that would be in the middle in the absence of a
magnetic field are now pushed aside due to the gap in the
electron spectrum. Charge redistribution creates what
we call a quadrupohar strip: an additional charge density
is positive in the center and negative on the sides. The
potential from the quadrupolar strip lowers the first emp-
ty Landau level, and with decreasing magnetic field even-
tually brings it to the Fermi level. This induces the ap-
pearance of the new compressible strip in the center (IC-
transition) which splits the quadrupolar strip into two di-
polar strips of opposite polarity. In this work we present
an analytic solution for the quadrupolar strip based on
the existence of the small parameter a~/6, and calculate
the values of magnetic field at which all the described C-I
and I-C transitions occur. The range of magnetic field at
which an I state exists turns out to be narrower than the
range of the adjacent C state.

The ultimate goal of this paper is to formulate a theory
for the magnetoconductance of a narrow channel. The
two-probe conductance 6 in the I state was considered by
Beenakker for the fractional quantum Hall regime. An
extension of his approach to the case of interacting elec-
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trons in the integer quantum Hall regime gives

eG= k,
2~%

where k =0, 1,2, 3. . . is the number of Landau levels oc-
cupied in the central incompressible strip. This result
coincides with the prediction of the one-electron picture
of edge states, ' but is valid only for the range of magnet-
ic fields corresponding to the I state. In the C state a new
question of the conductance of the central compressible
strip arises. The contribution of the partially filled Lan-
dau level to the two-terminal conductance measurement
depends crucially on the presence of disorder. In a long
channel with a sufticient degree of disorder, the conduc-
tance of the central strip is much smaller than e /2+%
and can be neglected. Here we deal with the opposite
case of the short channel and therefore neglect the
infIuence of disorder. In this case the two-terminal con-
ductance is quantized only in the I state. We calculate
the widths of the plateaus and the shape of the rises using
a general expression for conductance,

e
G = vH(0) . (2)

2~%

In this equation the occupation number
vH(0)=nH(0)lnl, where nH(0) is the electron concen-
tration in the center of the channel as a function of mag-
netic field, and nL is the electron density of one complete-
ly filled Landau level. Equation (2) is proven below for
one simple case, and we make the hypothesis that it is
true, in general. In the I state Eq. (2) is reduced to Eq.
(l).

One can view Eq. (2) as a simple generalization of the
Landauer-Buttiker transmission approach to a C state.
One can imagine that the central compressible strip is
symmetrically divided into an even number of "sub-
strips" or "subchannels" running along the lines of con-
stant density. Then, as in the conventional transmission
approach, subchannels on the right and left sides of the
compressible liquid acquire the electrochemical potential
of the two opposite terminals. The electrochemical po-
tential drop occurs in the center of the strip, where the
whole nonequilibrium current is concentrated. This ex-
plains why the two-terminal conductance is proportional
to the concentration in the center of the channel.

It is natural to present the dependence of 6 on H by
using, instead of a magnetic field, an occupation number
v(0) =n (0)/nL, where n (0) is the density in the center of
the channel at H =0. The corresponding plot (see Sec. V)
shows plateaus of constant vH(0) when the channel is in
the I state, as well as the deviation of vH(0) from v(0) on
the rises corresponding to the C state. Note that the pla-
teaus are substantially narrower than the rises. This is
the main result presented in this paper.

This seems to differ from the conventional transmission
approach which predicts almost vertical rises for a one-
dimensional channel. We would like to explain the origin
of this discrepancy. Both theories give steep rises as a
function of the Fermi level. The difference is that if one
takes a parabolic self-consistent potential (this was usual-
ly done in the one-electron picture) then steep rises as a

function of the Fermi level translate into steep rises as a
function of the external parameters such as magnetic field
H or gate voltage V . In our theory the self-consistent
potential (or better to say electron energy) is very pecu-
liar: due to the metallic screening it is constant within a
compressible strip. This means that steep rises as a func-
tion of the Fermi level translate into smooth rises as a
function of external parameters H and V .

We begin (Sec. II) with the model for the gate-induced
2DEG channel and the charge distribution at zero mag-
netic field. In Sec. III we study the infIuence of high
magnetic field on the distribution of electron density. We
consider in detail the redistribution of charge near the
center of the channel forming the quadrupolar strip. In
Sec. IV we discuss magnetotransport in a narrow chan-
nel under the conditions of a two-terminal measurement.
Section V contains the derivation and discussion of Eq.
(2). In Sec. VI we apply our theory to a quantum point
contact which is a practical realization of a narrow chan-
nel. Section VII contains our major conclusions.

II. ELECTRON-DENSITY DISTRIBUTION
AT ZERO MAGNETIC FIELD

We adopt a simplified model of the split-gate device on
the GaAs/Al Ga, As heterostructure, proposed by
Glazman and Larkin, ' and Larkin and Shikin. ' In this
model (see Fig. 2), ionized donors are represented by a
uniform positive background of constant two-
dimensional charge density eno. Far from the gates the
2DEG compensates for the positive background, so the
electron concentration in the bulk is equal to no. The
split gate is represented by two semi-infinite metal planes
separated by the gap centered at x =0. The width of this
gap is 2d. Negative voltage V is applied to both halves
of the gate, depleting the 2DEG underneath them, and
confining the electrons to a narrow channel. The whole
system is translationally invariant along the y axis. In the
model considered the positive background, the split gate,
and the 2DEG are all in the same plane z =0 (Fig. 2), a
simplification we will justify later. The half-space z (0 is
occupied by a semiconductor with a high dielectric con-
stant e)) 1. Since a~ is much less than the characteristic
length scale of the density distribution, the screening ra-

)( z

FIG. 2. Electrostatic system formed in a narrow 2DEG chan-
nel. Thick lines represent conductors: split gate at potential Vg
with the grounded 2DEG in the middle. Pluses represent a uni-
form positive background due to ionized donors. Dotted area is
occupied by a semiconductor with high dielectric constant e,
while the half-space z )0 is vacuum.
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dius of the 2DEG is taken to be zero. Then the 2DEG in
the channel behaves much like a metal strip of width 2b,
differing only in that the edges of the 2DEG can move.
Thus we have to include a condition for them to be in
mechanical equilibrium: the x component of electric field
should be zero both to the left and to the right of each
edge.

The problem is reduced to the solution of the Laplace
equation b,P=O in the half-space z (0, with mixed
boundary conditions,

0, /x/&b
p(x, z =0)= ~

I
d (3)

dP(x, z) E,(x,—z), 0dz z~ —0

4~en a
(4)

in the 2DEG. The half-width of the 2DEG strip b can be
found by solving the equation

4menad
V

b 2

E(t/I —b /d ) K(+—I —b /d )
d

(7)

where E(x), E(x) are complete elliptic integrals. It was
also pointed out in Ref. 14 that near the pinch off, when
b «d, the electron-density distribution is close to that
formed in a parabolic confining potential in the perfect
screening approximation,

Positioning of all the charges at the interface of two
media with dielectric constants e and 1 leads to a factor
4n/(e+ 1)=4m/e in Eq. (4). In order to ensure mechani-
cal equilibrium of the 2DEG edges at x =+b, we set

E (x,z =0)
~ b 0=E (x,z =0)

~ b+0=0 .

The solution of the Laplace equation satisfying condi-
tions (3), (4), and (5) was given by Larkin and Shikin. '"

They found an electron-density distribution of
1/2

b —x
n (x)=na (6)

x

has been found for the gate-confined 2DEG, we believe
that the result can also be applied to etched structures.
In that case the half-width of the forbidden gap would
take the place of the gate voltage in Eqs. (3) and (7) due
to the pinning of the Fermi level by the surface states.

III. NARROW CHANNEL IN A STRONG MAGNETIC
FIELD: FORMATION OF THE QUADRUPOLAR STRIP

Let us consider the effect of a strong magnetic field H
on the 2DEG in a narrow channel, while neglecting elec-
tron spin. Due to the smallness of the parameter A'co, /eV
(co, =eH/m, frc is a cyclotron frequency) at any reason-
able magnetic field, we expect that the electron-density
distribution (6) obtained from electrostatics will not be al-
tered significantly. This is because of the huge amount of
work which must be performed against electrostatic
forces in order to produce any variation.

The only effect of the magnetic field on the electron-
density distribution is due to the periodic dependence of
screening properties of the 2DEG on the filling factor v,
caused by the oscillations in the density of states. The
density of states is given by a set of 6 functions centered
at (k —

—,')%co, . The screening length rD as a function of
the filling factor takes the following form:

v=k
0, vWk,

i.e., screening at integer filling factors is absent while at
noninteger v screening is very strong. This leads to the
formation of the alternating strips of compressible and in-
compressible liquid. ' The electrostatic potential
remains constant throughout any one compressible strip,
whereas it changes by Ace, between the inner and outer
edges of an incompressible strip. As was shown in Ref.
10, incompressible strips are narrower than compressible
ones. Their locations can be found by solving the equa-
tion n (x)= kn2 using n (x) from Eq. (6).

First, we would like to discuss qualitatively what hap-
pens as the magnetic field is lowered slowly, starting from
a value high enough for all electrons in the channel to be
on the first Landau level. Our results will be presented in
terms of the quantity

(b2 2)1/2
n(x)=na

n(0) b "o
vO =

nc «r. (10)

In the opposite limit, 21=d —b ((d, the two edges can
be treated independently, and each of them is described
by the formulas of Ref. 10.

Bringing all the charges into the same plane is justified
if d —b and b are much larger than the spacer thickness
and the distance between the gate and the 2DEG plane.
Let us check this condition for the channel of lithograph-
ic width 2d =5000 A: for V = —1 V, n0=4X 10"
cm, and @=12.5, we find 2b =2600 A. This length, as
well as d —b, is much larger than the spacer layer thick-
ness and the distance from the 2DEG to the gate. These
numbers also confirm the validity of the perfect screening
approximation since in GaAs a~ = 100 A «b.

Despite the fact that this electron-density distribution

where n (0)= n (x)
~ 0 stands for the electron concentra-

tion in the absence of magnetic field. Initially, when
v(0) (1 the electron-density distribution is well described
by Eq. (6) and is illustrated in Fig. 3(a). [Here we ignore
the fractional quantum Hall effect (FQHE) ] At the mo-
ment, when v(0) =v, = 1 a fiat region, n (x ) =nr, starts to
develop in density distribution [Fig. 3(b)], thus indicating
the first C-I transition. The new density distribution
nH(x) can be thought of as the solution n (x) obtained
without magnetic field [Eq. (6)], plus some redistributed
density b, n(x) [see Fig. 4(a)]. The distribution n (x) can
be approximated near its maximum as

n (x)=n (0)+—,'n "x
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where

nII
2dx ~=p

The redistributed electron density has the form

hn(x) =nl n(x) =—nl n(0—) ——,'n "x (12)

One can see that An(0) & 0 when nL & n (0), and that
b, n(x) changes sign at some x [n" &0, see Fig. 4(b)].
Equation (12) is valid only within the incompressible
strip. One can see from Eq. (12) that the magnetic-field-

Q)

FICx. 3. Evolution of the potential and 2DEG density distri-
bution with decreasing magnetic field.

e'In" ia'
(13)

Equation (13) gives
' 1/3

EAco

e'In"
I

(g 1 2)1/3

[1 (bid) —]I/3 (14)

where aB =@A /m, ~e is the Bohr radius in the semicon-
ductor and we used the expression

induced redistribution of charge has a quadrupolar char-
acter: redistributed charge eb—,n(x) is positive in the
middle and negative on the sides. If one considers the di-
polar strip of Refs. 10—12 as reminiscent of a p-n junc-
tion, then the quadrupolar strip can be said to resemble a
p-n -p structure.

The quadrupolar strip creates a minimum of potential
energy in its center [see Figs. 4(a) and 3(b)]. As v(0) in-
creases further and the depth of this minimum reaches
the value of Aco„electrons start to fill up the second Lan-
dau levels [v(0)=vI]. This leads to the formation of a
new compressible strip in the middle of the incompressi-
ble one, indicating the first I-C transition. Simultaneous-
ly, the quadrupolar strip breaks into two dipolar strips of
opposite polarity.

Let us estimate the width of the incompressible strip at
the I Ctransiti-on. The depth of the potential well b,P in
the center of the quadrupolar strip is of the order of the
characteristic electric field E=ein" Ia /e times ea, and
the new compressible strip appears at x =0 when
b P =A'co, or

1 b
In "I=n, 1—

d2
1 b=n (0) 1—

b d
(15)

-Qk

A, n a B
~V —V V1 1 1 b

that follows from Eq. (6).
Using Eq. (14) we obtain for the interval Av, of the

filling factor v(0) corresponding to the first I state
2/3 1/3

b 2
1— (16)

d2

c) „-e

Qk

FIG. 4. The quadrupolar strip. (a) Magnetic-field-induced
electron-density redistribution near the center of the channel.

(b) Magnetic-field-induced additional electron density in the
quadrupolar strip. (c) Electron potential energy as a function of
position.

up to a numerical factor which cannot be obtained in this
estimate. One can see that in the limit of wide channel
Av1 gOeS tO zerO.

We now move from the order-of-magnitude estimates
to the exact analytical theory of the kth quadrupolar
strip, formed when k Landau levels are filled in the
center. This theory yields numerical factors omitted in
Eqs. (14) and (16). The theory is based on the fact that
the half-width of the incompressible strip a is much
smaller than the widths of the adjacent compressible
strips. [One can see this from Eq. (14), keeping in mind
that a~ is the smallest length in the problem. ] The
charge distribution can then be thought of as the one de-
scribed by Eq. (6) plus some additional charge which is
localized in the vicinity of x =0 due to the magnetic field.

We can now find the additional charge distribution by
solving an electrostatics problem, where compressible
strips are represented by the grounded plates of a two-
dimensional capacitor. These plates are taken to be
semi-infinite because they are much wider than the in-
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compressible strip in between. The gap between two
plates (of the width 2a) is filled by a charged insulator.
We must solve the Laplace equation in the half-space
z & 0 with mixed boundary conditions,

P(x, z =0)=0, IxI )a,
lt

E,(x,z)I, o= — x +[v(0)—k]nL
E 2

(17)

Ix (a . (18)

Here we use a boundary condition (18) which differs from
Eq. (4) by a factor of 2. This is because we anticipate the
width of the quadrupolar strip to be much smaller than
the distance from the 2DEG plane to the surface, which
implies that the electric field is concentrated within the
semiconductor. The approximation of semi-infinite
plates can only be justified if we find a solution in which
electric field E, decays at large distances from the gap.
Thus we set a condition

lim E,(x, O) = lim E,(x, O) =0 .
+ —++ oo + ~ —oo

(19)

We also have the condition of mechanical equilibrium at
the edges which is similar to Eq. (5),

E (x,z=O)I„, O=F.„(x,z =0)I,+0=0 . (20)

This problem can be solved by employing the methods of
complex analysis. (As an alternative, the less general but
very simple method involving Chebyshev polynomials is
presented in the Appendix. ) Because P is the solution of
the Laplace equation, it can be viewed as the imaginary
part of an analytic function F(g), where g=x +iz The.
electric field is then given by

Q —x', IxI (a
It

hn(x) =

2
—x2+x&x' —a', IxI)a .

(26)

It follows from Eq. (25) that the electrostatic potential in
the strip is given by

II 3

P(x, z =0)= — [1—(x/a) ]
3E

(27)

which has a maximum at x =0. Electrons start to fill up
the k + 1th Landau level [v(0) =v'i, ] when

P(x =O, z =0)= =%co, /e .
36

Thus,
1/3

3EAco

~e2In "I

(28)

(29)

In "Iai2
Avq —vq k-

4nz

91n"
I

16nz

EflCO
2 1/3

2&8 flz2

6

k(1 b /d )— ( b 2)1/3 (31)Qg =

2/3

Eve, =(v'i, —k)=[—'k(1 b /d )]'— (32)

(30)
Finally, by noticing that ekco, /2~e nz =Q~, recalling

that az /b is a small parameter, and using Eq. (15) we find

1/3

E = —Im
dF

(21)

dF
F., = —Re (22)

n"
2 g' —ga /2

Q(2 2
(23)

In general, this solution has singularities in the electric
field at x =+a. Therefore it satisfies the equilibrium con-
dition (20) only if

[v(0) —k]n +Ln
"a /4=0 .

Then

(24)

77871 Q

2
—g'+ g&j —a' (25)

By making use of Eq. (22), we find the redistributed elec-
tron density in the quadrupolar strip [see Fig. 4(b)]

The solution satisfying conditions (17) and (18) and hav-
ing the correct behavior at infinity (19) is given by

[v(0)—k]ni 1—dF 2' e

dg e

Equations (31) and (32) give the numerical factors omit-
ted in the qualitative derivation, as well as the depen-
dence on the total number of filled Landau levels in the
channel k. Let us estimate bv& and Q& using b =1300
A «d and Q~ = 100 A. In this case we obtain
Q& =1000/k' A and Av&=0. 15k' . One can see that
the inequality Q~ &(Q& holds when k is not very large,
while at the same time the inequality Q& &(b is not valid
for small k. It is possible to describe the problem with an
exact system of equations, valid also when Q&=b. The
numerical solution of this system of equations for k =1
yields a value of Av1 which is only 10%%uo greater than the
one given by Eq. (32).

Let us now verify the validity of an important assump-
tion in our theory, namely that the compressible strips on
both sides of the central one screen well on the scale of
Q&, i.e., behave like a good metal. We see two conditions
of such behavior.

The first condition is related to the discreteness of the
electron gas. The 2DEG cannot screen well on the dis-
tances less than an average distance between electrons. A
similar statement can be made about the screening by
holes of the almost filled kth Landau level. Therefore the
hole concentration on the kth Landau level at a distance
Qz from the central incompressible strip is larger than

—2Q&, i.e.,
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k+k «ak (34)

should hold.
One can show that at n (0)aii ) 1, condition (34) is

violated earlier than condition (33) when the magnetic
field is lowered. Using Eq. (31) we can rewrite (34) in the
form

' 1/2

Qg
[n (0)aii ] (35)

This means that for the parameters used above, Eqs. (31)
and (32) are valid for the first several plateaus.

So far we have considered the case of spinless elec-
trons. Our theory was based on the presence of a discon-
tinuity in the chemical potential Apk equal to Ace, at any
integer occupation number k. In a real situation, howev-
er, Apj, is not equal to %co„and the existence of an elec-
tron spin makes Apk explicitly dependent on k. In par-
ticular, Ap), at odd k is determined by spin splitting;
therefore we expect it to be smaller than hp& at even k.
In order to find a& and Avk for a given discontinuity in
the chemical potential, we substitute Apk in place of Ac@,

in Eqs. (29) and (30). This gives us the correct values of
Qk and Av,

Qk = 3E'Apk

7re'fn"
/

1/3

(36)

9~n" E~Pi
Avk =v~ —k =

2~e nL

2 1/3

(37)

At low enough temperatures, formation of the in-
compressible liquid becomes possible at fractional filling
factors f =p/q, where q is an odd number and p is an in-
teger number. This is due to the discontinuity in the
chemical potential related to the FQHE. The number of
the incompressible strips formed is determined by the
temperature and the level of disorder. The incompressi-
ble liquid is characterized by the energy gap necessary to
create a pair of quasiparticles with the charges +e/q,

2

Af Cf
EA,

(38)

where cf is a small numerical factor. Thus the discon-
tinuity in the chemical potential for the electrons Apf at
v=f is

2

APf =qAf =qcf (39)

n ak))1 .

The second condition is related to a large characteristic
length (size) of the wave function for electrons on high
Landau levels (large k). In the quasiclassical approach
valid for k ))1 this length is given by the cyclotron ra-
dius ki k, where A, =&Ac/eH is the magnetic length.
Local relationships between the filling factor v(x) and the
charge density, as well as between the electrostatic poten-
tial and electron energy, used in our theory are valid only
at length scales larger than A, v'k. This is why for the ap-
plicability of our theory the inequality

SubstltUt11Tg Eq. (39/ 1H Eqs. (30) MId (3/), we fmd

Qf =
1/3

f
(A,b 2)1/36qc

f (1 b —/d )
(40)

2/3

b,vf =[ ,',f (—qcf ) (1 b —/d )]'2 1/3 (41)

0, [x/) a

P(x, z =0)=
[x/ (a',

e

(43)

E,(x,z)i, 0=— x + [v(0)—k ]nL2

a'& ~x~ &a . (44)

IV. TWO- TERMINAL MAGNETOCONDUCTANCE

We now consider magnetoconductance of a short chan-
nel where disorder-caused scattering can be totally
neglected. Conductance of such a channel in the I state
was derived by Beenakker for the fractional quantum
Hall regimes. Applying similar ideas to the integer
quantum Hall regime gives quantization of conductance
in units of e /2~iii', which is the same result as in the
one-electron picture of edge states. ' As shown above,
intervals of v(0) in which the I state exists
[vi, (v(0) ( vk ] are quite narrow [Eq. (32)]. At other
values of v(0) the channel is in the C state, meaning that
there is a compressible liquid strip in the center of the
channel. We could not find in the literature any discus-
sion of the conductance of such a strip. We calculate its
conductance in the next section, accounting for Coulomb
interaction in the mean-field framework only, and arrive
at a very simple expression [Eq. (2)] for G. It gives a very
natural and continuous transitions between plateaus. At
this point, we are not able to prove Eq. (2) rigorously for
an electron liquid in which correlations are allowed, but
we believe that Eq. (2) is generally true. In this section,
we will calculate vH(0) and then G (H), using Eq. (2) as a
plausible hypothesis.

If v(0) ( 1, all the electrons are on the first Landau lev-
el and have a very short screening radius (we neglect the
FQHE here). This means that the charge d'stribution is
given by Eq. (6), the same as at zero magnetic field.
Therefore vH(0) =v(0), and from Eq. (2) we find

eG= v(0) at v(0)&1.
27Th

(42)

At v(0) ) 1, incompressible strips are present and the cal-
culation of vH(0) in the C state becomes more complicat-
ed. We will perform it in the case when the central
compressible strip is narrower than the two adjacent in-
compressible strips. Then, following the approach of Sec.
III we consider an electrostatics problem of two conduct-
ing semiplanes representing compressible regions and
separated by a gap of width 2a. However, we now have a
conducting strip of the width 2a' in the gap between
them. Additional charge in the incompressible region
a'& ~x~ &a is described by Eq. (12), so we have now to
solve the Laplace equation with the following boundary
conditions:
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=E„(x,O)I„, o

=E (x,O)I, , +O=O . (45)

The condition of the proper behavior at infinity is given
by

To ensure the mechanical equilibrium of the 2DEG edges
at IxI =a', a, we set

E„(x,O) „,+O=E„(x,O)I, , 0

which appeared as a result of the splitting of the quadru-
polar strip. Indeed, by substituting n ' = n "a one can ver-
ify that Eq. (52) yields a dipolar strip width a —a in
agreement with Eq. (20) of Ref. 10. (We remind the
reader that in Ref. 10 e/2 was used instead of e.) The
change of concentration produced by the dipolar strip in
the neighboring compressible strips was also found in
Ref. 10. At distance a which is much larger than the di-
polar strip width, the change in concentration is

lim E,(x, O) = lim E,(x,O) =0 .
X~+ oo Q ~—

QO

(46)
COc 1An=

2~2e2 a
(54)

Once again we use complex variables and find the solu-
tion in terms of dF/dg, which is related to the electric
field as described by Eqs. (21) and (22),

[ g2 Q( 2 g2)( i2 g2)]
n

dg e 2

+ [v(0)—k ]nL

where a and a' should also satisfy

(47)

a +a'
[v(0)—k ]nI + n" =0 (48)

in order to fulfill (46). Also,

~re In"
I

~ . . . ,, 'ji~r
dx+(a —x )(x —a' )=

a' e
(49)

The last equation can be rewritten in terms of elliptic in-
tegrals'

[(a +a' )E [+I (a'/a )]—
36

—2(a') K[+I—(a'/a) ]]=

In our case, two dipolar strips of opposite polarities give
equal decrements of concentration in the center of the
channel. Indeed Eq. (53) gives b, n twice that of Eq. (54).
As v(0) grows, two dipolar strips move farther away
from the center and their effect on vH(0) decreases.

In Fig. 5 we plot vH(0) as a function of v(0), as ob-
tained from the numerical solution of the system of Eqs.
(48), (50), and (51) separately for each interval
k & v(0) & k +1. We also calculate vH(0) as a function of
gate voltage at fixed values of the magnetic field (Fig. 6).

One may wonder how good the approximation of the
nearest dipolar strips is at low magnetic fields (large k).
Indeed, distant dipolar strips also contribute to nH(0),
but because of their large number and relatively slow de-
cay of b.n with distance [see Eq. (54)], the absolute value
of their contribution may be comparable to, or even
larger than, that of the nearest strips. However the con-
tribution of distant strips is monotonic in the magnetic
field. We will discuss this briefly although it is more
difTicult to observe than the oscillatory contribution of
the nearest ones.

The monotonic contribution of the distant dip olar

From Eq. (47) the difference between the electron density
at x =0 with and without the magnetic field is

4nL

(51)

Equations (48), (50), and (51) represent a complete system
from which vH(0) can be found. In the two limiting
cases, it yields equations consistent with the earlier re-
sults. Setting a'=0 in Eq. (50), one arrives at Eq. (28).
When a —a' «a, Eq. (50) is reduced to

(52)

3.5

3.0-

2 5-

~ 2.0-

e 1.5—

1.0—

0 0.5-

By making use of Eq. (51) we find

EflM
v(0) —vH(0) =

& e anL

0.0 I

0.0 0.5 1.0
I I

1.5 2.0 2.5

filling factor v(0)
3.0

1/2
v(0) [1—(b '/d') ]

b [v(0) —k]
(53)

In this case, we deal with the two narrow dipolar strips

FICs. 5. Two-terminal conductance of a narrow channel as a
function of the filling factor in the center of the channel
v(0) =n (0)/nI . Dotted line is vH(0) =v(0). Solid line corre-
sponds to a& /b =0.05; dashed-dotted line corresponds to
a~/b =0.5.
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FIG. 6. Two-terminal conductance of a narrow channel
0

2d =5000 A as a function of gate voltage Vg at different bulk
filling factors vo (determined by applied magnetic field). Solid
line, vo=1. 5; dashed line, vo=3; dashed-dotted line, vo=6.

strips is intimately related to the small difference in the
electron distribution between the extreme quantum limit
[v(0) & 1] and the zero magnetic field [v(0)~ ~ ]. Up to
now, we have not distinguished between these two re-
gimes, describing both in the perfect screening approxi-
mation in which the charge distribution is given by Eq.
(6). Actually, in both cases the screening radius is finite
and screening is not perfect. Because of this, the channel
is somewhat broader and n (0) is slightly smaller than in
the distribution of Eq. (6). Corrections to n (0) are of the
order of rD/b. At H=O, when rD=az, we found that
the relative correction to the concentration in the center
of the channel is 2a~/mb. For this purpose, we used the
Thomas-Fermi approximation, which is valid when
nazi &) l. In the extreme quantum limit [v(0) & 1],
screening is related to electron-electron correlations and
the screening radius is of the order of n ' . If naz » 1

then rD is smaller than a~. In any case, the charge distri-
bution in the extreme quantum limit is closer to the elec-
trostatic solution given in Eq. (6). This means that as the
magnetic field is lowered, nH(0) experiences a small
monotonic decrease. This decrease can be understood as
a result of the collective action of remote dipolar strips
slightly depleting the center of the channel. Practically,
this means that plateaus are centered at v =k at k » 1

while at v(0) & 1 one gets vH(0) =(1+5i)v(0), where 5, is
of the order of az /b.

We remind the reader that our theory works only for
k & k„[see Eq. (35)]. At k )k„a finite size of the wave
function should be included in the theory. It can be
shown' that Avk grows linearly with k in the range
k„&k & k, 2 where k,2=(b/aii)(na~ )'~ . At k ))k,z

plateau widths are AvA. =1 and the conventional one-
electron theory of ballistic transport' is valid.

V. RELATIONSHIP BETWEEN CONDUCTANCE
AND THE FILLING FACTOR IN THE CENTER

OF THE CHANNEL

In the previous section, we discussed the conductance
of a short channel as a function of magnetic field. We
used relation (2) between the two-terminal conductance
and the electron density nH(0) in the center of the chan-
nel. To our knowledge, Eq. (2) has not yet been discussed
for the most interesting case of the compressible liquid in
the center of the channel. In this section, we substantiate
hypothesis (2) for the channel in the C state.

Unfortunately, we are not able to prove Eq. (2) for the
case of low temperatures k&T «n' e /e where taking
proper account of electronic correlations is necessary.
We have therefore restricted ourselves to the case of high
temperatures ks T»n ' e /e. Note that we can still use
the electrostatic solution (6), because even at
kz T »n ' e /e the screening radius rD —k~ Te/ne
may be much less than the widths of compressible and in-
compressible strips. For the sake of simplicity, we con-
sider the two-terminal conductance at the extreme quan-
tum limit, when the occupation number in the center of
the channel vH(0)=nH(0)/nL & 1. All the electrons oc-
cupy the lowest Landau level but their energy c depends
on the coordinate x. One can find e(x) from the condi-
tion

exp +1E(x)—g
BT

(55)

where g is the electrochemical potential and n(x) is
determined by Eq. (6). Equation (55) means that the Fer-
mi occupation numbers produce the density of electrons
n (x) which coincides with the result of the electrostatic
problem, Eqs. (3)—(5). The dependence e(x) is shown
schematically in Fig. 7(a). (This dependence may be
viewed as the result of a correction to the constant elec-
trostatic potential inside the compressible strip due to the
nonvanishing screening radius rD =ks Te/ne .) The
dependence of electron energy on the coordinate means
that there is an electric field directed across the channel
and consequently a drift of electrons along the channel
with velocity

dEU(x)= (56)

x&0
&( '=

g, =g, + V, &0. (57)

Apparently, electrons to the left and to the right of the
channel center move in opposite directions, and the net
current in the equilibrium is zero. Let us consider a
nonequilibrium state with a small voltage V&(k~T/e
applied to the two terminals at the ends of the channel.
The dependence E(x) is slightly modified as shown in Fig.
7(b). As electrons to the left and to the right of the center
move in opposite directions, they are in equilibrium with
different terminals. Thus, if we neglect all scattering pro-
cesses, the electrochemical potential g has a step in the
center of the channel,
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VI. QUANTUM POINT CONTACTS

So far, we have considered a narrow channel which is
translationally invariant in the y direction. In reality, ex-
periments on ballistic transport are carried out with
quantum point contacts (see, e.g. , Ref. 7), so an electron
channel has a finite length and is not necessarily transla-
tionally invariant. Usually it has a shape similar to the
one shown in Fig. 8, and our theory can be generalized
for this case as well. The electron density n (x,y) at zero
magnetic field has a saddle point at x =y =0 and can be
described in its vicinity by the expression

I

!
I

-b

I

I

I

I

I

I

I

I

I

I

b X

FIG. 7. Electron energy and electrochemical potential as the
functions of the electron position in a high-temperature model.
(a) Equilibrium state, (b) current-carrying state.

The current density has the form

j(x)=en(x)v (x)

dE,
=enLv(x) f [E(x)—g(x)]2~4 dx

where v(x) =f [E(x)—g(x) j is the occupation number for
c, /k~ T

an electron state at point x, f(E)=(e +I) '. We
can now calculate the total current in the channel using
Eqs. (57) and (58),

l= f j(x)dx

f f (E gL)dc+ f —f(E gz)ds—

2 ~f [«0)—kf(4 —4)=
2 ~

v(0) I'.
Thus, in the absence of disorder and electron-electron
scattering, the linear conductance is determined by Eq.
(2). It is interesting to note that in this approximation
the conductivity does not depend on temperature. So far,
we have considered the case of the high magnetic field
when the channel contains only one compressible strip.
However, the result (2) may be easily generalized for the
case of arbitrary v(0) by considering several Landau lev-
els.

From the above consideration, it is clear that the con-
ductance is always determined by the occupation number
at point where the drop of electrochemical potential
occurs. In other words, a nonequilibrium current is usu-
ally concentrated near the line of maximum n (x). For
example, if the voltages on the confining gates are
diA'erent and the distribution of electron density across
the channel n (x) is asymmetric, vH(0) in Eq. (2) must be
substituted by the maximum occupation number
( vH ),„=max [ n (x )!nL I .

n~ ny
n( xy)=n(0, 0)— x + y

2 2
(60)

FIG. 8. Ballistic transport in the quantum point contact. Ar-
rows show the direction of electron drift. Line A —2' is the
equipotential on which the drop of electrochemical potential
occurs.

Here, n"= Id n!dx
I

and n"= d n/dy I. Let us first
consider the case of a very strong magnetic field, so that
all electrons belong to the first Landau level ~ Thus, the
entire channel is occupied by the compressible liquid.
The density saddle point is also a saddle point of the ener-

gy E(x,y). The electrons move along the lines of constant
energy, coinciding with the lines of constant density as
shown in Fig. 8. We can now apply formulas (57)—(59) to
the cross section y =0, and get the result (2) with the oc-
cupation number taken at the saddle point x =y =0.

In order to understand this result in the framework of
the conventional transmission approach one can divide
all the compressible liquid into many narrow "subchan-
nels" along the lines of constant density. Then a none-
quilibrium current will flow along these channels. It is
obvious now that all the channels with n (n(0, 0) will

pass through the quantum point contact and all the oth-
ers will turn back. This explains why n (0,0) plays such
an important role.

To see that the current in any other cross section
(y =yo ) has the same value, one should note that accord-
ing to the directions of arrows in Fig. 8, the drop of elec-
trochemical potential occurs at the equipotential line
3-3' which passes through the saddle point. It follows
from Eq. (59) that the electron density at this line [being
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equal to n (0,0)] determines the net current.
To find the widths of the plateaus and the shape of the

rises in the function G(v), one has to find n (0,0) in a
strong magnetic field. Because of the absence of the
translational invariance we could not solve this problem
analytically as was done for a narrow channel in Secs. III
and IV. However, one of us (D.C.) has solved this prob-
lem by a direct numerical minimization of electrostatic
energy for different saddle parameters. A detailed ac-
count of this work will be published elsewhere. '

We would like to give here a brief qualitative con-
sideration in the limiting cases. In the limit n" »n" one
reproduces the results derived for a narrow channel pro-
vided n"=n„". In the opposite limit n„"»n" the widths
of the plateaus are obtained by substituting n" in Eq.
(31). However plateaus are shifted in the direction of
small v so that they end on the line G =ve /2irh'. Also,
the square-root singularity occurs at the low-v end of the
plateaus rather than at the high-v side. In the case
n "=n "=n" plateaus are centered on the line
G =ve /2M. As shown in Ref. 17 plateaus are slightly
wider than that given by Eq. (31).

The experimental data show that in some cases pla-
teaus are wider than would follow from our calculation.
We attribute this discrepancy to the presence of disorder.
The impact of disorder on the formation of compressible
strips was discussed in Ref. 10. Disorder may localize a
compressible liquid of small enough density. When a new
Landau level starts to fill up with the rising Fermi level
the concentration of electrons as well as the width of the
new compressible strip grows from zero. Under such
conditions there is a range of v(0) where all the electrons
of the new Landau level are localized. In this range of
v(0) only totally occupied Landau levels contribute to the
conductance, meaning that at zero temperature plateaus
should be wider than calculated in this paper. Finite
temperature may delocalize a part of electrons on the
partially filled Landau level. It means that the plateaus
should narrow with temperature. For very weak disorder
a range of temperatures should exist where the localiza-
tion is destroyed but the temperature is still lower than
fico, . In this regime our results should be valid quantita-
tively.

VII. CONCLUSION

In this paper, we have studied the distribution of elec-
trons in a narrow channel defined by a split gate. We
started with the solution in the absence of a magnetic
field, which yields a domelike distribution across the
channel. The electron channel width is determined by
the gate voltage and is assumed to be larger than the
Bohr radius in the semiconductor. Application of a
strong magnetic field breaks the channel into alternating
strips of compressible and incompressible liquid, thus al-
tering the electron-density distribution. We applied
knowledge of the charge distribution in the strong mag-
netic field to study ballistic conductance of the quantum
point contact using the following conjecture: Ballistic
conductance of the quantum point contact in the strong
magnetic field is giuen by the Piling factor at the saddle

APPENDIX

We present here a general method for solving a certain
kind of electrostatics problem in two dimensions which
involves Chebyshev polynomials. ' Consider two meta1
semiplanes lying in the xy plane and separated by the in-

sulating strip of width 2a and centered at x =0. It car-
ries some charge, characterized by a two-dimensional
charge density p(x) invariant in the y direction. All the
charges are confined to the z =0 plane. There is also
some voltage difference applied to the metal semiplanes.
We therefore come to a two-dimensional problem in the
xz plane with the boundary conditions specified at z =0.
In principle, this problem can be resolved by solving the
Laplace equation in each semiplane. However, this
method is complicated. It was pointed out previously
that in this kind of problem, one can utilize the proper-
ties of the Chebyshev polynomials. '

The Coulomb law in the two-dimensional system, when
all the charges are confined to z =0, yields an electric
field E (x)=E, (x,z =0),

E(x)=J dx' (A 1)

This integral should be understood in terms of the princi-
pa1 value. Because E and F., can be understood as imag-
inary and real parts of an analytic function one can invert
Eq. (Al) using the same line of argument as in the deriva-
tion of the Kramers-Kronig relations. This leads to the
following relationship:

1 + d, E(x')
p(x = — dx'

X X
(A2)

In our problem, the electric field is zero in the metal
semiplanes (for ~x

~

) a), so we rewrite Eq. (Al) as

point af the electron de-nsity distribution multiplied by
e /2~4. Hence, we identify plateaus in conductance with
the situation when there is an incompressible strip in the
center of the channel (I state). This situation is similar to
the one-electron picture of edge states.

We presented a complete electrostatic description of
the central incompressible strip, which we call a quadru-
polar strip, finding that it can exist only in narrow ranges
of magnetic field or gate voltage. In wider ranges, there
is a compressible strip in the center of the channel (C
state), and conductance is not quantized. This situation
has no analogy in the one-electron picture of edge states.
We solved the electrostatics problem for the density dis-
tribution and, using our conjecture, calculated the total
conductance curve as a function of magnetic field and
gate voltage. Experimental results do not always show
narrow plateaus with wide rises. We attribute this
discrepancy to the presence of disorder in the channel.
For a suKciently "clean" channel, our theory gives the
dependence of conductance on a long list of parameters
such as magnetic field, gate voltage, channel width, con-
centration of ionized donors, and the discontinuities in
chemical potential. This allows for a detailed experimen-
tal verification of the theory.
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1 ~,E(x')
p(x) = — dx'

—a X X

We now expand the electric field and charge density in
orthogonal Chebyshev polynomials,

dielectric constant of the media e)

2tre Ti (x /a )
E, (x)= [v(0)—k]nL

E'
1 —(x/a)

p(x) =XC; U;(x/a),

E(x)= 2~
XD; T;(x/a),

1 —(x/a)

and use the following relationship between T; and U;

T, (x'/a)f dx' =trU;, (x/a) .
(x' —x) 1 —(x'/a )

Combining Eqs. (A3) —(A6), we find

(A4)

(A5)

(A6)

T3(x /a )+ T)(x /a )+" '
4V 1 —(x/a)

[v(0)—k ]nl
2& ' &a' —x'

+
n" x —xa /2

&a' —x'
and, finally, the electrostatic potential

D;=C; (A7) P(x) = tl

v(0) —k]nL (a —x )'~

=e[v(0) —kjnt Uo(x/a)

2

+en" PU~(x/a)+ —,'Uo(x/a)] . (AS)

This yields an electric field (taking into account the

This equation provides the following algorithm for solv-
ing the given class of electrostatics problems. One should
expand the charge density on the strip p(x) in the Che-
byshev polynomials U;, and the expansion coe%cients of
the electric field in Eq. (A5) are then given by Eq. (A7).
The coe%cient Do should be taken to satisfy the condi-
tion on the voltage drop between the plates. Indeed,
To/'(/a —x' gives the electrostatic solution for p(x) =0
and a finite voltage drop.

We apply this algorithm to solve the problem which
appeared for the quadrupolar strip. The charge density is
given by

„Xp(x)=e[v(0) —k]nL +en"
2

(
2 2)3y2,

6
(A9)

Rote added in proof. After the completion of this
work, we learned that Ruzin, ' by using a different
method, has concluded that the nonequilibrium current
Aows in the center of the channel. Recently, Cooper and
Chalker have also confirmed this result.
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