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Dynamics of solitons in polyacetylene with interchain coupling
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The interchain charge transfer and interactions of two chains are studied numerically through the
dynamics of charged and neutral solitons in the presence of an electric field by using the Su-Schrie8'er-
Heeger model. The electric field is introduced in terms of a time-dependent vector potential which is
included in the Hamiltonian through a Peierls substitution of the phase factor to the transfer integral.
The eR'ects of confinement on the soliton motion are determined. In particular, the viability of a
single moving soliton to cross an interacting region between two parallel chains is analyzed, and its
relationship to soliton velocity and interaction region extent is determined. The interchain charge-
transfer probability is considered. The charge-transfer probability in a collision between a charged
and a neutral soliton belonging to neighboring chains is determined. It is shown that a pair of
solitons, one on each chain, can move freely together in an oscillatory way, without any confinement,
The oscillation frequency is estimated and its relationship to experimental data is clarified.

I. INTRODUCTION

The proper understanding of the mechanisms of charge
conduction in trans-polyacetylene has attracted consider-
able attention in the last decade. This interest, in both
the theoretical and experimental fields, is justified by the
nature of this material. Besides exhibiting a metallic con-
ductivity under certain doping concentrations, it has a
very simple structure. The initial step towards the under-
standing of the theoretical aspects of trans-polyacetylene
was taken by Su, Schrieffer, and Heeger (SSH), ~ z in their
construction of the most-used model of this conjugated
polymer. After that, several authors have enhanced our
knowledge about polyacetylene by considering other as-
pects not treated directly by the SSH model as well as
by adding to the model, e.g. , Refs. 3—8.

Recently, authors have been concerned with dynamic
aspects involved in the study of trans-polyacetylene,
especially those aspects related to the presence of
solitons. s Also the so-called higher-dimensional problem
has received attention, since the real material exhibits
three-dimensional conduction. 6 It is the purpose of
this work to present a dynamic study involving the
higher-dimensional characteristics of trans-polyacetylene
using an enhanced version of the SSH model.

Since moving solitons are expected to play a major role
in the conduction process in polyacetylene, we perform
two types of studies, the first one involving a single soli-
ton and the second involving a pair of solitons. In the
first study we consider two neighboring chains interacting
with each other, one of them containing a moving soliton.
In our simulations, we treat those situations that seem
to contain the most important effects. The cases where
we consider a single soliton are shown schematically in
Fig. 1. In the first case, two neighboring chains with-

out solitons are allowed to interact in the central region.
In the second case, a charged soliton moving on chain 1
"collides" with the small region where there exists inter-
action between the two chains. The third case deals with
a collision with a quite extensive interaction region.

In the second study, we are concerned with the interac-
tion of two solitons on neighboring chains (Fig. 2). We
consider a moving charged soliton interacting with an
initially static neutral soliton. We study three distinct
representative cases. First, one charged soliton trapped
by the impurity is depinned and put into motion through
the electric field. Then it penetrates a coupled region be-
tween the chains. Close to this interacting region, on the
neighboring chain, sits a second and neutral soliton. In
the second case, two neighboring chains interact through-
out their extent, each one bearing one soliton in a cor-
responding soliton position. One chain bears a trapped
charged soliton and the other bears a neutral soliton. The
system is subjected to an electric field. In the third case
the same system as in the second case is subjected to an
electric field of greater absolute value. Charge transfer as
well as confinement potentials are analyzed in the various
situations.

These systems, where the charged solitons begin to
move under the action of an electric field, are studied by
numerically solving the coupled equations of motion for
the lattice displacements and the electronic wave func-
tions. These equations are numerically integrated over
real time. As for the model, we use SSH-type Hamilto-
nians for each chain, which are modified to include the
electric field, an interchain coupling term, and an im-
purity potential. The impurity potential is a necessary
device to concentrate the extra charge of the system on
a single soliton. We use a short-ranged site-type impu-
rity that locally varies the site energy of the vr electron.
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The acceptor-doping case is studied, where the sign of
the impurity potential is positive and its absolute value
very small, its presence being noted only in the initial
state. Since we consider a uniform electric field, the time-
dependent vector potential is independent of the space
coordinate, then the periodic boundary condition can be
adopted to avoid edge effects. The initial static states
are obtained by iteratively solving a coupled set of self-
consistent equations.

The time evolution of the electron-density distribution,
bond configurations, soliton positions, soliton velocities,
and involved energies are explicitly showed.

The organization of this work is as follows. In Sec. II
the model Hamiltonian and the outline of the method of
numerical simulation are described. In Secs. III and IV
the results of the simulations are shown. Finally, in Sec.
V a summary and discussions are presented.

II. MODEL AND FORMALISM
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In this study we use the following Hamiltonian to de-
scribe the system:

FIG. 1. Schematic representation of the single-soliton
study. (a) Two polyacetylene chains interacting only in the
central sites without any soliton; (b) two chains interacting
only in the central sites with an incoming soliton; (c) two
chains interacting in all the sites from the middle to the right
with an incoming soliton.
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FIG. 2. The second study —neighboring polyacetylene
chains bearing one soiiton each. (a) Two chains interacting
in all the sites from the middle to the right with an incoming
charged soliton; (b) two chains interacting along all their sites,
with the solitons occupying correspondent positions initially.

Here Hq and H2 are SSH-type Hamiltonians, modified to
include the electric field. C~„. is the annihilation opera-
tor of a vr electron with spin s on the j chain at the nth
lattice site, u~„ is the displacement coordinate of the nth
CH group on chain j, tp is the transfer integral between
the nearest-neighbor sites in the undimerized chains, Q,

is the electron-phonon coupling, M is the mass of a CH
group, K is the spring constant of a o. bond, t~ is the
transfer integral between sites with the same index on dif-
ferent chains from p site to q site, and V is the strength
of an impurity which is located between the anth and the
(m + 1)th sites (when we have two solitons in the sys-
tem, V is a necessary device to concentrate initially the
charge in a given soliton). p—:ea/(hc), e being the abso-
lute value of the electronic charge, a the lattice constant,
and c the light velocity. The relation between the time-
dependent vector potential A and the uniform electric
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field E is given by E = ——,A.
First, we prepare a stationary state, which is fully self-

consistent with respect to both degrees of freedom, of
the electrons and phonons, as the initial conditions of

the calculations. Then, under the action of the electric
field, the electronic and the lattice equations of motion
are numerically integrated, namely, the time-dependent
Schrodinger equation,

ih,i,„(n, t) = —t,„„„e,„.(n+ 1, t) —t,*, e,„.(n —1, t)— 0

+ V6„,~6, i[4,„.(m, t) + 4,„.(m+ 1, t)j,

fornax@, n&q
forp&n&q

where j and j are chain indices (j = 2,1 for j = 1,2, re-
spectively) and k is the quantum number which specifies
an electronic state; and the lattice equation of motion

Mu„= F„(t),
where

F (t) = —~[2u (t) —u +i(t) —u -i(t)l
+ ["""(B-,.+ -B.—,-)
+ -"""(B-+.

,- —B-,-- ))

Here B„„—= P&, 4&, (n, t)@i, ,(n', t). Since the equa-
tions of motion for u~ and u2 have the same form, we
have dropped the inde~ characterizing the chain in the
above equation. The prime on the summation means that
the sum is taken over the occupied states in the initial
stationary state. These equations of motion are solved
by discretizing the time variable with a step Lt. The
time step At is chosen so that the change of u„(t) and
A(t) during this interval is always very small in the elec-
tronic scale. The time-dependent Schrodinger equation
is analytically integrated by introducing single-electron
eigenstates at each moment. We have that

dt' )
~
@i,(0),

h

where h(t') is the electronic part of the Hamiltonian H(t)
at time t . Discretizing the time, this expression becomes

h(t, ) )
@&(t,+, ) = exp —ill '

~
@&(t,).

ti

Introducing the expansion,

4 i, (t, ) = ) Cil pi(t, ),

where C~A, = (Pi~@A,), and (Pij and (si) are the eigen-
functions and the eigenvalues of the electronic part of the
Hamiltonian H(t) at a given time tz. The solution of the
time-dependent Schrodinger equation can then be put in
the form,

eA.„,(n, t,+i) = ) ) P;, (m, t, )e„,(m, t~)
m

xexp i
~

Pi—,, (n, t~).

The lattice equations are written as

u„(t~+i) = u„(t~) + u„(t~)Et,

u (ti+i) = u ('4) + F(t, )

Therefore, using Eqs. 7—9, the electronic wave functions
and the displacement coordinates at the (j + 1)th time
step are obtained from the jth time step.

We use as parameters the commonly accepted val-
ues for polyacetylene: to ——2.5 eV, t~ ——0.075 eV,
K = 21 eVA. ~ o. = 4.1 eVA. i and a = 1.22 A. ,
and for the impurity potential we take V = 0 in the
single-soliton study. In the double-soliton study we take
V = 0.0025 eV, which is large enough to concentrate the
charge in the trapped charged soliton (= 99%), and con-
siderably small to not influence significantly the system
after the depinning of the soliton. Periodic boundary
conditions are assumed for the electronic wave functions
CI, , and the lattice displacements u„.

In the single-soliton study, the total number of lattice
points on chain 1 (Ni) and on chain 2 (N2) are as follows:
Ni ——100 in the first case, where there is no soliton
present, and Ni ——101 in the second and third cases,
where there is a soliton on chain 1. N2 ——100 in all
studied cases, where there exist no solitons on chain 2.
The total number of electrons on each chain (Nei, Nes)
are given by Nei ——Nep = 100 in all cases, which means
that in the initial condition we have a positively charged
soliton on chain 1 in the second and third cases.

In the double-soliton study, the total number of lattice
points on each chain are Ni = N2 ——101. The total
number of electrons on each chain (¹i,Neq) are Nei =
100 and Ne2 = 101. Hence, we have two interacting
chains each bearing 101 sites. Each chain bears a single
soliton. Chain 1 bears a positively charged soliton and
chain 2 a neutral one.

To study the position of the soliton as a function of
time, we introduce a smoothed bond variable by
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with y~—:u„+q —u„. When there is a single soliton, y„
has a tanh-like form. Thus its difference y„+~ —y„has
a sech-like form. Since we consider the periodic system
in the present simulation, it is convenient to define the
soliton position by4

Na f (2n+ 1)vari)
*(&) = «g ) .e"// (i/ +/ —

r/ ) I27r i N

We observe the position at every 100 time steps. The
velocity of the soliton is approximated by the difference
of the position in the following form:

x(t + 1004t) —x(t)
1006'

A time step of bt = 0.0lw& ——0.04 fs is used. We
follow the dynamics of the systems up to the 12900th
time step in the single-soliton study and in the first case
of the double-soliton study. In the second and third cases
of the double-soliton study we follow it up to the 25 000th
time step. These simulations take 2 and 4 h, respectively,
of CPU time on a supercomputer HITAC S-820.

tern. The electric field is applied from t = 0 to t = tofr, a
time span necessary for the charged soliton to acquire a
velocity close to its maximum possible value. 4 To do that,
we put A = —cEt from t = 0 up to t = tofr, and then,
for times greater than t fr, we set A = cE—t,fr. We take
t ir = 17m& and ~E~ = 0.025Eo, with Eo = hug/(ea).

In Fig. 3 we show the snapshots of the smoothed bond
variable y„. Figure 4 gives the time dependence of the
soliton position.

In the collision with the shorter region, the soliton
passes through it, but with a consequent decrease on its
velocity. This is because after the soliton leaves the in-
teraction region, the double bonds are in the less stable
in-phase configuration.

When the soliton collides with the larger region, its ki-
netic energy decreases continuously until the soliton ve-
locity eventually vanishes. Then, it starts moving again
in the contrary direction to the former motion. In short,
the soliton is reHected in the "shock" with the larger
interacting region, cf. Fig. 4. The lattice kinetic en-
ergy does not vanish even when the soliton stops. This
nonzero energy comes mainly from phonons left behind
the solitor; (see Fig. 3). In Fig. 4, the soliton position

(a)
0.15:

III. SIMULATION RESULTS—SINGLE SOLITON

In the first simulation, we have considered two parallel
chains without solitons. We take Nq ——N2 ——Neq ——

Ne2 ——100. The two chains are allowed to interact only
in the ten central sites, i.e. , J~ = 46 and q = 55 [Fig.
1(a)]. Then we have calculated the stationary state for
the two possible configurations: the in-phase and the out-
of-phase arrangement of the double bonds.

We have obtained that the out-of-phase arrangement
is energetically preferred, as should be expected with this
sort of interchain interaction. s Also, our calculated value
for the confinement energy, AE = 2.36 x 10 sto, is in
perfect agreement with the analytical value obtained by
Baeriswyl and Maki, Ref. 8, given by the following re-
lation: DE(l) = 2t2&l/(mv~), where l—:(q —p)a in the
present work.

We have then considered the possibility of a moving
soliton passing across an interacting region between the
chains, where the chains are initially in the out-of-phase
state. Since a moving soliton leaves behind a reordering
of the dimerization pattern, as soon as the soliton enters
the interacting region, the potential energy of the chains
will increase, with a consequent decrease in the soliton
kinetic energy. To analyze in detail this process, we have
considered two different ranges of interchain coupling [see
Figs. 1(b) and l(c)]. As can be seen in Fig. 1(b), first
we have considered the "collision" of the charged moving
soliton with a small interchain interaction region (q —p =
10), and then, Fig. 1(c), a collision with a much larger
region (q —p = 50).

As the initial state in all cases represents a station-
ary solution, we make the charged solitons start to move
through the application of the electric field on the sys-
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FIG. 3. Diagrams of the smoothed bond configuration
y„= (—)"(y„ i —2y„+ y~+i)/4; (a) two chains of 101 sites
interacting only in the 10 central sites, (b) two chains of 101
sites interacting in the 50 sites from the middle to the right.
ti ——OAt, t2 ——6000At, t3 ——10000At. At = 0.04 fs. Bound-
ary conditions are such that yi = —y~+~. The ordinate is y„
in A.
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versus time, we can identify a parabolic behavior. The
soliton is uniformly decelerated. This is because the con-
finement energy is a linear function of l, where t is the
size of the in-phase region. Let us estimate the effective
mass of the soliton. For this purpose, we have fitted the
data of the soliton position to x(t) = ao+ ait —zazt .
The resulting value of a~ is 0.0286am. Since the confine-

ment energy is (tz/vrto)t, the efFective mass is estimated
by

FIG. 4. Time evolution of the soliton position. Dots, no
interacting chains; crosses, chains interacting in the ten mid-

dle sites only; squares, chains interacting in the 50 sites from
the middle to the right.

N1

Q(t) = ) 1 —) 4', „(n,t)4i„.(n, t) .
n=l A:, s

We observe that the electronic and lattice potential en-
ergies present a rapidly oscillatory behavior enveloped by
more general features related to the actual state of the
soliton. The mean electronic energy increases after the
soliton enters the interaction region. This increase is en-
hanced when the soliton velocity slows down. The lattice
potential energy has a behavior analogous to E,(t), but
with an inverse dependence on the soliton velocity. The
rapid oscillation is not due to the interchain interactions.
To confirm this fact, we have made a similar numerical
calculation in a system without interactions. A similar
oscillation is clearly seen. This oscillation, most prob-
ably, comes from the shape mode, which is one of the
phonon modes localized around the soliton. is i4

The total energy increases rapidly during the applica-
tion of the electric field, as should be expected. After the
field is switched off, the total energy becomes constant.
A small variation of the total energy is observed over the
time; it is thought to come from the discretization of the
time variable. Since this variation is small enough, it
is verified that the mesh adopted for the time variable is
quite good. The total energy remains constant even after
some charge transfer taken place.

Finally we discuss the charge transfer that takes place
when the charged soliton enters the interacting regions.
Figure 5 shows the time dependence of the expectation
value of the total hole charge in chain 1,

71 tpag

The resulting value of m is 4.?m„where m, is the free-
electron mass. The soliton position can also be deter-
mined from the charge distribution using a formula analo-
gous to Eq. (10). In this case, we obtain a2 = 0.0308m'&
and m = 4.4m, . The reason for the difference in these
two estimations is unknown at the present stage. How-
ever, these values are in good agreement with another es-
timation obtained from the dependence of the total and
lattice kinetic energies on the soliton velocity.

Next we discuss the time dependence of the various
energies involved in the process. Let us define the elec-
tronic energy E„ the lattice potential energy Er.p, the
kinetic energy of the lattice EL,~, and the total energy
Ez by

The total amount of the charge transferred from chain
1 to chain 2 is 1 —Q(t). is In the first case, where there
is no interchain interaction, obviously there is no charge
transfer also, as can be seen by the straight line that re-
mains unity all the time, The second case presents two
valleys at the time steps corresponding to the shocks of
the soliton with the interacting region. The second shock
takes place because of the boundary conditions adopted,
i.e., after the first shock, the soliton continues to move
until it reaches the end of its chain, then it reappears
at the beginning and goes to the second shock. From
the third case, we obtain the most interesting aspects of
the charge transfer involved in these situations. It is ob-
served that the charge transfer takes place only when the
soliton enters the interacting region. The total amount
of the transferred charge shows a plateau while the soli-
ton is moving in the coupled region, although a slight de-
crease is seen when the soliton stops. The charge-transfer
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FIG. 5. Charge-transfer time dependence. Straight dot-
ted line, no interacting chains; crosses, chains interacting in
the ten middle sites only; dots, chains interacting in the 50
sites from the middle to the right,

represented in the figure, a stationary positively charged
soliton sits on chain 1. On chain 2, a stationary neutral
antisoliton remains in a site corresponding to the posi-
tion of the charged soliton in chain 1 (site number 20).
In this way, with the two solitons occupying the same
position in the corresponding chains, we obtain a stable
solution that can be used as the initial condition. With
the configuration of Fig. 2(b) we carry out two different
calculations through the application of electric fields of
diferent intensities.

After the settlement of the initial conditions, we pro-
ceed with the simulation through the application of the
electric field on the systems. Figure 6 shows the time
evolution of the solitons in the first case [Fig. 2(a)]. We
follow the dynamics of the system up to the 12 900th time
step. The electric field is applied in the erst 1500 time
steps, the electric-field strength being !E! = 0.025Ep.
This short-time application of the electric field is a con-
venient device utilized to give velocity to the initially
stationary charged soliton. The moving charged soliton
then comes to interact with the neutral soliton and the
coupled region.

In its motion, the charged soliton passes the neutral
soliton and enters deeply in the coupled region. Then,
th harged soliton velocity slows down, decreasing con-

sltinuously until it vanishes completely. Simultaneous y,
the neutral soliton is pulled into the coupled region ac-

I I I I I I I I I I I I I I I I I I I I

prorobability oscillates as a function of time. This oscil a-
tion may be mainly due to the quasiresonance between
the mid-gap state in chain 1 and the valence-band states
in c ainchain 2. From these pictures we can observe that

lno charge transfer occurs when the soliton complete y
leaves the interacting region. s Therefore, although the
two chains are interacting all the time, it is the presence
or not of the soliton as well as the length of the interact-
ing region that definitively determine the paths of charge
conduction,

X/a

80

60

IV. SOLITON PAIR

We perform simulations in three important represen-
tative cases. In Fig. 2 we depict in two diagrams the
aspects of the initial conditions adopted in the calcu-
lations. Figure 2(a) represents the first situation, where
two neighboring chains are coupled over half their length,
from the central region to the right (p=51 and q=94).
In chain 1 there exists an initially stationary positively
charged soliton, relatively far from the coupling region
(site number 20). In chain 2, a stationary neutral anti-
sohton sits very close to the interacting region (site num-
ber 45).

Figure 2(b) shows two parallel neighboring chains.
These two chains are allowed to interact with each other
along all their extension (p=l and q=l01). Initially, as

40

I I I I I I I I I I I I I I I I I I I I

25 50 75 100 125

FIG. 6. Time evolution of the soliton positions corre-
sponding to the initial configuration represented in Fig. 2(a).
Solid line, charged soliton; dashed line, neutral soliton.
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celerating once it enters there. The charged soliton re-
verses direction, colliding with the incoming neutral soli-
ton. After the collision, the two solitons separate from
each other. As the distance between them increases, their
respective velocities decrease. The solitons then stop and
again reverse direction, colliding once again.

Figure 7 shows the time evolution of the solitons' po-
sitions in the second and third cases [Fig. 2(b)]. These
two cases have the same initial conditions. Nevertheless,
the intensity of the applied electric fields is diferent in
each case in order to observe features independent of the
electric-field strength. We follow the dynamics of the
system up to 25000 time steps. As in the previous case,
a constant electric field is applied in the first 1500 time
steps. We use the following values to the electric fields:
~Ei~ = 0.025Eo and ~Eq~ = 0.015EII. These two simula-
tions present the same basic pattern. The charged soliton
in chain 1 is accelerated and put into motion by the elec-
tric field initially applied to the system. As the charged
soliton proceeds in its motion the neutral soliton is pulled
in the direction of the charged soliton. The charged soli-
ton velocity decreases continuously, vanishes, and then
begins to increase in the opposite direction. The two
solitons collide. After the collision, the solitons separate
a few sites from each other, their velocities decrease, van-
ish, and restart to increase in the opposite direction and

then a new collision occurs. This oscillatory behavior
continues through the simulation with the frequency of
collisions almost constant in time and with a decrease in
the amplitude of separation of the solitons between the
collisions. Naturally, the amplitudes are greater with E1,
where the stronger electric Geld induces more velocity to
the charged soliton.

The time dependence of the lattice kinetic energy in-
volved in the various cases is depicted in Fig. 8. This
energy increases rapidly during application of the elec-
tric field when the charged soliton acquires considerable
velocity. When the electric field is removed the kinetic
energy decreases to a lower plateau and begins to oscil-
late accompanying the interaction of the solitons. This
oscillation presents peaks corresponding to each soliton
collision. At a collision, the two solitons are moving fast
and in opposite directions. The valleys correspond to
instances where the solitons are stopped or moving very
slowly. Note that the kinetic energy does not vanish even
when the two solitons are stopped. This nonzero energy
is due to phonons left behind the soliton.

The electronic and lattice potential energies have a

EL„/to

X/a
I I I I I I I I I I I I I I I I I I I I 0.015

100
0.010

0.005

80 0.000
25 50 100 125

60

40
0.015

I I I I I I I I I I I I I I I I I I I I

20 0.010

0.005

0
0 50 100 150 200 250 0.000

50 100 150 200 250

FIG. 7. Time evolution of the soliton positions corre-
sponding to Fig. 2(b). Solid lines are for the charged solitons
and dashed lines for the neutral ones. The upper lines cor-
respond to the stronger electric field and the bottom lines to
the weaker electric field.

FIG. 8. Time dependence of the lattice kinetic energy. (a)
corresponds to Fig. 2(a); (b) corresponds to Fig. 2(b), the
upper line correspond to the stronger electric field and the
lower line to the weaker field.



47 DYNAMICS OF SOLITONS IN POLYACETYLENE WITH. . . 12 575

rapid oscillatory motion enveloped by a slow oscillation.
The fast oscillation is thought to come from the shape
mode, which is one of the phonon modes localized around
the soliton. The slow oscillation is directly related to
the soliton motion. The electronic energy variation be-
comes negative when the electric field is applied to the
system and the solitons start to move. Then it increases
or decreases as the solitons are stopping or moving, re-
spectively. Therefore, there are peaks of the slow os-
cillation when the solitons both are moving slowly, and
valleys when they are colliding and moving fast. The lat-
tice potential-energy variation is positive almost all the
time and presents a behavior analogous to the electronic
energy variation but with an inverse dependence on the
soliton velocities.

The charge transfer involved in the various analyzed
situations is depicted in Fig. 9. There, we show the
time dependence of the expectation value of the total
hole charge in chain I, Q(t). Figure 9(a) presents the
charge transfer in the first case, i.e. , the two chains in-
teracting through half their length. We can observe that
some charge transfer takes place only when the charged

0.98

0.96

0.94

0.92

soliton enters the coupled region and when there is a col-
lision between the solitons. With the two solitons very far
from each other, the total amount of transferred charge
shows a plateau. Figures 9(b) and 9(c) show the second
and third cases, respectively. The two chains are allowed
to interact all over their length; therefore we can focus
on the influence of the intersoliton distance on the charge
transfer. We can observe clearly that the amount of
transferred charge is enhanced when the solitons collide
with each other and that this amount is lessened when
the solitons are far from each other, decreasing with the
distance. In Fig. 9(b) some charge returns to the charged
soliton around t = 180m . This episode is thought to
be spurious and its reason is unknown at present. All
the cases present small oscillations as a function of time
that may be mainly due to the quasiresonance between
the midgap states of chains 1 and 2.

Figure 10 shows the time evolution of the midgap lev-
els of the solitons. Although the scale of the variation
is very small, some insight can be gained by its analysis.
We find that initially the charged soliton is pinned by
the impurity. After the depinning, caused by the electric-
field application, the midgap level corresponding to the
charged soliton tends to join the midgap level of the neu-
tral soliton. When the external electric field is switched
ofI' the two levels oscillate over time with level crossings
corresponding exactly to each collision of the solitons.
The levels split apart from each other when the solitons
are distant one from another. This behavior, successive
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FIG. 9. Time dependence of the charge transfer. (a) cor-
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FIG. 10. The midgap levels as functions of time for the
case of Fig. 2(b) with the stronger electric field.
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splitting and crossings of levels, can account for the en-
hancement of charge transfer at the soliton collisions.

V. DISCUSSION AND SUMMARY

The interchain interaction and charge transfer of two
polyacetylene chains, interacting through hopping terms
and the concurrent effects of moving solitons, have been
investigated. This study was carried out through numer-
ical calculations using an improved version of the SSH
model to accommodate the more complex aspects in-
volved in the actual system. We have used an electric
field to put a charged soliton in motion. The electric
field is introduced in the model Hamiltonian as a time-
dependent vector potential in the phase of the transfer
integral. The time-dependent Schrodinger equation and
the equation of motion for the time-dependent lattice
displacements form a coupled set that was numerically
integrated over the time in a self-consistent way.

The calculations are conducted from first principles
without any previous assumption on the form of the mov-
ing solitons.

The adopted model for the coupling between the chains
has the advantage of being quite simple and able to repro-
duce the principal features of soliton confinement. Never-
theless, as revealed by some authors, '7 this type of cou-
pling determines an out of phase (antiparallel) relative
order of the dimerization pattern, in contrast with the
experimentally observed in-phase (parallel) alignment of
the dimerization.

The stationary state of two chains interacting along ten
parallel sites is numerically calculated with the dimer-
ization pattern out of phase and with it in phase. The
difference in energy of the two possible relative orders of
alignment is perfectly in accordance with the analytical
result of Ref. 8.

The ability of a soliton to actually pass through an in-
teracting region between two neighboring chains has been
investigated in two enlightening situations. An initially
static charged soliton is accelerated through the applica-
tion of an electric field until it reaches a velocity close
to its maximum possible velocity. Then the electric field
is switched off and the soliton continues to move until it
eventually reaches an interacting region.

When the interchain interaction is restricted to only
ten sites, we have observed that the soliton, which pos-
sessed a considerable kinetic energy, could pass across
this small interaction region. Since the resulting config-
uration of the dimerization bonds has become less sta-
ble after the soliton passage (there has been an increase
in the sum of the lattice potential and electronic ener-
gies) the soliton kinetic energy is decreased and the soli-
ton velocity is slowed down. We have considered peri-
odic boundary conditions, then as the soliton has passed
through the interacting sites, it has made a round trip
and returned to the interchain interacting place, which
was now on in-phase configuration. On this second colli-
sion, the soliton has recomposed the more stable config-
uration of the chains and has increased its kinetic energy
in doing so, as should be expected.

With a much larger interacting region, with 50 inter-

acting sites, we have observed the interesting effect of
soliton reflection. The charged moving soliton has col-
lided with this long interacting region in a quasielastic
fashion. As it has entered the interacting place, its ve-
locity slowed down and its kinetic energy became lower
and lower, until the soliton stopped and started mov-
ing again in the contrary direction. Prom the resulting
parabola drawn in the graph of the soliton position versus
time, we have estimated an effective force acting upon a
soliton as it enters a region where two chains are allowed
to interact.

The calculations of the charge transfer have revealed
that the probability of charge transfer between a chain
having a charged soliton and a chain without it is quite
small. One should expect that, since the gap between
the midgap state and the band states is large enough to
prevent hopping.

For the study involving two solitons belonging to neigh-
boring chains, in the various situations that we have con-
sidered, there was a drift of the neutral soliton caused by
the moving charged soliton. This drift is a result of the
confinement potential that links the solitons. Namely,
the two solitons are attracted to each other to avoid the
matching of the double bonds between the chains and the
resulting increase on the sum of the lattice potential and
electronic energies. Therefore, we observe that the mo-
bility of solitons in coupled polyacetylene chains is possi-
ble only as a collective phenomenon involving other soli-
tons on neighboring chains. Otherwise, the confinement
potential will make the moving soliton recoil or simply
oscillate.

We define a collision as the time when a soliton on
one chain is at the opposite site from a soliton on an-
other chain. After each collision an inner effective force
between the solitons pulls them back against each other.
When a moving soliton collides with a stationary soliton,
the pair of solitons move together with a change between
the solitons in the head position. The frequency of this
oscillation has a well-defined value that is independent
of the initial velocity of the former moving soliton. In
all studied cases the period between two successive col-
lisions is about 45m, which corresponds to an angular

frequency of 0.14ug = 0.035 fs . We think that this
oscillation between solitons may be the source of some
peaks observed on infrared-absorption spectra.

Charge transfer takes place between the charged and
the neutral soliton when they are close enough. When
the distance between the solitons is about 15a or closer,
the charge transfer is enhanced because at this distance
the midgap states start to overlap. An amount of charge
of about 5%%uo is transferred from the charged to the neutral
soliton after each collision.

The midgap levels undergo an oscillation that also ac-
company the oscillatory motion of the solitons. The two
levels get very close and even touch each other at the soli-
ton collisions and then split and separate when the soli-
tons are far from each other. Coincident with the level
touching there is an enhancement in the charge trans-
fer. However, we stress that the splitting is very small,
the overlap of the two levels also is small (the soliton
state on one chain is mostly different from zero on odd
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sites while the soliton state on the other chain is mostly
diferent from zero on even sites), and we have moving
solitons which have different wave functions from those
of the static solitons.

The treatment dispensed here to the interchain cou-
pling between the polyacetylene chains is considered to be
satisfactory to observe several of the aspects involved in
the interchain interaction. Nevertheless, a more realistic
interchain coupling could furnish new and more accurate
information about the interchain charge-transfer mecha-
nisms involved in conjugated polymers. It is the purpose
of a forthcoming paper to present detailed studies, with
more realistic coupling terms, of the mechanisms of con-

finement of solitons and interchain charge transfer using
the present formulation as the theoretical start point.
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