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The Kohlrausch-Williams-Watts (KWW) and the Havriliak-Negami (HN) relaxation functions have
been widely used to describe the relaxation behavior of glass-forming liquids and complex systems over
the last several years. The HN relaxation function is a frequency-domain function while the KWW
function applies for the time domain. In a previous paper we discussed the interconnections between
these two functions by presenting a method where we found that the best HN description in the frequen-
cy domain corresponds to a given KWW function in the time domain. From that work we proposed
several empirical relationships that allow us to determine the HN parameters corresponding to a given
set of KWW ones. It was also outlined how to proceed in the opposite way, i.e., to obtain the best
KWW time-domain description corresponding to a given HN relaxation function in the frequency
domain. This is what we develop in this work by varying the HN parameters in search of the values of
the best KWW fits. Likewise we can put a limit to the region where the HN and the KWW functions are
compatible in the sense that they can be equally used by just choosing the right parameter change. A
confident confirmation of this procedure is that when the HN parameters reported in the literature for
the a relaxation of glass-forming liquids are considered, their values fall directly upon this region, where
we find that the HN and KWW functions deviate less. However, for other dynamical processes like
secondary relaxations of polymers or the a relaxation of polymer blends the HN parameters reported in-
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dicate that a single KWW relaxation function is not able to describe the time-decay behavior.

INTRODUCTION

The dynamics of glass-forming systems is a subject that
must be studied in a very wide dynamical window which
ranges from hours down to picoseconds in the time scale
or, equivalently, from thousandths of hertz up to
thousands of gigahertz in the frequency scale. Due to
this huge dynamical interval there is no spectroscopy or
technique that can cover the whole range on its own.
Furthermore, several spectroscopies must be used and
coupled in order to study the phenomenon through all
the temperatures. Other techniques we could mention
are nuclear magnetic resonance (NMR), quasielastic neu-
tron scattering, mechanical and dielectric relaxation,
photon correlation spectroscopy (PCS), ultrasonic ab-
sorption, depolarized Rayleigh scattering, and Rayleigh-
Brillouin scattering. These techniques work in either the
time or the frequency domain. The need for combining
information from the different sources impelled us to look
for the most appropriate way to proceed. The usual and,
analytically, most straightforward way to switch between
the time and the frequency domain is the Fourier trans-
formation. In a previous paper' we discussed the prob-
lems derived from the performing of the calculation of
Fourier transforms over real data. As a brief summary
we will just mention that, as we stated above, there is no
technique that can cover a wide enough dynamical range
(in theory, to perform the integral the interval should be
infinite) to describe entirely the process and this limita-
tion can introduce severe truncation effects. Moreover,
to calculate either the Fourier integral or the Fourier
series one must be able to deal with high precision facili-
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ties because some terms of the series can reach values
which differ in many orders of magnitude from the final
result of the summation. Besides all this, the spurious
noise inherent to any experimental measurement can
affect seriously the calculation of Fourier transforms.

As we mentioned above, the dynamics of glass-forming
systems is usually studied by means of different relaxation
techniques. Although several relaxation processes are
generally present in a given system, the so-called primary
or a relaxation occurring in the supercooled liquid is in
most of the cases the main relaxation process. The study
of the dynamics of this a relaxation has been the subject
of increasing interest over the last few years mainly due
to the fact that these dynamics are directly related to the
unsolved problem of the glass transition. There are two
major phenomenological relaxation functions that are
used in the description of the a relaxation, one of them
defined in the frequency domain, namely the Havriliak-
Negami? (HN) function, whereas the Kohlrausch-
Williams-Watts>* (KWW) function applies for the time
domain. This fact made us look for the connection be-
tween both descriptions. In other words, if both models
have been found to be able to describe accurately enough
the experimental data, there should be a relationship
among the parameters of both models. The analytical ex-
pressions for the HN relaxation function, ¢fju(w), and
for the Kohlrausch-Williams-Watts one, @ww(?), are as
follows:
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Pwwlt)=exp , 0<B=1 (2)
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where the 7y and Tywyw are time-scale parameters which
just shift the relaxation function along the logarithmic
time scale and 3, @, and ¥ can be considered as shape pa-
rameters. As we mentioned in our previous paper the re-
lationship between both descriptions is not of an analyti-
cal nature since the HN and KWW functions are not ex-
act Fourier transforms of each other. In that paper we
showed a way of finding out the HN parameter values
which correspond to a given KWW function, and we also
pointed out how to proceed in the opposite way; that is,
how to obtain the corresponding 3 and 7y values out of
an arbitrarily chosen HN function. This is what we de-
velop in this work by spanning the set of values that the
HN shape parameters (o and y) can take and calculating
the corresponding KWW parameters.

We have also investigated the conditions that must be
met in order that this relationship between HN and
KWW functions is valid; that is, the conditions to be met
in order that both functions describe equally well a given
relaxation. This is not always true for the general case
where a relaxation function built by arbitrarily fixing its
HN parameters might not be fittable (when translated
into the time domain) by a KWW function. This is to be
expected if one thinks that the HN function is a more
versatile function than the KWW one in the sense that it
has one more shape parameter.

On the other hand, we have applied the method
developed here to several sets of data taken from the
literature as well as to our own measurements and corre-
sponding to the dynamics of glass-forming systems.

COMPUTATIONAL METHOD AND RESULTS

The way in which we proceed to obtain the KWW
function which fits the best HN function of given a and ¥
parameters makes use of an algorithm introduced by
Imanishi, Adachi, and Kotaka’ and by means of which
we obtain a formal distribution of relaxation times out of
the imaginary part of a HN function which we have pre-
viously generated with the desired chosen parameters.
Thus, we have to calculate the p(In7) distribution which
verifies the following condition:

" [ T
tin(@) fiwp(lm') odnT (3)

It can be mentioned here that this algorithm, adopted
to obtain the distribution of relaxation times out of the
susceptibility peak, has been chosen among others®’ for
the sake of its simplicity and because of its great accuracy
when used with simulated (noise-free) data like the ones
we are dealing with here. The method makes use of an
iterating calculation that, beginning from an initial esti-
mate for the distribution of relaxation times (which can
be taken as the susceptibility imaginary peak itself)
modifies it by adding an amount proportional to the
difference between the data we are trying to fit and the
values calculated from the distribution obtained in the
prior iteration. This difference is evaluated at each point,

which means that to correct the p(InT) in 7 we need to es-
timate the difference in w=1/7. The reason to proceed
in this way to obtain a distribution of relaxation times in-
stead of using the analytical distribution is to be coherent
with the procedure followed in Ref. 1, where it was
shown (see Fig. 3 in Ref. 1) that this algorithm provides a
distribution of relaxation times which coincides with the
one previously used to generate the susceptibility peak.
Besides, when applied to an exact HN function this algo-
rithm yields a distribution which behaves in a smoother
way than the analytical one, which is not recovered by
this method.

Once we get a distribution of relaxation times which
reproduces accurately enough the susceptibility imagi-
nary peak we wanted to describe, we can integrate it in
order to obtain the equivalent time-relaxation function
@(t) by performing the following integration:

dlnT . (4)
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-

go(t):fjo p(lnT)exp

Now that @(t) is obtained we can fit it with a KWW func-
tion. Thus we obtain the KWW parameters correspond-
ing to the initially chosen HN ones.

This procedure was repeated for different values of a
and y from 0.05 to 1 with a step of 0.05. For each of the
cases deviations between the time-relaxation functions
obtained from HN functions and their corresponding
KWW fits were calculated as the square of a standard
average quadratic difference and which we will denote
here as 0. This o proves to be a good sensor of the ac-
ceptability of the fits and, consequently, of the compati-
bility or equivalence of the HN and the KWW functions.
These deviations are a measure of how compatible the
HN and the KWW descriptions are. For a=y =1 (when
the HN function reduces to the Debye one, and the
KWW becomes a single exponential) this compatibility is
total in the sense that both descriptions are completely
equivalent and connected through an exact analytical
Fourier transform, and, consequently the deviation is
minimum for this case, as should be expected. To illus-
trate that this total compatibility is not true for the gen-
eral case and also to have a better feeling of the values of
the deviation, we have plotted in Figs. 1(a), 1(b), and 1(c)
the calculated time-relaxation functions (solid lines) cor-
responding to some particular HN functions and their
respective KWW fits (dashed lines). These different
values of a and y are chosen so that the one in Fig. 1(a)
corresponds to a high deviation value (0 =1.06X10"3)
where one can appreciate that the fit is not acceptable,
and, consequently, we can state that the time-relaxation
function built from the frequency HN function with the
set of a,y parameters is clearly not well described by a
KWW function. The last pair of a,y values, which is
plotted in Fig. 1(c), corresponds to a low deviation value
(0 =1.89X 10 where the fitting is a very good one, so
one can assume that both functions are equivalent. The
HN parameters chosen for Fig. 1(b) are the values corre-
sponding to an intermediate case (0 =4.50X107°) in
which the deviation between the HN and the KWW re-
laxation functions is in the range of the typical statistical
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errors involved in real experiments so it can be con-
sidered acceptable and it helps us to define a boundary in
the deviation values in the sense that a fit with a o value
in the range of 10~ can be admitted as a good one.
Figure 2(a) displays how these deviations between the
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FIG. 1. Comparison between the time-relaxation functions
(solid line) calculated from HN functions of given a,y values:
(a) a=0.15, y=0.45; (b) a=0.47, y=0.38; (c) a=0.75,
¥ =0.45 and the best KWW fit (dashed line) corresponding to
them.

KWW and HN descriptions evolve with the a and ¥
values. As one can appreciate, there is an extended valley
situated in the region of a>0.4 and y >0.2 which goes
down to a zero minimum in a=y=1. Only for the
lowest values of a@ and y (especially for those of a) are
there nonacceptable deviations. In Fig. 2(b) we project
these deviations onto the a-y plane restricting ourselves
to the region where the deviations are tolerably low
(0 <107%). The continuous lines in the figure are what
one could call iso-o. This means that all the points con-
nected by those lines are values of the same deviation,
which in the case of the thick one is 2.0X 10™%. The thin
ones are taken with a step interval of 5.0X107°. The
dotted lines stands for the values of a,y which we previ-
ously reported! that best fit the different KWW functions
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FIG. 2. (a) Three-dimensional plot of the deviation values
from a KWW curve obtained for the different pairs of a and y.
(b) Contour plot of the projection of (a) onto the a,y plane in-
cluding different sets of a,y values: from the dielectric relaxa-
tion spectroscopy PIP (1) , BCDE (2), BKDE (3), PMPS (4), PH
(5) , PVAc (6), PVME (7), PVC (8), PCHMA (9), PMMA (10),
poly(isobutyl methacrylate) (11), poly(n-hexyl methacrylate)
(12), PC (13), and PS (14); from mechanical spectroscopy, PAr
(15), PSF (16), PC (17), PH (17), PVC (8), and PVAc (18); from
NMR PVME (7) and PVAc (18); and from depolarized Rayleigh
scattering of PIP (19). The dotted line is explained in the text.
The thick line stands for a deviation of 2.0X 1074,
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we generated there. We see that, effectively, this line con-
forms approximately to the gradient of deviation.

Figure 3(a) shows the results for the correspondingly
obtained B values as a function of the @ and y parameters
in a three-dimensional representation. Figure 3(b) plots
the contour map of the projection of these data onto the
a-y plane. In this case the thick iso-8 lines are labeled
with their actual B value and the thin ones are drawn
with a step of 0.05. As it was to be expected we obtain
B=1 for a=y=1. It can also be seen that we have re-
stricted ourselves to the region of low deviations.

Up to now we have just made reference to the transfor-
mation between the shape parameters, that is, from the
conversion of the a,y parameters of the HN function
into the B parameter of the KWW function. From the re-
sults of the fits we can also find a conversion from the
Tyn to the Tww. Concerning this transformation the
values corresponding to the ratio TN /7ww for each pair
of a,y values are plotted in Figs. 4(a) and 4(b). Figure
4(a) is a tridimensional representation restricted to the
defined region mentioned above and Fig. 4(b) is a contour
map of the logarithm of the ratio where the step taken is
0.5 for the iso-TyNn/Tww lines. As one can appreciate for
a=y =1 we have Tyy=7ww as should be expected. It
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FIG. 3. (a) Three-dimensional plot of the 8 values obtained
for the different pairs of a and y. (b) Contour plot of the projec-
tion of (a) onto the a,y plane.
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FIG. 4. (a) Three-dimensional plot of the 7yn/Tww values
obtained for the different pairs of @ and y. (b) Contour plot of
the projection of the logarithm of the 7yn/7ww ratio onto the
a,y plane.

can also be said that for most of the values in this region
Ty is smaller than 7yw.

APPLICATION OF THE METHOD

The method is suitable to elucidate the issue of when a
HN function is equivalent in the time domain to a KWW
function, and if this is the case, to obtain the equivalent
KWW parameters which correspond to it. Thus, if we
have measurements from any spectroscopy acting in the
frequency domain where data have been analyzed in
terms of the HN function, we can try to obtain the corre-
sponding KWW parameters. To do this, first we take the
pairs of a,y values obtained from the HN fitting of the
experimental data and if they fall outside the region of
low deviation, one should conclude that the data are not
well described by a KWW function. On the other hand,
if the pairs a,y are in the ““good” region one can proceed
and search for the corresponding 8 value in Fig. 3 and for
the 7ww in Fig. 4. Here, as an example of application, we
have applied the method to different data available from
the literature which correspond mainly to different relax-
ation processes in glass-forming systems.
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It turns out that in the case of the dynamics of the a
relaxation in glass-forming systems, most of the values
referenced in the literature do fall directly in the low de-
viation area. We include in Fig. 2(b) for comparison
some typical sets of a,y values from the a relaxation of
homopolymers and other glass-forming liquids and also
from measurements performed in our own laboratory as
obtained from different techniques. Thus, we collected
data from dielectric measurements of different polymers
like poly(vinyl methyl ether) (PVME),? poly(vinyl acetate)
(PVAc),’ poly(vinyl methyl phenyl siloxane) (PMPS),'°
poly(vinyl chloride) (PVC),!! poly(methyl methacrylate)
(PMMA), poly(cyclohexylmethacrylate) (PCHMA),
poly(isobutyl methacrylate), poly(n-hexyl methacrylate),
poly(bisphenol- 4 carbonate), polystyrene (PS),!? and
poly(isoprene) (PI).!* Likewise we include dielectric mea-
surements of organic glass-forming van der Waals liquids
BCDE (bis-phenol-C-dimethylether) and BKDE (bis-
kresol-dimethylether).!*

Concerning other types of spectroscopies we have tak-
en data from mechanical relaxation spectroscopy of
Bisphenol A polycarbonate (PC), poly(aryl ether sulfone)
(PSF), phenoxy (PH), and polyarylate (PAr),!> PVAc,!®
and PVC.!7 We also developed an analysis to be able to
extract values of HN parameters out of nuclear magnetic
resonance (NMR) and depolarized Rayleigh scattering
(DRS) measurements. Thus, we were also able to plot
a,y values from NMR measurements of PVME,}
PVAc,! and from DRS measurements of PI.!®

As it can be appreciated even for the most unfavorable
case for the dielectric technique, which corresponds to
the a process of PVC, the deviation is low enough for the
fit to be accepted. This compatability is visualized in Fig.
1(b) which we mentioned before and which corresponds
to this case.

A comment can be made on the fact that in Ref. 13 the
different HN parameters measured for BCDE and BKDE
were converted into KWW parameters by means of a
Fourier transform. We have applied the method present-
ed in this work to these data and obtained quite a good
agreement with the previously reported values. A similar
situation is met in Ref. 10, where the different HN pa-
rameters measured for PMPS were also transformed in
the same way and converted into KWW parameters.
Comparison with the ones we obtained with our method
yields a reasonable agreement.

The fact that most of the HN parameters, obtained by
using different techniques to measure the a-relaxation
process of glass-forming liquids, fall in the range where
the HN and WW descriptions are nearly equivalent gives
support to the KWW function as a good approximation
of the time-decay behavior of these systems. Moreover,
the KWW function has been obtained from very different
models and theories describing the dynamics of glass-
forming liquids.!® However, in spite of the fact that these
theories are based on very simple pictures of such sys-
tems, i.e., they are expected to work for simple dense
liquids mainly, the KWW function appears to be univer-
sal in the sense that it can be applied to very different and
complex glass-forming liquids, including polymers, me-
tallic glasses, van der Waals liquids, etc.

However, there are other dynamical processes occur-
ring in different systems, such as, for example, dielectric
and mechanical a relaxation in miscible polymer blends
(and, occasionally, plasticized or semicrystalline poly-
mers) which can be equally considered. When the HN
function is used to analyze these experiments, one usually
finds that the HN fits are out of the region where the HN
and KWW descriptions are nearly equivalent. This is the
case of Ref. 20 where values of a=0.44 and y =1 are re-
ported for a polymer blend PVME/PS with PS weight
fraction ¢=0.4. This is usually attributed to the so-
called “symmetrization-effect,” which yields values of the
HN vy parameter close to one. As the relaxation is usual-
ly broad for these systems this is accompanied by a low «a
value and, consequently, we are at the extremities of our
restricted region. Nevertheless, this could be explained
by the presence of concentration fluctuations that are be-
lieved to be present in such systems.?%2! These concen-
tration fluctuations should lead to a distribution of relax-
ation processes, so each of them could be describable by a
different KWW function. Other types of systems that
can be found in the limits of the area we defined are
epoxy resins with different curing agents.'?

Another different dynamical process for which the HN
parameters fall also outside of the range where the HN
and KWW descriptions can be considered as equivalent is
the secondary relaxations of glassy polymers. It is be-
lieved that secondary relaxations of polymers involve lo-
calized motions of side groups or small parts of the po-
lymeric chain. An example of such processes is the case
of the secondary dielectric 3 relaxation of PVC. Parame-
ters of @=0.37 and y =0.42 are typically reported values
when this process is analyzed by using the HN function.??
Secondary relaxation processes are observed to be very
broad. However, it is believed that this broadening arises
not only due to the non-Debye character of the process
but also due to the randomness inherent in any amor-
phous structure.”? This randomness would introduce a
distribution of non-Debye processes which arise from the
different neighboring of each relaxing unit A similar situ-
ation has been recently reported®* for magnetic relaxation
below the glass transition in amorphous metallic alloys.

CONCLUSIONS

We have shown the relationship among the HN and
the KWW parameters and described the conditions un-
der which this relation works. Though we have made an
explicit reference to the a relaxation of glass-forming
liquids, the applicability of the method should be extensi-
ble to any kind of problems which make use of the HN or
KWW descriptions. There is a very large number of phe-
nomena in physics which present non-Debye-like broad
relaxations and which should be suitable for this kind of
study.

It is also our thinking that, after using the method pro-
posed here, the possible discrepancies that one might find
when comparing data from measurements of different
techniques, using the HN and the KWW functions, re-
spectively, to treat their data, should be real and of a
physical nature, rather than artificial and spuriously ori-
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ginated by an erroneous mathematical treatment of the
data.

On the other hand, this work differs from others which
handle the same problem of switching information be-
tween the time and the frequency domains by the fact
that, to our knowledge, these other works deal with the
task of performing a Fourier transform. Thus, several
methods have been introduced in the literature with
different degrees of speed and accuracy. Instead of calcu-
lating Fourier transforms, the method we develop here
(and accordingly to what we already did in the first ap-
proach of our previous paper) makes use of the concept
of the distribution of relaxation times and introduces it as
a mere mathematical tool.

A possible continuation of this work might be its ex-

tension to deal with real measurements in order that the
switching between the time and the frequency domain
should be directly done on the experimental data,
without the need of using predetermined functional mod-
els like KWW or HN for the relaxation functions. This
work is currently in progress.
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