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Under nearly resonant pumping of Frenkel excitons, the third-order optical process generating
phase-conjugated waves is theoretically investigated by taking full account of the effect due to static
on-site disorder and finite sample size. The scaling theory of the Anderson localization allows us
to show that the phase-conjugated signal has the spectral anomaly for pump and probe frequen-
cies around the exciton mobility edge. We systematically evaluate the dependence of the phase-
conjugated signal on various physical quantities, namely, randomness, the detuning of the pump and
probe frequencies from the exciton mobility edge, the misalignment of two pump beams, and the
system size.

I. INTRODUCTION

Currently there is increasing interest in the nonlinear
optical properties of the organic and inorganic crystals.
In particular, much attention is focused on various non-
linear optical responses of the exciton in these systems.
An ideal exciton is an elementary electronic excitation
that extends and can propagate coherently over the whole
crystal. Both the finite sample size and the relaxation
of the exciton limit its coherent length to a mesoscopic
size, and consequently the effective transition dipole mo-
ment of the exciton, are also reduced to a mesoscopic
value. In a system of semiconductor microcrystallites,
the finite-size effect is known as the confinement effect of
an exciton, which leads to the third-order susceptibility
being proportional to the volume of the semiconductor
microcrystallite under resonant pumping of excitons.
In the disordered system with random on-site energies,
the exciton scattering gives the pure dephasing processes
and reduces the effective dipole moment of an exciton. s 4

On the other hand, the importance of coherent multiple
scattering by static random potentials has recently been
recognized in nonlinear optical properties, and a weak lo-
calization effect in disordered systems has been shown to
enhance the generation of the phase-conjugated waves in
nearly degenerate four-wave mixing. 5 It should be em-
phasized that disorder in the system gives both the posi-
tive and negative effects for getting large nonlinear opti-
cal responses. Complicating the situation, furthermore,
finiteness of the sample destroys the weak localization ef-
fect. In order to take full account of these disorder efFects
in Frenkel exciton systems properly, we use a well-defined
microscopic model for disorder and its scaling theory of
localization in order to examine the disordered and finite-
size effects on the same basis. We clarify the nature of
phase-conjugated wave generation in the disordered and
finite system.

Another interesting problem is about the localized-
delocalized transition of the exciton in the frequency do-

main. Such a transition point is called the mobility edge,
where the states of the exciton change in nature from
the localized to the extended states or vice versa. It is
noted that the exciton wave number is not a good quan-
tum number in this system, so that the linear absorption
spectrum due to the exciton is very broad and almost
constant around the mobility edge. Nonlinear optical re-
sponses such as (stimulated) Raman-scattering processes
have been observed around the exciton mobility edge w*
under nearly resonant pumping of excitons. ~ Nontriv-
ial nature is expected around the exciton mobility edge
because the exciton's correlation (localization) length di-
verges when pump and probe frequencies approach the
mobility edge in the delocalized (localized) phase. Di-
vergence of the localization length implies that the ef-
fective transition dipole moment of an exciton will be-
come very large at that point irrespective of a rather
large pure dephasing rate by impurity scatterings. The
confinement effect of excitons and the misalignment of
forward and backward beams also play a crucial role
here, because both finiteness of the system and the mis-
alignment are known to smear out the critical behavior
around the transition point. To investigate such singu-
lar behavior in nonlinear polarization around the exci-
ton mobility edge, incorporating all these various effects
fairly upon the same basis, we resort to the scaling theory
of localization. ~2 ~s A commonly used method is the per-
turbational calculation of exciton scattering by a random
potential breakdown, particularly around the exciton mo-
bility edge. We develop the length-dependent scaling the-
ory for the enhancement factor of phase-conjugated wave
generation and examine its behavior on both the localized
and the delocalized sides of the exciton mobility edge. As
a result, we obtain the following: (1) spectral singularity
will occur at the exciton mobility edge, and (2) a differ-
ent singular behavior of the enhancement factor for the
phase-conjugated signal is expected on both sides of the
exciton mobility edge. Putting it the other way round,
localization and delocalization of the exciton, which is
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still an open problem, can be studied by observing the
generation of phase-conjugated waves, when the pump-
and probe-beam frequencies are close to the exciton mo-
bility edge and still under nearly resonant pumping of
excitons.

In investigating the exciton propagation in the disor-
dered medium, two diffusion modes are relevant: the
particle-hole mode (diffuson) and the particle-particle
mode (cooperon). Whereas the diffuson mode corre-
sponds to the forward coherent-scattering process, the
cooperon mode describes that the backward-scattering
amplitude is enhanced by multiple impurity scatter-
ings as a result of constructive interference between two
processes that are connected with each other by time-
reversal symmetry. Since the phase conjugation is a pro-
cess generating a wave whose phase is a complex conju-
gate to the incident probe wave, it is very natural that
nonlinear polarization for the phase conjugation is ex-
pressed by use of the cooperon mode. In later sections,
when the incident waves are under resonant pumping of
the exciton, we will find that the enhancement factor N, g
for the phase-conjugated signal is directly written down
by the cooperon mode with the momentum and the fre-
quency specified by the external electric field.

According to the scaling argument of Anderson local-
ization in conductors, all the states are localized in a
one- and two-dimensional bulk system at the absolute-
zero temperature, and the localized-delocalized transi-
tion is expected to occur in the three-dimensional sys-
tern. Such a localization effect of an exciton can be de-
scribed through the interaction between the two diffu-
sion modes. ' The diffusion modes can be formulated
as Goldstone modes, and several kinds of nonlinear o.

models are introduced to pursue the localization prob-
lem along this line. As is shown in the framework
of the nonlinear o. model, the disorder effect of diffu-
sion modes in the delocalized side of the exciton mobility
edge is incorporated through the renormalized diffusion
coe%cient. This nontrivial feature of the Anderson lo-
calization theory is based upon the nonvanishing of the
averaged density of states, that is, an order parameter,
at the transition point. As the exciton's average density
of states is not expected to vanish at the exciton mobility
edge, we rely fairly upon this insight. Thus we apply the
length-dependent scaling law to the difFuson (cooperon)
mode. This allows us to investigate the disorder efFect
and the Finite-size effect on the enhancement factor N, fI

for phase-conjugated wave generation in terms of the cor-
relation (localization) length.

We start from the microscopic Hamiltonian of Frenkel
excitons with static on-site disorder in Sec. II. The lon-
gitudinal damping of an exciton into the ground state is
included phenomenologically in the form of the Liouville
operator. In Sec. III we formulate a linear optical re-
sponse and nonlinear polarizations for phase-conjugated
wave generation. The dominant contribution for the
third-order susceptibility is examined under nearly res-
onant pumping of excitons in Sec. IV. We perform the
perturbational expansion from the delocalized limit. The
relation between the enhancement factor for the phase
conjugation and the cooperon mode is explicitly shown.

In Sec. V we develop the length-dependent scaling theory
for the enhancement factor of the phase-conjugated wave
generation. The spectral anomaly of this signal around
the exciton mobility edge is demonstrated. Its depen-
dence on the system size and the misalignment is also
examined. In Sec. VI we summarize our results, and dis-
cuss how to observe the localized-delocalized transition in
frequency by observing the phase-conjugated wave gen-
eration as a function of pump frequency or of the mis-
alignment of two pump beams.

II. MICROSCOPIC MODEL

H'(t) = — dr P(r) E (r, t). (2b)

The electronic dipole-moment density operator P(r) is
given by

P(r) = ) p, (S++ S, )6(r —r, ),

with p, the atomic transition dipole moment. The term
T(r, —rz) in the Hamiltonian Hp describes the random
on-site energy 0, for i = j and the dipolar couplings for
i g j. The on-site energies 0, are assumed to obey the
Gaussian probability distribution with the average

(0,), = Ap,

and the variance

(4a)

(0, 0, ) „—(0,) (0, ) = W 6, , (4b)

For convenience, we introduce the ground state lg),
one-exciton eigenstates ln), and two-exciton eigenstates
l(oo')) of Hamiltonian Hp. Because of Pauli's exclu-
sion principle, there are N one-exciton eigenstates and
N(N —1)/2 two-exciton eigenstates. We designate the
eigenenergies of these states as

Hp lg) =0,
Hp la. ) =0 la),

Hp l(~~')) = ~.. 1(~~')).

(»)
(Gb)

(5c)

We start from the microscopic model for Frenkel ex-
citons in ¹oupled two-level atoms (or molecules) with
random on-site energies 0, and dipolar couplings between
them (see also Refs. 8 and 9). The volume of the system
is defined as V = I" (L is a system size in dimension
d). The time evolution of the density matrix g(t) of the
electronic system is determined by the following Liouville
equation (h, = 1 here and hereafter):

—= —i [Hp + H'(t), g] + Z~g,
Qg

(1)

where Ho is the Hamiltonian of the electronic system and
H'(t) is the interaction between the electronic system
and the transverse electric fields K (r, t). In terms of
Pauli spin operators S+ (S, ) creating (annihilating) the
excitation at the site i, the Hamiltonians Hp and H (t)
are expressed by

Hp ——) T(r, —r~) S+S. ,

(~ i)
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(~l&,el~) =——~ o,„
(~l&,olP) =——(~ +~n)a .p,
((«')l~&~lg) =—-~- ~-,&,

((«')I &&~ l~) = -(~- + ~.)u....,

((+~o 1) I &~e 1
(o &2)) =——(V, ; + V...;)g...;,...; .

(6b)
(6c)
(6d)
(6e)

(6f)

It can be easily conBrmed that the relaxation matrix Z~g
introduced above conserves the probability. The solution

g(t) of the Liouville Eq. (1) always satisfies the identity

(ij )

(~„kf) (~„k,)

The Liouville operator Z~g in Eq. (1) describes the re-
laxation processes of excited states into the ground state.
As is shown later, it suffices to consider only matrix el-
ements involving one-exciton eigenstates and the ground
state under resonant pumping of excitons (see also Ref.
8). However, for completeness, we here assume a rather
general form for the Liouville operator Z~g as:

Trg(t) = 1, so that we come across no unphysical di-
vergences in the nonlinear susceptibility arising from the
lack of conservation of probability. In later sections we
assume that the relaxation rates p are independent of
the state, and much smaller than the pure dephasing rate
p' due to impurity, i.e. , p~ = p && p'. It is noted that the
eEect of the pure dephasing processes is taken account of,
not in the relaxation matrix l'.&g, but in the Hamiltonian
Hp. The pure dephasing rate p' is evaluated by the Born
approximation of impurity scattering in Sec. IV. Corre-
sponding to the experimental setting shown in Fig. 1(a),
the external electric Beld inducing the phase-conjugated
signal by a nearly degenerate four-wave mixing is decorn-
posed into the three incident beams,

3

Ex(r t) ) (E eik~ r in'—t + EI e
—ik~ r+iw~t)

l=l

Here (ui, ki) (l = 1, 2, 3) denote the forward (~o, ky)
and backward (ap, kg) pump beams, and the probe beam
(u„,k„). We observe the signal beam phase conjugated
to the incident probe light at (w„k, ) = (2ao —u„, kf +
kb —k„).

III. LINEAR AND NONLINEAR
SUSCEPTIBILITIES

(~„k,)
In this section we brieHy survey how linear and non-

linear optical polarizations and susceptibilities are eval-
uated. Though our interest is focused much upon the
nearly degenerate four-wave mixing under resonant ex-
citon pumping, the results in this section are general.
The electronic polarization of the system is calculated
through the solution g(t) of Eq. (1) as

P( t) = (Trip( ) (t))) (8)

t2 t2

(3)

It is important that we take the ensemble average ()
of the physical quantity over the random conBguration of
on-site energies. We evaluate linear and nonlinear polar-
izations by expanding the density matrix g(t) in H'(t) to
the third-order in a rotating-wave approximation. The
Liouville equation can be formally rewritten as

0—0 = &o 0 + zi (t) g, (9)

where we introduce the Liouville operators 80 and Zi (t)
by

t3

(7)

Zp = —i [Hp, ]+Z~,
l:&(t) = i [H'(t), ] . —

(10a)
(10b)

FIG. 1. (a) The geometry of the nearly degenerate four-
wave mixing. Three incident beams are used: the forward
(backward) pump beams denoted by (ufo, kf(g)) and the
probe beam by (u„,k„). The signal beam phase conjugated to
the probe light is observed at (ur„k, ) = (2cuo —u„, kr + kq-
k„). (b) All the processes contributing to the third-order non-
linear polarization under the rotating-wave approximation in
the double Feynman diagrams. The thick line and the double
line denote the one-exciton and two-exciton states, respec-
tively.

M(t, t') = e~"T exp 2 (t )ch (12)

with Zi(t)—:e ~"Zi(t) e+". At time t —+ —oo, we as-

The formal solution of Eq. (9) is given by

g(t) = M(t, —oo) g( —oo),

where the operator M in the Liouville space is expressed
with the time-ordered exponential as
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sume the electronic system to be at the ground state:
g(—oo) = go = Ig) (gI. The interaction H'(t) is adia-
batically switched on. By expanding the time-ordered
exponential, we obtain the density matrix expanded in a
perturbation series of H'(t),

g(t) = g"'(t) + g'" (t) + g'" (t) + g"'(t) + . . (»)
where

tained under a rotating-wave approximation through Eq.
(14b). It leads to

3
p(1) ( t) ) ) +(1) . E ik, r ice—it +

k, /=1

where y( ) is a linear susceptibility and is given by

g"'(t) = gO,

dt121(tl) gOi

(14a)

(14b)

{Ii - {pip (k*
ll
~) (~

l
{pt)

)x
cu) —A~ + lp~

CX av

(17)

g~')(t) = e~"

(3) (t) Zpt

dt281(tl)21(t2) gO

dt3 ~1(t1)~1 (t2)

XZ1(ts) g().

(14c)

(14d)

Similarly nonlinear polarization can be obtained through
Eqs. (14d) and (15b). Using (~„k,) = (~i —cuppp+wpi, , ki-
k~ + k„), we obtain after a small amount of calculation

3
p(3)( t) ) ) (3) . E Ep @ ik, r iur t+—p

k, L, m, n=1

Linear and nonlinear polarizations (and susceptibilities)
are defined using the density matrices g~ ) (t) and g~3) (t)
as

with

(3) (3) (3) (3) (3) (3)—~1+2+ ~3+4+ ~5 + ~6+7+ ~8 (19)

P"'( t) = T (P( ) "'(t))
(15a)

(15b)

and the second-order nonlinear polarization P~2)(r, t)
vanishes. Linear polarization is straightforwardly ob-

I

The third-order susceptibility y( ) consists of five terms
from eight diagrams depicted in Fig. 1(b): each suff1x of
y( ) denotes the contribution from ith diagram of Fig.
1(b). (See also, e.g. , Ref. 20.) A detailed form of each
term is given as follows:

»s c &k. I ~& &~ I k-& &k I && &/3 I ki&
'+ V - (w, —{i +ip ) (tp( —Ap+ imp) (tp —Ap —imp) )av

(20a)

»s s &k. I ~) &~ I k.) (k I P& &P I ki&
+ V (tp. —{i +ip ) (~„—{i +ip )(~ —Ap —imp))

av

(20b)

1V . p p,p,p, k, o, nkm o.o' o.o' k„kt
X5 V (~, —0 +. i7 ) (~t + wn —0 ~ +ip ~ ) (ut —Ap + imp)

o, ,P, (o o')
(20c)

(3) N2 I s pp&k I ~) &~k. I
(«')) &(«')

I
&k ) &&Iki&

+ V (tp, +{i —{i +ip +{p )(tp~ —{i +ip )( Btpp —imp))o.,P, (o o')
(20d)

I ~) &~k. I
(«')) ((«')

I
&k.& &0 I ki)

X8 U )s + Aa Ao'o' + CQA + tPo'o' Ml + &n, Boo' + f Yo'o' Wl AP + l+P
'7 )

(20e)

Here we use the notation of Ik& = P, (i I
k) S, Ig)

and IPk& = Sp+ Ik) = Pp (i I )9) S+ Ik&. The third-order
optical susceptibility should be proportional to atomic
density N/V for the bulk material. It should be empha-
sized that the expressions obtained above include all the
effects due to disorder and finite sample size. What is dif-
ficult lies in obtaining the eigenstates of the Hamiltonian

I

Ho and making the ensemble average over random impu-
rity configuration. In the following section, we show that
such diKculty will be overcome under resonant pumping
of excitons. We will find the factor N2/V in the expres-
sion of y(3) to be reduced to (N/V) N, tr, where N, tr is the
enhancement factor of the nonlinear optical polarization
that we will define.
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IV. RANDOM AVERAGED PERTURBATION
THEORY

We investigate the disorder effect on linear and nonlin-
ear optical susceptibilities. As stated previously, we ne-
glect the state dependence of the relaxation rate into the
ground state, and set all p 's to a constant p. For sim-
plicity, we assume all the external radiation fields have
the same polarization, and designate the parallel compo-
nent of the atomic transition dipole moment p, as p. We
introduce the retarded and advanced Green functions by

(21)

It is noted that the Green functions Eq. (21) are not c
numbers but operators.

A. Disorder efFect on linear susceptibility

To begin with, we examine the disorder effect on linear
susceptibility y~ &. Linear susceptibility can be expressed
in terms of the Green function as

B. Disorder efFect on phase-conjugated
wave generation

What we are interested in is the third-order nonlin-
ear susceptibility for phase conjugation under resonant
pumping of excitons. The phase-conjugated signal is
observed at (u„k, ) = (2wo —u~, kf + kg —k~), and
this process corresponds to the cases (l, m, n) = (f, p, b)
and (b, p, f) in Eq. (18). The pure dephasing rate p'
given by Eq. (24) is assumed to be much larger than p,
so that we retain the leading terms in the expansion of
Eq. (18) in p/p' ((( 1) under nearly resonant pumping of
excitons. The contribution coming from diagrams (1)—
(4) in Fig. 1(b) becomes larger than that from (5)—(8) by
the order of magnitude p'/p ()) 1). It is because the for-
mer contribution has the factor p in the denominator at
the phase-conjugated wave generation, whereas the latter
does not. (See also Ref. 21.) Thus the dominant contri-
bution to the third-order optical polarization producing
phase-conjugated waves is found as

Thus evaluating linear susceptibility is reduced to that
of the averaged retarded one-particle Green functions
GP (~i), which is defined by

((k I
+ (~) lk&)) = +, (z) ~k. ,k . (23)

(b) GR( )
The self-energy of the exciton Zk' (w) is evaluated in
the Born approximation as in Fig. 2(a). The imaginary
part of the self-energy part Zi, ' (u) will define the pure
dephasing rate p'. Neglecting the real part of Zk' (u),
which is an energy shift, we obtain

(24)

where No is the average state density of the exciton per
unit volume at frequency uo. Thus the averaged retarded
and advanced Green function is expressed by

(c)

I . (Cd —M )

G"(cu„)

X X

G„' (~) = [~ —Ai, + i(p + p')] (25) XX X

The symbol Ak denotes the exciton's dispersion relation
in the system without disorder. Hence linear susceptibil-
ity is evaluated as

(&) p 2

~i —Ak, + i(p' + p)
(26)

We find that the disorder effect on linear susceptibility
merely gives the pure-dephasing rate due to scattering
by impurities, as is expected. Thus no singular behavior
of linear susceptibility is anticipated around the exciton
mobility edge. We will show that disorder in the system
will give quite a different effect on nonlinear susceptibility
describing phase conjugation.

FIG. 2. (a) The self-energy of the averaged one-particle
Green function. The dashed lines denote scattering of the
exciton by the random on-site potential denoted by a cross.
The random average is taken over the impurity position. (b)
The general verte~ part working between the retarded and
the advanced Green functions. The vertex part depends also
on the incident momenta kf, kg, and k„. (c) The lowest-order
vertex part at q = kf +k& 0—the lowest cooperon mode. If
the direction of the advanced Green functions is reversed, the
maximally crossed verte~ part is transformed to the ladder
vertex part. The figure shows that this vertex part is the
bare diffusion propagator with the momentum singularity at

= O.



47 LOCALIZED-DELOCALIZED TRANSITION OF THE EXCITON. . . 12 475

(3) (3) (3)
X —Xl+2 + X3+4 (27)

We will show the dominant contribution to the third-
order susceptibility given by Eq. (27) shows a singular
behavior as a function of the detuning frequency bu:—
m, —w„and the misalignment between the forward and
backward pump beams, q—:kf + kb, when both are
around zero. We introduce the enhancement factor N, g
for the generation of the phase-conjugated wave by

X =Nor
I V . Gk. (~.)Gi, (~&)(sl (N p R

i, V 2ip p (28)

The enhancement factor N, & measures how many atoms
(or molecules) can contribute coherently to the nonlinear
optical polarization. To get the microscopic expression
of the enhancement factor N,s, we rewrite Eqs. (20a)
and (20b) in terms of the retarded and advanced Green
functions introduced in Eq. (21) as follows:

(3) =Xl+2 =
2 4

(&k~lG"(~.)ik~)(k~iG'"(~i) t""(~ )iki)), ,

N2 4

~a+. = "V" ((k.lG"(-.) G'"(-.) Ik.) (k~lG'"(-~) lki) &..
(29a)

(29b)

Making use of the operator identities

~R( )gA( )
G (~2) + (~&)

411 —4)2 + 22+

gR( )ga( )
G (~2) G (~&)

Cd 1 —M2

(30a)

(30b)

~,ir = — 1 —2ip =(6cu)l„+ (f ~ g),

(31)

=( ~
—

i ) = +k, (~.) G'k, (~p) 1(~.—~p) (32)

The vertex part I'(u, —cu„), which is now constructed be-
tween the retarded and the advanced Green functions, de-
pends also on the momenta of the three incident beams:
ky, ki„and kz, as illustrated in Fig. 2(b). Hereafter
we will call the function = the coherent volume function.
The vertex part I'(u, —~„)can be easily evaluated by the
perturbational expansion from the delocalized limit as in
Refs. 5 and 8. The difFusion mode called cooperon [Fig.
2(c); see also Ref. 13] is found to give the leading contri-
butionatq=kf+kb-0, andbcu=u, —~„=0. ' '

The cooperon mode depends only on bw = ~, —cu„and
q= kf+kb like

we can transform the terms Xl+2 and X3+4 into the(3) (3)

summation of the averaged two-body Green functions,
and then decompose them into the form of the vertex
part and the averaged one-body Green functions. As
stated previously, we take only the terms whose behavior
becomes singular in the generation of phase-conjugated
waves at kf + kb —0 and ~, —a„-0 in evaluating the
optical nonlinear susceptibility X( }. Other terms that
will be neglected here give the contribution of the order
((,~h)" N/V to N,g, where (, h = [No(p+ p')] i~" is the
conventional coherent length of the exciton. This contri-
bution is smaller by the order of magnitude p/p' ((( 1)
than that we retain. Consequently we obtain the mi-
croscopic expression of the enhancement factor N, g for
phase-conjugated wave generation as follows:

r~ol(6~;q) = 27'
7rNp Doq2 —i 6w + 2p

'

where Dp = vo2/2dp' is the bare diffusion coefficient and
vo is the group velocity of the exciton. We obtain the
lowest-order expression of the coherent volume function
:-(6w) under nearly resonant exciton pumping as a func-
tion of b~ and q:

:-~pl(6u); q) = — . (34)=2 1

~ No Do q2 + No ( i6~ + 2p)—
The result shows that the coherent volume function for
the completely phase-conjugated signal, i.e., ba = 0 and

q = 0 in Eq. (34), is dominated by 2p and not by p + p'
in the delocalized limit.

V. SCALING DESCRIPTION OF PHASE-
CONJUGATED WAVE GENERATION

A. Coherent volume function and renormalized
coop eron

It is straightforward to evaluate the higher-order con-
tribution for the vertex part I'(w, —u„).is'is' s It should
be noted that the nonlinear cr model describes the physics
of the diffusion mode, so that we calculate the higher cor-
rection corresponding to the one-loop calculation of the
transverse correlation function in the nonlinear o. model.
Here we follow the line of Ref. 13. The renormalized
cooperon channel I', can be evaluated by use of the(1)

following Dyson equation as

I'~ l(6cu;q) = I'~ l(6~; q)
+r~o&(6~; q) 11&'l(6~; q) I &'&(6~; q).

(35)

The equation above can be schematically illustrated as
shown in Fig. 3(a). We take the leading singular term
for q 0 and —ibm + 2p —0. To perform the system-
atic expansion in W/T or (4~2NpDpE" ~) i, we find that
II, } is expressed by the summation of the diagrams as
in the Fig. 3(b). Each contribution can be written down
explicitly as

II(1} ~(1A} + II(1B}+ II(1C} (36)
where
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(37a)

I

11(")(S~;q)= ~ ) r(')(g~;q)
Q

11(")(S~;q)= ~ ) r„")(S~;q)
7l p

R R A) .G&+zGc}—k G&
)

2

) ~R gA ~A (37c)

The straightforward evaluation of the integrals leads
to

II(') (b~; q) =,4 Dpq ) I'„(b'(u; Q).I4 (38)

1 d"Q
vrNp qual,

DpQ~ —ibsen+ 2p (2vr)"
(40)

The correction 6 is found to be logarithmic in the two-
dimensional bulk system as

1
ln

47t.2Np Dp

27'
—ab(u + 2p

(41)

This kind of logarithmic correction in the two-
dimensional bulk system is characteristic in the local-
ization theory.

Thus the renormalized cooperon mode I', (6'w; q) is ex-(1)

pressed by
I 27'

I (')(s~;q) = (39)
sr Np Dp (1 —E) q2 —i bur + 2p

'

B. Scaling form of the coherent volume function

N 1

V d BlnL~
1

NpDI. (q2 + L, 2) + L~"

(42)

(43)

If the disorder in the system increases, the localization
transition is caused by the interacting diffusion modes
in the three-dimensional system. By use of the scaling
theory of the localization, we will examine the behavior
of the enhancement factor N, g around the exciton mo-
bility edge. The noticeable structure of the renormalized
cooperon mode in Eq. (39) is that all the effect of disorder
is incorporated only through the renormalized difFusion
coefficient Dp(1 —4). According to the insight from the
nonlinear o. model treatment, this nature is based upon
the nonvanishing of the average density of states at the
mobility edge. As the average state density of the
exciton is not expected to vanish at the exciton mobil-
ity edge, we take full advantage of this feature as well as
the scaling theory of the localization in order to evaluate
the disorder effect on N,g. When the inelastic-scattering
length L~ = [Np( —iw, +un„+2p)j ~" is introduced, the
enhancement factor N, g and the coherent volume func-
tion =L, are given by

p(1)
C

rr(" =
C

p(0)

X X.

X

p(0)
C

rr"
c

(A}

p(1)
C

Here we omit the numerical factor 2/~ as we are dis-
cussing only the order of magnitude. In Eq. (43) we care-
fully replaced q by q + L 2, because all the momenta
are discretized and cut off by the order of 1/L in the sam-
ple with finite volume V = L". The renormalized diffu-
sion coefIicient Dl. also depends upon L, q, and L~, as
will be discussed in the following. The length-dependent
scaling theory allows us to estimate the renormalized
diffusion coefIicient in terms of the dimensionless conduc-
tance gl. = L" NpDL, . The dimensionless conductance
g& is determined by the following relation in the weakly
localized regime,

X

jc X

FIG. 3. Construction of the next higher order of the
cooperon mode. (a) The Dyson equation is schematically il-
lustrated, corresponding to Eq. (35). (b) Diagrammatic rep-
resentation of II, = II, + II, + II, ~ given by Eqs.
(36)—(38). The summation of series of diagrams (A), (B),
and (C) is written, respectively, by II( ), II( ), and II(

d lngL, 1
L =&(gl-) =(d —2) ——+ "

dL gl

On the right-hand side, we made use of the result ob-
tained by the expansion in e = d —2. Thus we obtain

NpDr, = gl. (L') "=g* I(L') + (() "], (45)

on the delocalized side of the exciton mobility edge,
where g' is given by 1/(d —2). The correlation (lo-
calization) length ( diverges at the mobility edge like
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The critical exponent v is between 0.73
(by e expansion with the Borel-Pade analysiszs) and

1.5 (by numerical analysis ). The length L'
min[I, q, I ~] is the efFective linear size of the system
that NoDL is scaled up to. In the following, we shall con-
sider only the three-dimensional case where the localized-
delocalized transition is believed to occur. As a result,
we obtain the expression for =L on the delocalized side
of the transition as

1 3,)+()I (q +L )+L,
(46)

We discuss all the e8'ect due to disorder, misalignment,
and finiteness of the sample, based upon Eq. (46). In the
large volume limit, the behavior of N, g for the phase-
conjugated signal obtained from Eq. (46) is identical to
that obtained in Ref. 8.

C. Sample size dependence

We investigate the sample size dependence of the co-
herent volume function "L in the case q = kf + kg = 0
both on the sides of the exciton mobility edge. First we
examine the behavior of:-I. on the delocalized side. As
is easily confirmed from Eq. (46), the coherent volume
function "L is proportional to L in small linear size.
The larger the linear size becomes, the more deviated
the coherent volume function from the cubic power law
and at last it is saturated to the constant value I3, as
shown in Fig. 4. This crossover occurs at L L~ and the
behavior in the intermediate (mesoscopic) region is also
highly dependent on the size of the correlation length (,
as the solid lines in Fig. 4 show.

We now go on to the behavior on the localized side of
the transition. When the localization length ( is larger
than the efFective linear size L' = min[L, q 1, L~] we can-
not distinguish between the localized state and the de-
localized state, so we expect that the behavior on the
localized side is similar to that on the delocalized side.

D. Spectral anomaly and momentum dependence
around the exciton mobility edge

Next we illustrate the expected behavior of N, g in
the unit of N/V as a function of ( 1 and q in Fig. 5.
Since the correlation (localization) length ( is propor-
tional to ~cu

—u'~, Fig. 5(a) shows the anomalous u
dependence of the enhancement factor N, g around the
exciton mobility edge u* with the fixed misalignment q.
3ust near the transition point, the singularity is cut ofF

2L' q=0
(a)

Localize

10/L 5IL SyL,

5/L„

L,

10/L

Localized ' Delocalized

2 L„'-

O

E
Q (3

Delocalized

Local

However, when the localization length is smaller than
I' = min[L, q, L~], the difference between the local-
ized and delocalized sides emerges. We can estimate =I,
on the localized side by following the scaling law away
from the initial point near the fixed point up to a length
scale L = (.zs As a result, we expect that the coherent
volume function "L on the localization sides is propor-
tional to L in the small volume limit and saturated to
(, not to L~, as Fig. 4 shows.

(I] L

6

$3

O
V

0

alized

( = 10.0 L„
(= L„
( = 0.1L„

FIG. 4. The behavior of the coherent volume function =g
as a function of the sample size L at q = kf +kb. In the small
volume limit, :-I. is proportional to L (the dashed line) both
in the delocalized side (the solid line) and the localized side
(the dotted-dashed line) of the exciton mobility edge. The
value of:-r. is saturated to L~ on the delocalized side, or to (
on the localized side. Approaching the exciton mobility edge
from the delocalized side, =I. increases as L in the mesoscopic
region but always saturated to L~ in the large volume limit
both on the localized and delocalized sides.

FIG. 5. The schematic behavior of the enhancement fac-
tor N,z generating the phase-conjugated wave in the unit of
N/V as a function of the inverse of the correlation (localiza-
tion) length ( ' oc ~w

—ur'~" or as a function of the misalign-
ment of forward and backward pump beams q = kf + kg
for a large sample size L )) q, L~ (a) N, g as a func-.
tion of ( for a large q and a small q. Since ( is given
by E~(ur —sr*)/u*~, this figure corresponds to the spectrum
anomaly around the mobility edge u . On the localized side,
N, s decreases by N, g (,whereas N, s does by N, z (/q
on the delocalized side, when the pumping frequency is far
away from u'. (b) The behavior of N, g as a function of q
for a large sample. Near the exciton mobility edge (the solid
line), the delocalized and the localized states cannot be distin-
guished. Away from the exciton mobility edge, the discrimi-
nation emerges between the delocalized side (the dashed line)
and the localized side (the dotted-dashed line) for q & L~
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by 2Ls both on the sides. Away from the transition
point, N, g decreases as ( oc ~w

—~*~ on the localized
side and as (/q oc ~a —w'~ on the delocalized side,
which makes the spectrum nonsymmetric on the tails.
As shown by Fig. 5(a), it should be noted that when the
misalignment q approaches zero, the region where N, g
is dominated by the length scale L& is much larger on
the delocalized side. The background intensity comes
from the terms neglected in our treatment. The relative
value of the peak to the background is of the order of
(L&/(«i, )s p'/p (» 1) at the mobility edge.

In Fig. 5(b) the enhancement factor N, p is drawn as a
function of the misalignment q. In the region so close
to the exciton mobility edge that the correlation (lo-
calization) length ( becomes larger than the character-
istic wavelength q and the inelastic-scattering length
L~, the localized and delocalized states cannot be distin-
guished as shown by the solid line in Fig. 5(b). Away
from the exciton mobility edge, where ( q, the dif-
ference in the q dependence of the enhancement factor
N ff on the delocalized side (the dash line) and on the
localized side (the dotted dash line) will emerge, as is
shown in Fig. 5(b).

VI. CONCLUSIONS

To summarize, we have constructed the scale de-
scription of the phase-conjugated wave generation un-
der nearly resonant pumping of the Prenkel excitons in
a disordered system and found the enhancement factor
N, p for a phase-conjugated wave on both sides of the
exciton mobility edge. In a small volume region, our the-
ory reproduces the result of the confinement eKect. For
the larger volume crystal, the qualitative difference be-
tween the delocalized state and the localized state has
been manifested. The expected singular behavior of the
spectrum around the exciton mobility edge has also been
demonstrated as a function of the pumping frequency
and the misalignment of the two pump beams. We pro-
pose two kinds of experiments to observe the singular
behavior of y~ ~ near the exciton mobility edge a*. We
confine ourselves to the case of degenerate four-wave mix-
ing in a large crystal, i.e. , wo equals w„ in the system
with L && L~, q . First, when we have the finite
misalignment q = kf + kg fixed, the singular behav-
ior of the generation of the phase-conjugated wavelike
N, ff = (N/V)(q oc ~cu —~'~ can be observed as
a function of the pump frequency wo on the delocal-
ized side for ( & Lsq~ (( q i. When the pump fre-
quency wo is detuned from the exciton mobility edge w*

on the localized side, the signal will decay more rapidly
as N, fr = (N/V)( oc ~w —w*~ . This dependence of
the signal on the pump frequency is saturated in so close
a pumping region as ( & L~~q~ on the delocalized side,
or as ( & L~ on the localized side. This crossover will
be able to determine the absolute value of the correlation
and localization length ( = (o~(u —co*)/~*~ . Second,
when the detuning ~w —w'j is fixed on the delocalized
or localized sides, the correlation or localization length (
will be determined by changing the misalignment q. In
pumping localized excitons, the enhancement factor N, g
is saturated to the value (N/V)( oc ~u —a*~ for the
smaller misalignment q & (, whereas it decreases as
q

s for the larger misalignment q & ( i & L . By ob-
serving this crossover, we will be able to determine the
localization length ( as a function of w. On the other
hand, when the misalignment q decreases on the delo-
calized side, the enhancement factor N, g for the phase-
conjugated signal increases as q for q » ( » L~
or as q for ( » q & ((/Ls) ~ and is saturated to
the value N, g = (N/V)Ls for the smaller misalignment

q + ((/L~) ~ . The crossover at q ((/Ls)i~2 depends
on the detuning ~cu

—cu'~. Hence we expect the singular
enhancement of the third-order optical processes, i.e. , the
generation of the phase-conjugated wave near the exciton
mobility edge. In the reverse way of thinking, we will
be able to study the localized-delocalized transition of
an exciton by observing the singular spectrum of phase-
conjugated wave generation as a function of pump and
probe frequency around the exciton mobility edge w* and
the misalignment of the forward and backward beams.

Note added in proof The effect. ive linear size that ap-
peared in Eq. (46) is actually min[L, Lz, q i], where Iz is
defined by gD/( i%1 + 2p—) with the renormalized dif-
fusion coefficient D. Around the mobility edge, L& is
given by (g*) ~"L~, so we used L~ instead of L~. It is
also noted that L~ is equal to (g*) ~ L~gL~/( in the
delocalized limit.
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