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Extended Hubbard model: A cluster effective-medium approach
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We present a cluster effective-medium approach to the extended Hubbard model, for the zero-
temperature, half-filled-band paramagnetic phase. We recover the known limits and comment on the
broadening corrections to the model, and find a first-order metal-insulator transition, resulting from both
the cluster nature of the method and the correlated hopping term.

I. INTRODUCTION

The recent discovery of high-temperature superconduc-
tors' has, among other things, revived the interest in the
Hubbard model and the related Mott transition, '" a
metal-insulator transition driven by electronic correla-
tions. Such correlations are believed to be relevant to the
onset of superconductivity in the high-temperature super-
conductors. ' '

The standard model for correlated fermions exhibiting
a metal-insulator transition was introduced by Hubbard,
by means of a decoupling process of the Green's-
functions hierarchy. Since Hubbard's papers, many tech-
niques and approaches have been used to treat the Hub-
bard model and the metal-insulator transition; namely,
variational, functional integral, Schwinger formalism, '

diagrammatic, " renormalization group, ' Monte Carlo, '

alloy-analogy or coherent potential approximation
(CPA), ' cluster, ' ' generalized CPA, ' and perturba-
tion methods. ' Nevertheless, in spite of the vast amount
of theoretical work cited above, the physical picture
remains far from clear, due to the diverse, sometimes
convicting theoretical predictions, depending on the
model and/or method used. In particular we mention
non-Fermi-liquid behavior and the order (first- or
second-order type) of the metal-insulator transition (for a
review see Refs. 19 and 20).

In this paper we lay down the groundwork for a cluster
efFective-medium approach [a cluster CPA (Ref. 21)] to
the extended Hubbard model for a single-band, nearest-
neighboring (NN) tight-binding case, bringing into play
the intersite (both diagonal and off-diagonal) Coulomb in-
teraction terms. Our cluster CPA is indeed a cluster gen-
eralization of the alloy-analogy method, has the re-
quired analytic behavior, ' and reproduces the known
results, namely, the band Hartree-Fock limit, the atomic
limit, various diverse Hubbard's solutions, and probes
inconsistencies in some of Hubbard's solutions. Fur-
thermore, we probe the consequences of performing
quenched averages, an alloy-analogy feature, known to
introduce uncontrolled approximations.

We consider the zero-temperature, half-filled-band
paramagnetic phase, and find a first-order metal-insulator
transition, supporting Mott s conjecture. This transition
arises in our model as a consequence of both the cluster

nature of our cluster CPA and the inclusion of the corre-
lated hopping Coulomb term.

II. EFFECTIVE-MEDIUM MODEL

We write the extended Hubbard model Hamiltonian '
H =H~+HD

with

U VHs=g n; Eo+ n; + —nj—

HD =pc; c [t E(n; +n, —)],
where the c's are the usual electronic destruction opera-
tors at site i (and NN j) with spin cr; n; the number
operator; co the site energy; U the intrasite and V the in-
tersite (NN) Coulomb repulsion term, respectively; t the
NN hopping integral; and K the off-diagonal Coulomb
term. Notice, we have incorporated the parallel spin con-
tribution of V via a Hartree-Fock scheme to the site ener-
gy term, so (1) becomes amenable to an alloy-analogy ap-
proach. ' If z denotes the number of NN, the half-
bandwidth is B =zt, and with 8 as our energy unit, we
define the following dimensionless parameters:

u = U/2B, U =zV/2B,

A =zK /8, b = 1 —A' .
The standard Hubbard model corresponds to the particu-
lar case U =%=0; define the diagonal extended Hubbard
model as the case %=0 and the full extended Hubbard
model with all three u, u, %' finite. We write now the re-
lated Hamiltonian H (of an electron gas with spin tr in a
field of —o electrons),

where the summation is over sites (and NN sites) only,
and with

W; =ED+ n, +2ugn,2Q

z

WJ. =1—A(n; +n )
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the on-site and N¹ite —o. electron fields, respectively.
As in the alloy-analogy method, now generalized to a

dimer, ' we replace H by an effective H' where the on
(NN) -site fields are replaced by self-energy functions
Xd]„](co). For the noninteracting case (u =u =%'=0) ei-
ther Hamiltonian (1) or (2) reduces to a tight-binding
Hamiltonian with on (NN) -site retarded Green's func-
tions Gd]„](co,EO, B), where the G's have explicit expres-
sions according to the model used for the density of states
(DOS). Now for the effective Hamiltonian the on (NN)
-site Green's functions are Gd]„](co,Xd, X„). For the
paramagnetic phase we do not need a spin index for the
6's and the X's, and restrict hereafer our computation to
Hubbard's DOS.

Now we define for the dimer both the Green's function
and self-energy, both 2 X 2 matrices:

6 =Gd+o. 6„,
X=Xd+o X, ,

with o. the x Pauli matrix. The —o. spin electron fields
for the dimer (embedded in a virtual-crystal approxima-
tion environment ' ) are given by the matrix W, with
elements

W» ED=+2(un, +vn2),

W22 = Eo+ 2( un 2 + Un, ),
W]2 = W2] = 1 —~(n ] + n2 ) .

There are four static configurations, with n, 2=0 or 1,
and the cluster CPA condition ' requires

G(co, X)= (( [G '(co, X)+X—W(n „n2)] ')), (3)

where (( )) denotes configurational average.
From (3) we obtain the self-consistent equations for the

self-energies Xd „(co),and (1) can be approximated as

H =H'~+H'~ —E,c

where E, (a number) accounts for the potential energy
being counted twice in this procedure. Notice that
within the virtual-crystal approximation [i.e., inserting in
(4) for the effective Hamiltonians expression (2), but with
the W's replaced by their configurational average], we re-
cover the Hartree-Fock approximation for (1), and that
the self-energy function is both energy and momentum
dependent, i.e., nonlocal, ' ' given by

cr(co) =Xd +5(co)cr„,

Q (co) =G '(co)+cr(co) .

Furthermore, for any matrix of the type

Jr=Md +M„cr„(Md „scalars),

such as G (co), X(co), Q (co), and cr(co), we define the relat-
ed scalar functions

M+ =Md+M„,

and the compact parameters

m~ =u +V+A,
mo=u —

U .

From Eq. (3) we obtain the self-consistent equations
satisfied by the self-energies

mo[Q+ —m+ ]+m+ [Qo —mo]
+ 2 2 2 2

Q+ [Q+ —m+1+Q+[Qo —mo]

where the co dependence of the Q*s is implicit.

III. METAL-INSULATOR TRANSITIONS

Let us begin by writing down in a compact fashion the
solutions Hubbard found to his model, namely, the
HCPA solution (Hubbard's self-consistent solution incor-
porating scattering corrections to the Hubbard-I solu-
tion) and the HIII solution (Hubbard III solution, self-
consistent solution incorporating both scattering and res-
onance broadening corrections). For that purpose we
define

Go(co):Gd(co Xd(co) b )

the Green's function at zero band enhancement.
Using the convention X=O for HCPA's and X=1 for

HIII's, Hubbard's solutions read

Xd(co) =u [Go '(co)+Xd(co) —
—,]AGO(co)]

5(co) =0 .

We solve (7) using Hubbard's DOS and find at EF, with

p =X„(0)/Xd (0),
'2

1
&

u uc

X(k, co) =X„(co)+[X„(co)—1]Ek

with ck the dispersion relation for the noninteracting sys-
tem (centered at zero). For the half-filled-band case the
solution of (3) has a symmetry best exhibited by taking
co= —u —U. Incidentally, this energy shift is equivalent
to defining the Fermi level cF=O and to setting the
Hartree-Fock solution of (4) to the null solution
X~(co)=5(co)=0 where 5(co)=X„(co)—b is the band
enhancement factor.

Let us define the following auxiliary matrices:

and with u, = —,
' (&3/2) for the HCPA (HIII) solution.

The static configurational average in (3) regards the
—o spin electrons as having infinite lifetime, at any given
dimer configuration with dimer energy W(n], n2). The
configurational average is a discrete sum, or an integral
containing 5 functions. In order to restore some dynam-
ics (in a semiphenomenological fashion) we broaden the 5
functions by replacing them by the distribution

r

I /b, for —b, /2 ~ co ~ b, /2
0 otherwise .

E
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Solving for the CPA case, at e~ and near the limit /=0
we find the same expression as in Eq. (8) but with
u, =4(1—b, ). The zero broadening case b, =0 repro-
duces the HCPA solution and the finite broadening
6=2/3 reproduces the HIII solution, at least near the
limit /=0; thus HIII may be regarded as a (non-self-
consistent) device to restore some dynamics to the CPA.

Referring back to Eq. (3), in the band limit (B = ~ or
u = U =%=0), we obtain X(co)=5(co)=0, the same limit
as obtained in the HCPA and HIII, namely the Hartree-
Fock solution. The cluster CPA solution for the Hub-
bard model from (3) can be cast as

X„=(u —5 )(Gd '+X~+ —,'5X„G„)

4g3(g2(g 2)2 g2g2 )
—1

(9)

For the limit of small bandwidth, near the atomic limit
we expand the Green's functions in (9) and obtain the
consistent result:

5(co) =X„(co)=8
with

For the standard Hubbard model it is found that the
metal-insulator transition is a second-order transition,
and near the transition nF =1m'. This behavior is con-

X„(+~)=1 X„(co)(X„(0)=—', ,

or equivalently

0 (5(co)( —,',
i.e., in the atomic limit the band enhancement 5(co) van-
ishes. Thus, at both the atomic and band limit, for the
Hubbard model our cluster CPA solution retrieves the
HCPA solution. For 8 small but not zero, we expand (9)
to first order in 5(co), and obtain for Xd, an identical
equation as in (7), except A, is replaced by 5(co).

Thus, HCPA underestimates band enhancements
effects (but consistent within the CPA) and HIII overesti-
mates band enhancements effects [by fixing 5(co)=1, a
nonconsistent approximation in both CPA and cluster
CPA schemes], introducing the HIII lack of consistency
discussed in Ref. 24. We expand (7) for small P, as
defined right above Eq. (8) and obtain X„(0)=4/3, and
an expression for P similar to (8), but with a prefactor of
2.824 instead of 4 and with u, =0.577. If we were to
mimic the cluster CPA with a CPA plus broadening as
discussed above, we must assign to it a broadening factor
6=0.25. We are tempted then to state, in light of the
previous discussion, that as far as the values of u, and 6
are concerned, HCPA (HIII) underestimates (overesti-
mates) them, and cluster CPA's yield intermediate values,
as shown in Table I.

Now the Hubbard model exhibits a metal-insulator
transition of the band crossing type, an insulating phase
materializes when a gap is open in the DOS at the Fermi
level, thus the order parameter is the carrier density per
site at cz and given by

nF= ——ImGd(O, Xd(0), X„(0)) .1

TABLE I. Solutions for the standard Hubbard model.

HCPA
Cluster CPA
HIII

uc

0.500
0.577
0.866

0.000
0.250
0.666

trary to Fermi liquid behavior, since the quasiparticle
lifetime r&i, ———Img is finite at eF and indeed zero at
the transition (in the metallic side, i.e., nF nonzero). A
first-order metal-insulator transition is predicted, follow-
ing Mott's conjecture, with 7 gp

For the diagonal extended Hubbard model our cluster
CPA yields, from (3), X„(0)=4/3, and for small P,

2 (u —v ) 1
p2

u +U
(10)

2.0

l.O

l .0 2.0

V2

FIG. 1. Phase diagram (u-U space) for the diagonal extended
Hubbard model. Two insulating phases (one a Mott- and the
other a Peierls-type insulator) at the corners, and a metallic
phase of the Hubbard type (see text).

thus the Hubbard model in all the schemes (HCPA, HIII,
and cluster CPA) and the diagonal extended Hubbard
model in the cluster CPA, have the same type (apart from
normalization factors) of metal-insulator transition dis-
cussed above (hereafter of the Hubbard type). Equations
(8) and (10) are of the type P =p —pc, with p the transi-
tion driving parameter, a function of u and U. Then we
have P and an absolute value less than unity in the insu-
lating phase (p &pc) and P pure imaginary in the metal-
lic phase (p (pc). In contrast, the behavior of a Fermi
liquid, undergoing a Mott-type metal-insulator transition
(hereafter of the Mott type), behaves as the Hubbard type
in the insulating phase, but in the metallic phase P is real,
with an absolute value greater than unity.

In Fig. 1, we present a phase diagram (in u -u space) for
the diagonal extended Hubbard model, generalizing
Sari's result to the finite bandwidth case. The label
Mott (Peierls) means the system is unstable to spin-
(charge-) density waves, and the metallic phase is labeled
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P. l 0

flF Q Q5

O. I 0.2 0.3 0.4 0.5 0.6
K

FIG. 4. The carrier density per site n(c.F) discontinuity at
the metal-insulator interphase, plotted vs A and with X=V/u
(see Fig. 3 and text).

(RDC) crM —o H is reduced except at the transition point,
where the RDC remains infinite. As for the C curve,
which represents a first-order transition, as does M, the
RDC o.~ —o-c, although not infinite, is nonzero, a mani-
festation, we believe, of the approximation of dynamical
averages by static (quenched) averages in the cluster CPA
approach (a noncontrolled improvement over the CPA).
A semiphenomenological restoration of the dynamics lost
in the alloy-analogy procedure will reduce the RDC, may
not change the character of the transition, but may also
introduce some nonconsistent features, as discussed ear-
lier for the HIII solution.

IV. CONCLUDING REMARKS

To conclude, let us summarize the present work. We
developed a cluster CPA approach to the extended Hub-

FIG. 5. The hyperbolic tangent of the dc conductivity
tanh(o. ) at zero temperature for the paramagnetic phase of the
half-filled-band case. Mott's conjecture (M), the cluster CPA
schematic result for the full extended Hubbard model (C); and
the cluster CPA results for both diagonal extended and stan-
dard Hubbard models (H). The latter is a second-order metal-
insulator transition, and the former two, first-order metal-
insulator transitions (see text).

bard model, for the zero-temperature, half-filled-band
paramagnetic phase, and found the following.

(i) Our cluster CPA is a self-consistent, analytic,
straightforward method. We believe this method to yield
a more controllable and systematic improvement of the
single-site CPA, by allowing a dimer to be embedded in
an effective medium, thus the NN Coulomb terms are
treated in the same manner as the intrasite Coulomb
term.

(ii) Configurational averages (in a virtual-crystal envi-
ronment) remain quenched averages, but with the
configuration space augmented twofold; noncontrolled
approximations features such as the RDC issue, dis-
cussed at the end of the preceding section, persist, '

however, in a drastically reduced fashion, when com-
pared for instance to the HCPA and HIII solutions, the
RDC reduction being more substantial when we solve for
the full extended Hubbard model.

(iii) It renormalizes the bandwidth and yields a nonlo-
cal self-energy function X(k, co), in contrast with the
HCPA and HIII [band invariant, local X(co)]. We notice
also that this local feature persists in generalized CPA's
such as in Ref. 17, where the virtual-crystal environment
is improved, yielding a first-order transition for the stan-
dard Hubbard model. We believe this to indicate that
such an improvement procedure includes, somehow,
correlated hopping effects.

(iv) Band renormalization effects vanish at the atomic
and the band limit, thus recovering the HCPA and HIII
results in those limits, and the Hartree-Fock results when
applicable.

(v) Via our simple dynamics restoration procedure, we
are able to compare some existing results, and display the
limitations of the alloy-analogy method.

(vi) For the diagonal extended Hubbard model we
found the spin-charge phase diagram, for finite band-
width.

(vii) We found a first-order metal-insulator transition
for the full extended Hubbard model, confirming previ-
ous preliminary calculations, ' Mott's conjecture, and
abundant experimental data, when the driving mecha-
nism is electronic correlations. The metal-insulator
transition is first order, on account of the nonlocal
X(k, co) (a cluster effect) and the nonvanishing correlated
hopping term %', which incidentally is the only term to
break the particle-hole symmetry for the half-filled-band
case; otherwise, it is a second-order transition.

(viii) As a subsidiary result, we can map our results to a
50% simple binary alloy model. For a bipartite lattice, in
a configuration of the type (aP), the latter means that
any given site may be occupied by species o., with all
NN's occupied by species P. Assume all configurations
with equal probability and allow the species index to be
either of the 3 or B type. We characterize the alloy
model via a single-band tight-binding Hamiltonian; there-
fore, the relevant material parameters are the site energy
E(a,P) and the NN hopping integral t (a,P). Then
our results for the extended Hubbard model can be
mapped to such an alloy model. The correspondence is
achieved by setting e( AB) s( A A ) =E(BA ) ——s( AB)
=v, e(BB)—E(AA)=u, t(AB)=t(BA), and t(AA)



12 450 R. E. LAGOS, G. A. LARA, AND G. G. CABRERA 47

—t(AB)=t(AB) —t(BB)=A'. Furthermore, by map-
ping our results to this alloy model, we conclude that a
transition from a single to a split band regime occurs as
the parameters are varied, the transition occurring either
in a continuous (A'=0) or discontinuous (nonvanishing
K) fashion.

We are extending the present work to probe the gap
dependence on the Coulomb parameters. We consider
finite temperature, band fillings other than half, and the
cases of spin and charge ordered phases. Finally, the
method presented here will be applied to Peierls-Hubbard
and intermediate valence systems.
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