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Effects of interchain interactions on the electronic structure of heavily doped trans-polyacetylene
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The effects of interchain interactions on the geometrical and electronic structure of heavily doped
trans-polyacetylene are studied in detail. The interchain interactions include electron hopping,
electron-electron repulsion, and the potential due to counterions associated with neighboring chains.
The optimized geometry corresponds to that of a soliton lattice for dopant concentration up to 12.5%,
which is the highest concentration included in this study. The interchain interactions reduce the energy
gap around the Fermi energy considerably. A sharp transition into a metallic state is observed at dopant
concentrations around 9%%uo. The metallic state is understood from the fact that the optimized dimeriza-
tion amplitude is small in the case of a strongly interacting soliton lattice. In this situation, the Peier1s

gap is of the same magnitude as the broadening of the energy bands due to interchain interactions. The
effects of disorder on the electronic structure are also discussed. Three-dimensional delocalization of the
electronic states is observed for realistic values of the interchain-hopping strength.

I. INTRODUCTION

The quasi-one-dimensional nature of conjugated poly-
mers gives rise to many of the fundamental properties of
these materials. A general feature of one-dimensional
systems is the strong coupling between the electronic sys-
tem and the lattice (the phonons). This coupling is clear-
ly manifested in the case of trans polyacety-lene [trans
(CH)„j where the Peierls effect creates a gap around the
Fermi energy and a corresponding dimerization of the
lattice. The strong electron-phonon coupling also effects
the fundamental excitation properties of conjugated poly-
mers, which include the formation of localized quasipar-
ticles such as solitons, polarons, and bipolarons.

It is well known that doping of ~-conjugated polymers
results in a highly conducting state of the polymer. How-
ever, the quasi-one-dimensional character of the poly-
mers causes the effects of the doping to differ consider-
ably from those observed in conventional three-
dimensional inorganic semiconductors. The strong
electron-phonon coupling leads to the formation of soli-
tons or bipolarons upon charge transfer from the dopant
species to the polymer. '

In addition to the strong intrachain interactions, there
are also interactions between the polymer chains. These
interactions, however weak at each individual carbon
site, add up along the chains and give rise to a specific in-
terchain ordering of the bond-length alternation pattern
along the chains. The interchain interactions are also
important since they allow for charge transport between
the chains, an effect which is of fundamental importance
for the macroscopic conductivity present in doped conju-
gated polymers. Since very high conductivities can be
obtained in doped trans-(CH), ' it is clear that the in-
terchain interactions cannot be small.

The interchain interactions also affect the static elec-
tronic properties of polymeric materials. As discussed
above, strictly one-dimensional solids always exhibit a
finite gap around the Fermi energy and are therefore

nonmetallic. A number of experimental data exist, how-
ever, which show that heavily doped conjugated poly-
mers indeed have metallic properties. The transition into
a metallic state for doped trans-(CH), is observed as a
sharp increase in the Pauli susceptibility at a critical
dopant concentration around y =0.06. ' Measurements
of the optical conductivity of heavily doped trans-(CH)
show electronic transitions in the infrared region of the
spectrum which are typical for a metal. The importance
of the interchain interactions as concerns the metallic
properties of the doped polymers are clearly manifested
in results on doped polymers in solution for which no me-
tallic properties are observed even at very high dopant
concentrations.

The effects of interchain interactions on doping-
induced defects such as solitons, polarons, and bipolarons
have recently attracted some interest. Vogel and Camp-
bell' have argued that these type of interactions can lead
to a destabilization of the polaron in favor of ridged band
states. This effect has also been discussed by Baeriswyl
and Maki. " Wolf and Fesser' have treated the effects of
disorder in the interchain hopping. Their studies show a
decreasing dimerization and a corresponding enhance-
ment of the density of states in the gap as a function of
increasing disorder in the interchain coupling. The effect
of interchain interactions on the metallic properties of
doped trans-(CH) was studied by Stafstrom' in a
simplified version of the model presented here. These
studies pointed out the importance of performing
geometry optimization in order to take full account of the
interchain interactions. Mizes and Conwell' have stud-
ied the effects of interchain coupling on the electronic
structure of alkali-doped trans-(CH) . They conclude
that interchain interactions alone are not the mechanism
for the transition into a metallic state. The results
presented in this paper do not support these results.
Here, we have extended the investigation of the factors
that are important for the transition into a low-band-gap
system. Special emphasis is put on the role played by the
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counterions as concerns the interchain interactions. It
has been shown by Cohen and Glick' that intercalated
charged species enhance the interchain hopping. This
leads to an increase in the interchain interactions with in-
creasing dopant concentration, a phenomenon which
agrees with the observed increase in the macroscopic con-
ductivity over the full regime of dopant concentra-
tions. '

In this paper we use a Pariser-Parr-Pople-type of Ham-
iltonian to calculate the electronic structure of heavily
doped trans (CH)-. The calculations that are performed
at different dopant concentrations on systems of interact-
ing chains include full geometry optimizations of the
bond-length dimerization of the polymers. The Hamil-
tonian used in the calculations and the geometry optimi-
zation procedure are described in Sec. II. Section III
contains the results, which are pr esented as follows:
III A and III B deal with the lattice configuration and the
energy gap of perfectly ordered systems, respectively.
The effects of disorder are discussed briefly in III C and
III D, finally, contains a discussion about interchain delo-
calization. A summary of the results is given in Sec. IV.

II. METHODOI. OGY

The Hamiltonian considered for the studies of interact-
ing trans (CH) cha-ins is expressed in terms of a summa-
tion of Hamiltonians associated with a single chain H' '

over the number of chains contained in the system.

In this case we consider sodium-doped trans-(CH)„. The
crystal structure for this compound at the dopant con-
centration where the system becomes metallic is depicted
in Fig. 1.'" As a model system to this polymer crystal,
we consider the interaction between the three chains sur-
rounding a single column of sodium dopants. This ap-
proximation is based on the observation that interactions
between such clusters of polymer chains are rather
weak. ' The sum of Eq. (1) thus contains three terms,
H"', H' ', and H' ', one for each chain in the system.
Each of these Hamiltonians contains the following terms:

.'C

HSsH g ( to +vj, ', '+1)(cj, +1 cj, +cj, c&, +1 )

K+
2 X vj, ii+,1 (3)

where v;;+1 describes the deviation from uniform bond
lengths between sites i and i+1 of chain j, a is the
electron-phonon coupling constant (a=4. 1 eV/A), to is
the hopping between neighboring carbon sites in the case
of uniform bond lengths (to=2. 5 eV), and K is the
effective spring constant which depends on the strength
of the o bond in the classical approximation (K =21.0
eV/A ).

Hc describes the interaction between the ~ electrons
and the dopant ions. This term includes the effect from
all dopants in the channel, i.e., also those associated with
the two other chains in the three chain system (see Fig.
1).

HP = y V™c,', .c, , . (4)

V,
" ~ is the electrostatic potential at site i due to all

dopant ions in the system. An exponentially screened
version of the Coulomb expression is used to represent
this potential:

y'imp — 2 g
1 —g, , [1—exp( yr;; )]-

[re +d2]'zz

The exponential screening in Eq. (4) is controlled by the
two parameters y and g;; . It has been shown that the

dopant-ion potential, within the first few bond lengths

away from the dopant ion, shows a typical 1/r depen-

dence, whereas for larger separations, the potential be-

comes exponentially screened. ' This situation has been
simulated by introducing the factor g, ; which is defined

as g;; =min(~ i i„~ /4, 1—), where i„ is the site opposite to

a dopant ion. For separation larger than three bonds, the
exponential screening is fully developed, whereas the sites
opposite to the counterion experiences a pure 1/r poten-
tial. The value of y(0. 372 A) is chosen in such a way
that the potential produced by Eq. (4) is fitted to that cal-
culated by Conwell, Mizes, and Jeyadev. '

H„,1
in Eq. (2) expresses the electron-electron interac-

tion

H'J'=Hj, '„+HP'+ H,'~'„+H,'~' .

HssH is the Su-Schrieffer-Heeger Hamiltonian describing
the electron-phonon interaction and the elastic energy of
the lattice

I 'I
&~& ~o~~ ~j

C C . C. C.

FIG. 1. Three-dimensional structure of sodium-doped trans-

{CH)„. The structure is viewed perpendicular to the direction
of the polymer chains. The encircled part corresponds to the
system of three chains treated in this work.

In this case, these interactions are treated within the
self-consistent field, Hartree-Fock approximation, which
gives the following mean-field, spin-polarized electron-
electron interaction Hamiltonian:
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(7)

Here, P i i is the charge density at site i of the jth chain
and U,-,' is the effective Coulomb integral between 2p, or-
bitals attached to sites i and i' on the jth and j'th poly-
mer chain, respectively. Note that this expression takes
into account both intrachain and interchain electron-
electron repulsions. The screened Ohno formula is
adopted for the Coulomb integrals

U '=
1) l

yl „ I

Uoe

(1+0.6117r2 )1/2

where UO=5. 56 eV and @=0.373 A '. H~J', finally, in-
cludes the ~-electron hopping perpendicular to the
chains.

(j) —1 X ii. j,ioj i,a. ', j' i a j,i, cr) (9)

Only the interchain hopping between nearest-neighbor
sites (sites denoted by i) on adjacent chains (chains j and

j ) is included in this expression (t,~). As pointed out by
Mizes and Conwell, ' this simplification neglects the en-
ergy dependence of the interchain hopping. However,
the more distant hopping terms influence most strongly
the electronic structure at the bottom and top of the ~
band, whereas the energy levels around the Fermi energy
are essentially unaffected. Since we are mostly interested
in the region around the Fermi energy, the restriction to
include only nearest-neighbor interchain hopping is fully
justified.

The interchain hopping is approximated to take two
different values only; if site i is opposite to a positive sodi-

I

um counterion [i =i„, see Eq. (5)], the interchain hop-
ping is enhanced compared to the hopping between sites
not coinciding with positions of the counterions. This
enhancement is due to the fact that the counterion in-
creases the effective attractive potential of the atoms on
the neighboring chain. Calculations of the interchain
hopping for the tridiagonal structure in the presence of
counterions show that this enhancement is about a factor
2.4. ' The parameter used here for ordinary interchain
hopping is 0.1 eV. Thus, the interchain hopping be-
tween sites opposite to counterions is 0.24 eV. Note that
when the doping increases, more and more counterions
are intercalated between the polymer chains that cause a
strengthening of the interchain hopping and therefore an
increase in the interchain interactions with increasing
dopant concentration.

It should also be noted that both H,~,~
and 0& include

interchain interactions, in the first case in terms of
electron-electron repulsion between charges on neighbor-
ing chains and in the second case from Coulomb attrac-
tions between the m electrons on one chain and the oppo-
sitely charged dopants associated with neighboring
chains. The later effect is shown below to be of particular
importance as concerns the electronic structure of the
system (see Sec. III B).

The strong electron-phonon coupling in quasi-one-
dimensional systems makes it necessary to perform
geometry optimizations of the polymer chains for each
dopant concentration. The ground-state geometry can be
derived using a self-consistent iterative method developed
earlier. ' The total energy of the system described by the
Hamiltonian given in Eqs. (1)—(9) is

E = g [ —2(to —av. . .+, )P, ;; +, + V; ~Pi;; I+—g vJ;;+ )
l) 0')J I)J

+ —,
' g g g U, ,(P, ,P, ; P';; P ;;6;;5 —5j,)+ g. g g t, iP (10)

i,i' 0., 0.' j,j' l 0 J,J

where P . ..P i i+, and P ', , are elements of the density
matrix obtained from the solution of the Schrodinger
equation. (Density matrix elements indexed with both j
and j' denote the bond order between sites on different
chains. )

Minimization of the total energy with respect to v,
gives the condition '

a CK
vk;;+&= +2 +P, , ++Z

0.

Z contains derivatives of the density matrix with respect
to v,-. Since these derivatives cannot be evaluated
analytically, it is convenient to neglect them during the
iteration process. The final self-consistent solution is the

same whether Z is neglected or not, because when self-
consistency is reached, we have Z =0 for the system at
equilibrium.

The density of states per site, X(E), is calculated from

(12)

where G(e) is the resolvent operator of the Hamiltonian
given in Eq. (1), i.e. , G(c.)=(E H) . In order to—avoid
divergences in the density of states, we make the substitu-
tion c.~a+i ~. This substitution introduces a
Lorentzian-shaped broadening of the eigenenergies and
gives rise to a nonzero density of states in the energy gap.
The value of ~ is set to 0.03 eV.

As stated above, the calculations are performed on a
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tice. A transition from a soliton lattice to an undimer-
ized lattice should therefore give rise to a shift or intensi-
ty change of the IRAV modes. Since such phenoxnenon
has not been observed, there is no support for the undi-
merized lattice model to explain the metallic state of
heavily doped trans-(CH)„.

B. Energy gap and density of states at the Fermi energy

I I

60
Site number i

120

FIG. 3. Optimized dimerization order parameter, atomic
charges (dotted line), and interchain electrostatic potential (bot-
tom), at dopant concentration y =0.067.

The parameters uo, M, and lz are varied in order to ob-
tain the minimum energy configuration. The results
show that when the dopant concentration is increased,
the dimerization amplitude (uo) reduces and the geome-
trical defect associated with the polaron becomes less ac-
centuated. At a dopant concentration of y =0.067, the
polaron lattice is observed to be unstable relative to the
undimerized lattice (uo=0). This result is in qualitative
agreement with earlier observations. ' '" However, these
authors did not include the counterion potential in their
calculation, which resulted in a transition into an undi-
merized lattice at very low dopant concentrations. Our
results show that the counterion potential stabilizes the
polaron lattice relative to the undimerized lattice up to a
critical dopant concentration where the minima in the
dopant potential become too weak to be able to localize
enough charge to create a polaron.

The results of using the trial function in Eq. (13) in-
stead of the optimized dim erization order parameter
show very clearly that neither the polaron lattice nor the
undimerized lattice are stable in heavily doped trans-
(CH); the stable configuration corresponds instead to a
soliton lattice (see above). The total energy per site of the
undimerized lattice lies 5.4 meV above that of the soliton
lattice at y =0.067. This energy difference decreases
with increasing dopant concentration since the dimeriza-
tion order parameter for the soliton lattice also decreases.
At y =0.111, where the dimerization amplitude of the
soliton lattice is 0.032 A, the energy difference is 2.5 meV
per site, i.e., the soliton lattice is considerably more stable
than the undimerized lattice even well into the metallic
regime.

Despite the small amplitude of the dimerization order
parameter for the soliton lattice, charge oscillations along
the polymer chains are still present up to the highest
dopant concentration included in this study (see Fig. 2).
This result is consistent with the observed existence of
infrared-active-vibration (IRAV) modes for all dopant
concentrations up to saturation doping in K~(CH),
It should be noted that charge oscillations also exist in
the case of an undimerized lattice. These oscillations are
entirely due to the variations in the counterion potential,
i.e., charge accumulates in the vicinity of these ions, and
are considerably smaller than in the case of a soliton lat-

UJ
0.1—

0)

0.1

05)
CD

0.05

I

0.04
I

0.08
J

0.12

Dopant concentration y

FIG. 4. Energy gap (~ ) and density of states at the Fermi en-

ergy (+) as a function of dopant concentration.

The energy gap E and the density of states at the Fer-
mi energy N(EF) at various dopant concentrations are
displayed in Fig. 4. The energy gap is 0.22 —0.25 eV in
the regime y =0.047 —0.083. At higher dopant concen-
trations, there is an abrupt decrease in the energy gap to
a value around 0.1 eV. At the highest dopant concentra-
tion included in this study y =0.125 the gap is essentially
closed, i.e., the difference in energy between the levels
around the Fermi energy is close to the average separa-
tion between the levels in the m band. Experimental esti-
mates of the electronic gap have been made from
optical-absorption measurements. These data indicate
an energy gap of around 0.2 eV at y =0.067, in very close
agreement with our calculated single-particle gap.

The calculated density of states at the Fermi energy ex-
hibits a sharp increase around y =0.09 as a result of the
decrease in E around this dopant concentration. A
maximum value of 0.102 states/(eV and carbon atom) is
obtained for y =0.125. In fact, this value is close to the
saturation value for the density of states in the middle
part of the ~ band, since the energy gap around the Fer-
Ini energy is of the same magnitude as the average energy
separation between the states within the m. band. The cal-
culated behavior of N(E+) is in qualitative agreement
with the experimental observation of a sharp increase in

y p [y ~ N ( e~ ) ] at y =0.06 followed by a saturation at
higher dopant concentrations. The experimentally de-
duced density of states in the metallic regime is 0.1

states/eV in perfect agreement with our calculated value.
We can therefore conclude that the soliton lattice pro-
duces an electronic structure which is in good overall
agreement with experimental data. This result, together
with the result of the geometry optimizations, strongly
supports the explanation of the metallic state of heavily
doped trans (CH)„ in ter-ms of a soliton lattice.

In order to show the importance of interchain hopping
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TABLE I. The electronic gap at different dopant concentrations (y) for zero interchain hopping
(H~ =0), the counterion potential neglected (Hc =0), and the potential due to the counterions associat-
ed with other chains neglected (Hct' '=0).

y =0.067
y =0.083
y =0.100
y =0.111

H =0 (eV)

0.4231
0.4509
0.3414
0.3298

Hc =0 (eV

0.2253
0.2081
0.1065
0.0755

HP '=0 (eV)

0.8557
0.6752
0.5439
0.6491

Full Hamiltonian (eV)

0.2334
0.2233
0.1222
0.0988

and interchain electrostatic interactions, respectively, we
have studied the inAuence of various terms in the Hamil-
tonian given in Eq. (2) on the energy gap of the system of
doped trans-(CH) . Three diff'erent cases are considered
(In all cases, the dimerization order parameter has been
optimized. ), case l, Ht =0, i.e., the interchain hopping is
set to zero; case 2, HC=O, the counterion potential is
neglected; and case 3, for each chain, the potential due to
the counterions associated with other chains is neglected
(HP '=0). The gap energies in the electronic spectra
corresponding to the three cases are listed in Table I and
compared with the result of the full Hamiltonian.

As already discussed, neglecting the interchain hop-
ping results in an increase of the electronic gap. The
effect is enhanced with increasing dopant concentration
since the relative number of hopping bridges associated
with the dopants is increased. Clearly, the metallic state
is not obtained if the interchain hopping is set to zero, at
least not for dopant concentrations below y =0. 125.
Therefore, the metallic state of heavily doped trans (CH)-
can only be explained within a model which includes in-
terchain hopping.

In the case of n-type doping, the soliton levels are sta-
bilized by the attractive potential of the counterions.
Therefore, neglecting this potential causes an increase in
the energy of the occupied soliton levels and a corre-
sponding reduction of the energy gap between the soliton
band and the conduction band. This effect is, however,
rather sma11. At high dopant concentrations it is due to
the fact that the minima in the dopant potential overlap
strongly, which results in a nearly constant dopant poten-
tial anyway. For less heavily doped samples, e.g., at
y =0.067, the situation is more complicated. The rela-
tively small increase in the band gap in going from

y =0.083 to 0.067 is due to the fact that at lower concen-
tration there is a substantial charge accumulation in the
regions opposite to counterion-soliton complexes of the
neighboring chains (see Fig. 3). The geometrical distor-
tions in these regions lead to the formation of gap states
and consequently a reduction of the energy gap. This
efFect explains the decrease in the gap in the case of
Hz =0, in going from y =0.083 to 0.067. The variations
in the external potential at 1ow dopant concentration thus
lead to energy tails in the soliton and conduction bands
and consequently to a smearing out of the energies for
transitions between these bands. This effect might be as
important as quantum fluctuations to explain the broad
absorption band of doped trans-(CH)

When the potential due to the counterion-soliton com-
plexes on adjacent chains is set to zero (column three in

Table I), there is a large increase in the gap. The poten-
tial minima opposite to the solitons are more pronounced
in this case since the counterions in the region between
the solitons are neglected. The states in the soliton band,
which are localized in the vicinity of the potential mini-
ma, are therefore stabilized compared to the extended
states of the conduction band. Consequently, in order to
obtain a low-band-gap system it is essential that the vari-
ations in the counterion potential are small along the po-
lymer chain. [The variations in the gap energies shown
in column 3 in Table I are due to the nature of the
different types of solitons. In the cases where the separa-
tion between adjacent solitons is odd, i.e., both solitons
are of type 1, the energy gap is enhanced. This is due
to the fact that the charge associated with this type of
soliton is strongly peaked at the minima in the counterion
potential. The energy of the corresponding soliton states
is therefore lower than in the case where type-2 solitons
are present (cf. Fig. 3).]

C. Disorder

The different types of interactions included in the
Hamiltonian used for these studies introduces different
possibilities of disorder. Some of these possible types of
disorder have already been studied. Irregularities in the
intrachain hopping caused by lattice Auctuations are well
known to lead to a considerable band tailing and a corre-
sponding reduction of the energy gap. Disorder in the
interchain hopping is also known to introduce band tail-
ing. ' Both of these effects lead to a shift towards lower
gap energies of the system, which results in a transition
into a metallic state at lower dopant concentration than
for the perfectly regular system.

Another source of disorder might come from irregular-
ities in the positions of the counterions. As discussed
above, local minima in this potential lead to charge accu-
mulation on the polymer chain and to the creation of gap
states. However, this effect is expected to be important
only in the regime of low dopant concentrations, because
when the concentration of counterions is high, these ions
are fixed in position due to the strong repulsive interac-
tion between adjacent ions. Furthermore, since the po-
tential is quite smooth at high dopant concentrations, the
fluctuations will also be small. For the dopant concentra-
tions included in this study, the effect on the energy gap
and density of states at the Fermi energy is very small.
This result contrasts from a previous study treating the
same kind of disorder, but in a strictly one-dimensional
system (single chain). The broadening of the band
edges due to the interchain hopping hides band tailing
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caused by the disorder. In the ten samples with different
random counterion distributions, a maximum difference
in the energy gap of about 0.03 eV was obtained, indepen-
dently on the dopant concentration. Compared to the
effect of HJ, which reduces the energy gap by about 0.2
eV, disorder in the positions of the counterions is clearly
of minor importance.

D. Interchain delocalization

0.8
05

0.6
CL

0.4
C3

CD

0.2

0
0 0.2 0.4 0.6 0.8

FIG. 5. State density for chains 1 —3 as a function of the frac-
tion g of the full interchain hopping.

Since most calculations of the electronic structure of
doped conjugated polymers are performed on single
chains, there is little discussed in the literature about in-
terchain delocalization of the electronic states. In partic-
ular, it is interesting to study the delocalization of the
states closest to the energy gap, in this case, the states in
the fully occupied soliton band and states at the bottom
of the conduction band.

At the dopant concentrations above 5% (y & 0.05) the
solitons on the same chain are strongly interacting. The
wave functions associated with the states in the soliton
band are therefore extended over the whole chain and in-
stead of being localized to a single soliton defect, they
correspond to the Bloch type of wave functions in the sol-
iton lattice. If the interchain hopping strength (t~) is
turned on gradually we observe a delocalization of the
wave functions of the soliton band over more than one
chain. Figure 5 shows the state density (squared ampli-
tude of the wave function) on each chain for one typical
molecular orbital in the soliton band. The dopant con-
centration is y =0.10. The data are plotted as a function
of gt J, where g = 1 corresponds to the values of the inter-
chain hopping that are considered in the calculations
presented above (t~ =0. 1 and 0.24 eV, respectively). The
calculations, which include geometry optimizations, are
performed on systems with fixed end boundary conditions
in order to account for the finite mean free path which is
always present in real systems.

Figure 5 shows that there is a smooth transition from
interchain delocalization to interchain localization in the
regime g=1 to 0. This is in contrast to the results de-
rived by Firsov that indicate an abrupt transition from

extended to localized states at a critical interchain hop-
ping

0.3A (l4)

The reason why we observe a much smoother transition
is probably due to the limitation to three chains in our
system. Using the value for the scattering time ~ estimat-
ed from measurement of the thermopower by Javadi
et al. , &=2.7X10 ', the value of the critical inter-
chain hopping is 0.07 eV, which is not very different from
the results presented in Fig. 5.

The mean free path l =vF~ is in our case equal to the
chain length since the chains are perfectly ordered. If,
however, periodic boundary conditions are used, there is
no scattering of the electrons which corresponds to an
infinite relaxation time ~. Three-dimensional delocaliza-
tion occurs in this case for infinitesimally small values of
l'J ~

IV. SUMMARY

The effect of interchain interactions on the electronic
structure of heavily doped trans (CH) -has been studied
in detail for a realistic system corresponding to sodium-
doped polyacetylene. A transition into a metallic state is
observed around a dopant concentration of 9'~/o. The
geometrical structure of the polymer chains corresponds
to a soliton lattice for all dopant concentrations we have
studied. The optimized dimerization amplitude in the
metallic regime is less than half of the dimerization am-
plitude of the pristine system. In this situation, the nar-
row Peierls gap can be closed by the broadening of the
electronic bands due to interchain hopping.

The dopant potential is shown to play an important
role in creating a metallic state. For lightly doped sam-
ples, the minima in the dopant potential in the region of
the solitons stabilize the soliton states relative to the
states in the conduction band. This effect increases the
gap between the occupied soliton band and the conduc-
tion band, i.e., increases the gap around the Fermi ener-
gy. In the heavily doped regime, the potential is almost
constant along the chain and there is no stabilization of
the soliton band relative to the conduction band. Thus,
the dopant potential also works in favor of a low-band-
gap system when the dopant concentration is increased.

The effects of lattice fluctuations and disorder are well
known to lead to band tailing and a reduction in the elec-
tronic gap. By taking such effects into account, the tran-
sition into a metallic state will occur at lower dopant con-
centration than for the perfect and static lattice that is
treated here. It is important to note, however, that the
observation of charge oscillation along the chain caused
by the presence of solitons along the chain are essential in
order to explain the IRAV modes that exist up to very
high dopant concentrations. Lattice fluctuations and
disorder are therefore not expected to destroy the soliton
lattice completely.

The attraction of electrons on one chain by the positive



12 AHA S. STAFSTROM 47

atom cores on neighboring chains gives rise to electronic
states extended over all three chains in the system. The
localization of individual states as a function of the
strength of this interaction (interchain hopping) is stud-
ied. At full interchain hopping, the state density on a sin-

gle chain is roughly the same for all the three chains in
the system. Thus, realistic values of the interchain hop-
ping lead to three-dimensional delocalization of electrons,

which in combination with the observed small gap ener-
gies is responsible for the high conductivity.
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