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Approximate treatment of a two-dimensional anisotropic Peierls-Hubbard model
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A Green-function formalism is presented to study a Peierls-Hubbard Hamiltonian in two dimensions.
The lattice consists of parallel dimerized chains with alternating nearest-neighbor hoppings t and t~~ and
another hopping t~ between different chains. The method treats the interdimer hopping as a perturba-
tion and yields exact results in the uncorrelated case and for isolated dimers. The calculated spectral
functions exhibit a number of narrow subbands with typical low-dimensional singularities. The depen-
dence of the gap at the Fermi level on the electron-electron interaction U agrees qualitatively with the
exact result in the known one-dimensional nondimerized limit. The paramagnetic susceptibility shows a
maximum structure at low temperatures that is enhanced by U and by dimerization and a Curie-Weiss
behavior at high temperatures.

I. INTRODUCTION

In spite of the cumulative effort directed to the study of
the Hubbard Hamiltonian' and its apparent simplicity,
few exact results have been obtained so far, namely, for
the linear chain and small clusters. A renewed in-
terest in it in connection to high-T, superconductivity
inspired the reexamination of standard treatments to
higher order. An example is the many-body perturbation
theory with respect to Coulomb repulsion U that showed
some new features such as satellite peaks in the spectral
functions. Different extensions of the Hamiltonian have
been considered, taking into account the effect of long-
range Coulomb repulsion, next-nearest-neighbor hop-
ping, and multiple bands. In the strong-coupling limit it
gave rise to the t-J model, where doubly occupied states
are projected out.

Important information about properties of the Hub-
bard model and t-J model can be obtained by exact-
diagonalization techniques' '" and Monte Carlo simula-
tions' ' on finite clusters of increasing size. Neverthe-
less, in the low-temperature region finite-size effects be-
come important and much larger systems are required to
extrapolate the results to the thermodynamic limit.

The introduction of electron-phonon interaction into
the Hubbard Hamiltonian is essential in order to under-
stand the electronic properties of the superconducting ox-
ides and also of the important class of quasi-one-
dimensional conductors. ' A proper self-consistent treat-
ment of such a model can be achieved by using variation-
al methods. ' ' However, for practical calculations,
simplified versions are preferable. The essential features
on which we want to focus are present in the Peierls-
Hubbard Hamiltonian, ' where a bond charge-density-
wave state is energetically favored in one dimension and

also in two dimensions for suKciently large electron-
phonon coupling. Dimerized states have been con-
sidered in proposed mechanisms for high-T, supercon-
ductivity.

The present approximate expansion on the hopping in-
tegral is inspired by an analogous one applied by Brunet
and co-workers to the periodic Anderson model. For
the Hubbard model, similar expansions around the atom-
ic limit have been recently developed ' and suggested
to study a possible superconducting state with local pair-
ing.

In the next section, we write down the model Hamil-
tonian in a form appropriate to deal with a two-
dimensional lattice with both dimerization and anisotro-
py and present the diagrammatic approximation em-
ployed. In Sec. III we diagonalize the Hamiltonian on a
simple two-site cluster (dimer) and obtain the correspond-
ing one-particle Green function, from which we will con-
struct the lattice Green function in the following section.
Section V presents the calculated spectral functions, gap
energy, and magnetic susceptibility. A discussion of the
results is presented in the last section.

II. MODEL HAMILTONIAN AND APPROXIMATION

We have considered an interacting electron system on
the two-dimensional lattice specified in Fig. 1. It can be
regarded as a regular square lattice that has undergone a
static dimerization along one of the square axes. As in
the Hubbard model, ' only the on-site Coulomb repulsion
U is retained. However, we introduce the possibility of
three different nearest-neighbor hoppings t, t~~, and t~.
One assumes that this diversity may arise as the net effect

47 12 408 1993 The American Physical Society



47 APPROXIMATE TREATMENT OF A TWO-DIMENSIONAL. . . 12 409

of the electron-phonon interaction on the electron sys-
tem. Without loss of generality we set t~~~, t~ ~ t. Geome-
trically, we call a dimer each pair of neighboring sites
connected by a t line. We see immediately that the posi-
tions of these dimers define another square lattice as
drawn in Fig. 1 with which we will be concerned
throughout this paper. It seems quite natural to look at
the dimers as the lattice basic building blocks. Thus we
write our model Hamiltonian in the form

&=gW+ g v;

where

I'a i acr

a a b b
wria U(niatniat +niatniat )

is its exactly solvable unperturbed part and

~i aa
~~

( i acr bi + 1,a+ 1, cr +bi aa i —1,a —1,a )

iaobi+], aa+ iaabi, a+],a

(2)

FIG. 1. The dimerized square lattice with a redefinition of
the square axes.

are the hoppings between nearest-neighbor sites of
different dimers as indicated in a of Fig. 1, and p is the
chemical potential.

The presence of a small, static, uniform magnetic field
h can be handled by adding a term

+ iaa i —l, aa+biaaaia —[,a, ) &i, = —h go(n +n, ) (4)

is a one-particle "interaction" term. We have denoted by
a; (a; ) and b, (b;a ) the operators that create (an-
nihilate) an electron with spin o on an a or b site of the
ith dimer and n,

' =c, c, (c =a or b). U is the on-site
Coulomb repulsion, t is the intradimer hopping, t~~ and t J

I

to the unperturbed Hamiltonian W .
The Green function that describes the propagation of

an electron from a site c (a or b) of dimer (i,a) to site d
of dimer (j,P) is written as

,'d'J~(&)= —g ( —1)"f dr, f dr„o(T,d tt (r)P(r, ) . . )(I'r)c; (0))d;t„„„
n=0 0 0

(5)

where we follow the notation of Ref. 25.
From the choice of W it turns out that averages of

products of operators acting on sites of different dimers
are decoupled. Furthermore, if one was allowed to
decouple the averages at different times on the same di-
mer then one would be able to sum up all the remaining
diagrams. This is true for U=O from Wick's theorem
and will be assumed here as a first approximation to the
correlated case —valid at least for U, t~~~, t, «t. As we are
summing the perturbation terms to all orders, we expect
that it will work fairly well in all parameter space —in
particular, for the regular chain and square lattice.

The resulting Dyson's equation reads

G,'„J~(r)=5; 5 kg,d(r)

t„'; r f drgd(r r,)—
c d mp

XG, ,.' (r, ),my, jP (6)

where td.,'. is equal to t~~
or tj for nearest-neighbor sites

of different dimers according to Fig. 1 and zero other-
wise. The bare Careen functions g,z(r) will be evaluated
in Sec. III.

III. THE HUBBARD DIMER

and

S=[(U/t) +16]'

For half filling the ground state is ~5), that in the limit
Ult~ aa becomes 1/&2(b~&a t b ta &

)~0—).
The dimer's Green functions are given by the spectral

representation:

g d(~)= —g(e +e ")
m, n

/m)(m/c, /n)
X

co (E„E)——

where c,d =a or b, g= 1/kti T, and

The eigenvalues E„and eigenfunctions
~
n ) of

W +&i, corresponding to the diFerent electronic
configurations are shown in Table I, where we make use
of the definitions

tanO=(S —Ult )/4
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E0

E1=—t —p —h

E2 = —t —p+h
E3 =t —p —h

E4=t —p+h

TABLE I. Eigenvalues and eigenfunctions of M+&I, .

lo&

l
1 &

= I/&2(a t +btt ) 0&

l2& = I/&2(a t +b ~ ) lo&

l
3 &

= I /&2(a t
—b t ) l

0 &

l4 &
= I /&2(a', —b tg ) lo &

E5 = U/2 —tS/2 —2p

E,= —2p —2h

E7 = —2p

E8 = —2p+2h
E9= U —2p

E10= U/2+ tS/2 2p

l5& = I/V'2[sing(ata t +b tb t ) co—s0(b ta t b ta —
7 )) lo&

l6&=bttatt lO&

l7& = I/v 2(b a 1+b tat )lo&

lg & =b'„a'„ lo&

l9 &
= I /V2(a ta t b tb t )

—lo &

l
10 &

= I /&2 I cos0(a t a t +b ~d t ) + sin 9( b tt a t b~ a tt )
—
] l

0 &

E11= t+U 3p

E12= t + U 3p+h
E13 t + U —3p —h

E,4'=t + U —3p+h

11&= I/&2a tb t(a ~+bt )lo&

l12& = I/&2b ~a t (a t +btt )lo&

l13&= I/&2a tb t(at~ —bt )lo&

14& = I/&2b )a )(at —btt )lo&

E15 =2U —4p l15 &
= b', b', a ~a', lo &

—PE
e (10) where we introduce for convenience

is the grand partition function.
Equation (9) yields

g„(co,h )=g+ +g (11)
ancl

4 A;(h)
g+ (co, h )= (13)

and

g.b(~ h ) =g+ —g- (12)

A, (h)
g (a), h )=

;=5 co —p; (h)
(14)

p;"(h)

TABLE II. Poles and residues of the dimer's Green functions.

3;"(h)

t —p+ U/2+ tS/2 —h

—t —p —h

t —p+ U/2 —tS/2 —h

—t —p+U —h

—t —p+ U/2 —tS/2 —h

t —p+U —h

—t —p+ U/2+ tS/2 —h

t —p —h

1+ 1
(

p 13+ p 5+ p 10+ p 2)
4 S

2. 4

1 1 —pE2 —pE5 —pE10 —pE13

4 S
1( 8+ 12+ 14+ 15)+ 1( 4+ 7+ 9+ 11)
2. 4

1 1 - pE - pE —pE —pE
(e +e +e ' +e ")

4 S
1

( 8+ 12+ 14+ 15)+ 1
( 2+ 7+ 9+ 13)

2. 4

1 1 —pE11+ —pE5 +
—pE10+ —pE4

)
4 S

2 4
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From the sym. metry of the dimer, it follows that
gbb =g„and g~, =g,b. The same will be valid for the lat-
tice Green functions Gbb' ~ =G,', ' ~ and Gb, ' ~ = G,'~'~~.

The poles p; of these Green functions correspond to
the one-electron energy levels of an isolated dimer. They
are shown in Table II together with their corresponding
residues, defined through the matrix elements appearing
in Eq. (9). For down spin we have p;t(h)=p;t( —h) and
A;~(h) = A;t( —h).

0
T&a, i+ l, a+1 T—

II 0 Q

Ti a i —l, a —1 T—
II

'

0
Tia, i+ l, a Tia, i, a+1

, Q Q
(19)

(20)

(21)

IV. THE DIMERS' LATTICE

A Fourier transformation with respect to time is ap-
plied to Eq. (6). The equations obtained for the Green
functions G,'d J~(ice ) can be conveniently grouped in ma-

trix form:

1 —ik.(R. —R. )G' ' P(ice )=—g G (k, ice )e
k

with

(22)

every other T' ' ~ being zero.
Equation (15) can be solved by a Fourier transforma-

tion on the dimers' lattice of b of Fig. 1, which yields

G' 'J~(ice )=g (ice )5; 5 e

g(i—co, ) g T™G~'J~(ice ),
my

where

G (k, ice )=Il+g (ice )E(k)j 'g (ice ),
(15) where

0 s( —k)
E(k)= (k) 0

(23)

G' J~(ice'„)=
Gb„''~(i s), ) Gbb'~~(i co )

g (i~ ) gb(i~ )

(16) with

i(k„+k )a ik a ik a
E(k)=tile " ~ +tj(e ' +e ) . (24)

g (ice„)=
gb (ECO ) gbb(le )

(17)
We obtain

1 g++g
G (k, ico, )=

1 —A(k, a, k a) g+ —g —4g+g s(k)
g+ —g ——4g+g —E( —k)

g++g— (25)

where

A(x,y)=4(tll+2t~)g+g +2tq(4tl g+g —g++g )

X (cosx+ cosy )
and

0'(k, iso )= .
1

i~ +2t coska,
(28)

+2(4t ~g +g —
tll g + + tll g )cosx cosy

+2(4t~g+g —+ tllg+

The elements of this matrix are related to the usual
one-particle Green function in k space, which can be ex-
pressed as

0 (k, ice )=1/2IG„(k, ice )+Gbb(k, ice, )

+e'" G (k, tco )

0' (k, i co ) = 1

ice, +2t(cosk„'a, +cosk'a, )
(29)

where a =a/&2, k'=(k —k )/&2, and k'=(k„
+k )/&2.

We are particularly interested in the local Green func-
tion

G,',' (ice )= (g++g ) J j dx dy4~' + —vr 1 —A x,y

(30)

+e '"
Gb, (k, i'co )I, (27)

that can be reduced to

where Rab

It is straightforward to get the known results at U =0
for the chain and the square lattice:

2 g++g—
G,',' (ice )=— K(Q),

R
(31)

where K(z) is the complete elliptic integral of the first
kind,
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and

R =[(t~a, —a3) +t~(4a, a3 —az)]'c

2
R —t~a &+a32

2R

(32)

(33)

with

4(g g' — 4t
~~g g —)

a~ =4(g+ —g +4t~~~g+g )( I+2tlg+ )

X(1—
2t~~g ),

a3 =4(t~+t
~~

)(g + —g ) +8(t
~~

~+2t j )g+g
—16t~~~(g+g ) —1 .

(34)

(35)

(36)

V. RESULTS

The spectral function is given by

p; (co, h )= ——lim ImG,", (co+if, h ) .1

77 $~0
(37)

In the absence of the perturbation, it is just a sum of 5
functions located on the poles of the dimer's Green func-
tion:

8

p; (co)=—g 2; 5(co—p, ) . (38)

As the hopping between dimers is turned on, each of
these 5 functions is replaced by a distribution determined
from Eq. (15).

When U=O, our results are exact and reproduce, in
particular, the nondimerized case of Ref. 26. The spec-
tral functions obtained when dimerization is included are
shown in Fig. 2, where we have chosen tI~ =0.8t. They
have been plotted only for co) 0, because p; (co) is an even
function in the half-filled band case. The energy co is
measured with respect to the chemical potential p and
the energy scale is defined by t =1. These curves differ
from those of Ref. 26 basically by the presence of a
Peierls gap at the Fermi level. In one dimension (t~ =0),
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FIG. 3. Spectral functions of the linear chain for U=2t
(dashed) and of the square lattice for LT =4t (solid) and U= 1'7t

(dot-dashed).

=1 CO

~ I[co —(t t, ) ][(t+t„)—co —]I'c (39)

there are singularities exactly at the boundaries of the
zones where p; (co) =0. When tz&0 this is no longer true,
and one can even find a vanishing gap width when
t~ ~ (t+t~~ )/2. In this case the spectral function is equal
to zero at the Fermi level, but increases with infinite
derivative as soon as we move away from that energy.

In Fig. 3 we plot the spectral functions of the regular
chain and square lattice for the same values of Ult con-
sidered in other calculations. ' ' ' Exact diagonalization
of a &8X&8 cluster' and Monte Carlo (MC) simula-
tions on an 8X8 cluster' yield densities of states with
satellite peaks (or bumps) at the same energies where we
found the satellite subbands (in the curve U=4t). Al-
though the second-order perturbation treatment on U of
Ref. 7 cannot reproduce the Hubbard gap, it also gives
satellite peaks nearly at the same positions (see curves
U=2t and 12t).

Still in the simple uncorrelated case, we obtain for an
isolated dimerized chain (as in Ref. 27)
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FIG. 2. Spectral functions for U=O and t~~
=0.8t, with t, =0

(dot-dashed), 0.St (solid), and 0.9t (dashed).

FIG. 4. Peierls-Hubbard gap as a function of U for t~I
=0.8t

with t~=O (dashed), 0.5t (dot-dashed), 0.8t (solid), and 0.9t
(long-dashed).
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i —
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i

)']'" .
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8t
U —4t+ ln2 for large U,

U
c

v't—Ue xp( 2~—tlU) for small U .8
(47)

Here we obtain [from Eq. (40)]
T

4. 5t
U —3t+ '

for U»3t,
U

U2
for U(&3t .

6t

(48)

The results agree qualitatively, though in our case the
gap is somewhat greater than the exact one in the whole
range of U, the difference going to zero as U~O. It must
be noted that our result is constrained to the paramagnet-
ic phase.

The magnetic susceptibility has been computed by
Kawakami, Usuki, and Okiji for U=8t. A direct com-
parison shows that the peak is too high, but its position is
correctly reproduced. Such enhancement comes from the
intrinsic dimerization assumed in the treatment whose
effect remains even when we set tI~

=t. MC simulations
for U = 8t (Ref. 15) show that also in two dimensions our
calculated susceptibilities present higher values. This in-
dicates that the correlations neglected in our Dyson equa-
tion are relevant for the nondimerized lattice with large
U.

In order to recover the antiferromagnetic order present
in the ground state of the undoped, nondimerized Hub-
bard chain, one should introduce the average number of
particles of given spin as a parameter in the unperturbed
Green functions, to be determined self-consistently to-
gether with the lattice Green functions. Such a magnetic
state certainly would yield a smaller Peierls-Hubbard gap
(closer to the exact one) because the spectral functions for
different spins would be shifted.

A better description of electronic correlations can be
achieved by a higher-order approximation to the general-
ized Wick theorem. Attempts in this direction are in pro-
gress starting from the atomic expansion where less
complicated graphs are involved (see Ref. 24).

In the non-half-filled band case, the chemical potential
for a given number of particles must be determined by an
integral equation. Preliminary results show a transition
to a metallic state upon doping with an important charge
transfer between the upper and lower subbands.
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