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Correlation functions in periodic chains
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We present a simple form for the relation between correlation functions on finite periodic one-
dimensional systems and the correlation function of the corresponding infinite system. This form is test-
ed on the S=

~
and S =1 Heisenberg models. We find good agreement with quantum Monte Carlo re-

sults for the spin correlation functions. For S=—' our results are consistent with the asymptotic form

C(r)-ln(r) /r with cr = —'.

Numerical techniques such as exact diagonalization
and quantum Monte Carlo can provide exact results for
the properties of finite interacting quantum many-particle
systems. However, one is limited to relatively small sys-
tem sizes by available computer resources. Currently, ex-
act diagonalization can be used for on the order of 10—30
particles, whereas quantum Monte Carlo allows for stud-
ies of systems roughly an order of magnitude larger. This
is still far from the thermodynamic limit, and great care
must be taken in extrapolating to infinite system size.
For this, the theory of finite-size scaling has been
developed. ' However, for the one-dimensional (1D) S=

—,
'

antiferromagnetic Heisenberg model, attempts to extract
the asymptotic form of the spin correlation function from
quantum Monte Carlo data have not yielded the form
predicted by theory. Theoretically, it is now well es-
tablished that the long-distance correlation function of
this model is

C (r —+ oo ) —ln(r) Ir,

with o. = —,'. For the finite-size scaling of the correlation
function C(r, N) in a system of N spins, Kaplan et al.
proposed the relation

proportional to a sum of correlation functions C (r') of
the infinite system at distances r'=kX+r and
r'=(k +1)N —r, with k =0, 1,2, . . . , each term being ex-
ponentially damped. The damping is governed by a size-
and temperature-dependent correlation length g( T, N).
We propose that the above mechanism is responsible for
the dominant finite-size corrections to the correlation
function in periodic chains. In a trivial case, 1D Ising
model, the correlation function can be written exactly in

the form given by this hypothesis. For the S=—,
' and

S =1 Heisenberg models we find good agreement with

exact diagonalization and quantum Monte Carlo results.
In particular, for S=—,

' our results are consistent with

o =
—,
' in (1).

We now discuss the above hypothesis in detail. First
consider models for which the ground-state correlation
function C„(r) decays slower than exponentially. At
finite temperature the correlations are exponentially
damped. The hypothesis is then that the long-distance
correlation function C(r, T,N) for a periodic system at
low temperature is given approximately in terms of the
T =0 correlation function C (r) of the infinite system,
according to

C(r, N)=C„(r)f (rlN) . (2) C(r TN)=A(TN) y IC (kN+r)e
k=0

This scaling relation has been used by several authors '

to extrapolate quantum Monte Carlo data for the S=—,
'

Heisenberg model. The asymptotic form obtained in this
way is consistent with the form (1), but with an exponent
o. in the log correction which is significantly less than —,,
or even 0. ' In this paper, we propose a simple form re-
lating the correlation functions in finite periodic chains to
the correlation function of the corresponding infinite sys-
tem. We test the relation on the S=—,

' and S =1 antifer-
romagnetic Heisenberg models, and argue that the reason
why previous numerical studies of the S=—,

' Heisenberg
model have not yielded the correct exponent o is that the
log correction in (1) makes (2) invalid for this model.

Our hypothesis is that in a periodic chain of X sites,
the correlation between some quantity at site i and site
i +r is built up from correlations between site i and all
the images of site i + r due to the periodic boundary con-
ditions. The observed correlation function at distance r is

+C„([k + 1]N —r)
—([k+1]N r)lg(TN)] (3)—

For a system which is critical at T=O, such as the
spin-S antiferromagnetic Heisenberg model with half-
integer S, one expects g'(T, N) to obey the scaling rela-
tion'

g(T, N)=j (T)f [g (T)/N], (4)

where g„(T) is the correlation length of the infinite sys-
tem. As T~0, this scaling relation implies
g(T=0, N)-N. For models with long-range order at
T =0, such as the 1D Ising model, one expects g( T,N) to
diverage as T~O.

For models with exponentially decaying correlations
even at T =0, such as the integer-S Heisenberg model,
the form (3) is not suitable. In this case, where the
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infinite-N correlation function is a function of a correla-
tion length g„, we propose the low-temperature form

C(r, T,N)= A (T,N) g [C [kN+r, g(T N)]
/c =0

+C„[k(N+ 1) r, g(T—,N)]],
(5)

with g(T, N~ ~ )=g„(T).
The relations (3) and (5) are constructed so that the

modification of the correlation function arising from the
periodic boundary conditions described above is taken
into account. In particular, it seem natural that in a
periodic system, correlations from distances r and X —r
should be treated on an equal footing, and when trying to
fit numerical data to a theoretical form C'(r, N), one
should have C'(r, N)=C'(N r, N). In t—he remainder of
this paper we present evidence supporting our hypothesis
for three specific 1D models.

As a trivial example, we first discuss the 1D Ising mod-
el. In a periodic system of X sites the spin correlation
function is

C (r, T,N)=(6"+6 ")/(1+6 ),
where B=tanh(J/[ks T]), J being the coupling constant.
For the infinite system, C„(r,T)=6". Owing to the
form of C, Eq. (6) can also be written as

eN oo

CI(p T N)= y (6k&+ +61(k+I}& r)
1+eN, 0

As T~O, C has the form (3) with g(T, N)= ,'e-
independently of ¹ The form (3) might suggest that only
the terms with k =0 are needed in (3). However, below
we will present results for the S=—,

' Heisenberg model,
indicating that in this case, terms with k&0 are also im-
portant.

The 1D antiferromagnetic Heisenberg model is defined
by the Hamiltonian

3JHs= gs S;+i

Exact diagonalization results for this model are available
for X up to 30.' Figure 1 shows Monte Carlo results for
the correlation function multiplied by ( —1) r with
N =30 at p=40, along with the exact results. The even-
odd oscillations are predicted by theory to be due to a
term —1/(mr ) .' In the results to be presented next, we
subtract the contribution to the correlation function aris-
ing from this term, treating it according to the summa-
tion hypothesis (3), with g(T=O, N)= ~ and
3 (T =O, N)=1. That is, we subtract

C2(r, N) =—1 1 1

vr k=0 (kN+r) [(k+1]N r)

(10)

Using the asymptotic form (1) with o. = —,
' and determin-

ing A (O, N) and g(O, N) such that the form (3) gives a
good fit to the long-distance correlation function, we find
the optimum correlation length to be g(0, N ) =N within
less than a percent for all system sizes studied, in agree-
ment with the implication of the scaling law (4). We
therefore fix g(O, N) =N, and are left with the amplitude
A (O, N) as the only free parameter. Figure 2 shows exact
data for X=30' and our Monte Carlo results for
N =40, 60, and 80, along with curves given by the rela-
tion (3). The agreement is good in the large-r regimes.
The even-odd oscillations are almost canceled by the sub-
traction of C2(r). We stress that the shapes of the
theoretical curves in Fig. 2 are completely determined by
(3), once g(O, N) =N is fixed; only the amplitudes are
chosen to give the best agreement with the numerical
data. Treating o as a free parameter as well, the op-
timum value of o is slightly less than —,', but larger than

We divide the remainder of the calculated correlation
function by the expected asymptotic form (1), so that as
X~~, results for 1 &&r &&X should approach a con-
stant 2 (O, N= ~ ). Thus we plot

D (r, N) = (
—1 )"[r/1n(r)' ][C ' '(r, N) —Cz(r, N) ] .

with J & 0. In view of Haldane's conjecture, we expect
(3) and (5) to be the relevant relations for half-integer and
integer S, respectively. In order to test the validity of our
hypothesis, we have calculated the spin correlation func-
tion

C (r, N)=[3/S(S+1)](S S +„) (9)

in periodic systems for spins S=—,
' and S=1. We have

used a generalization' of Handscomb's" quantum
Monte Carlo technique in the subspace with X;S =0,
choosing inverse temperatures p= J/(kz T) large enough
to obtain ground-state results. There are no approxima-
tions in the Monte Carlo method, so all results should be
exact within statistical errors.

For S =
—,', we have run the simulations at inverse tem-

peratures up to P= 1.5 XN, which is large enough for all
measured quantities to be essentially independent of p.
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FIG. 1. Exact and Monte Carlo results for the spin correla-
tion function in a periodic spin- — Heisenberg chain with 30
spins. The squares are the Monte Carlo results. The solid line

goes through the exact results of Ref. 12.



CORRELATION FUNCTIONS IN PERIODIC CHAINS 12 335

I I I f
[

f i I i
[

I I I I

l

I I I I

0.6—

0.4
I

10 20 30 40

FIG. 2. The correlation function D ( r, N) = (
—1)"[r/

H
ln(r)'~ ][C ' (r, N) —C2(r, N)] in systems of 30, 40, 60, and 80
sites (squares), along with the theoretical form (3) (solid curves).
The largest r for given N is N/2. Here the correlation length is
fixed, g(O, N) =N, and the log exponent o.= —'. The only free pa-
rameter is the amplitude in (3). The data points for N =30 are
exact results of Ref. 12. The data points for N =40, 60, and 80
are our quantum Monte Carlo results.

C '(r, N)=A(N) g Eo
g(N)

(kN +N r)—
((N)

(12)

form (3), with the asymptotic form (1) having cr =
—,'. Di-

viding Eq. (3) by the asymptotic form (1), it is clear that
the log correction makes the scaling relation (2) invalid if
(3) holds in the limit N ~ ~.

We now turn to the case S= 1 and the proposed rela-
tion (5). Haldane conjectured that the integer-S Heisen-

berg model has a gap between the ground state and the
exited states, and that the correlation function decays ex-
ponentially. This has been confirmed numerically in
several studies of the case S=1. ' ' Nomura proposed6, 8,9 9

that the correlation function is actually given by the
modified Bessel function Ko(r/g), which asymptotically
behaves like e ' ~r ' . This form agrees with numeri-
cal data for periodic chains, except for r=N/2. This
motivates us to test the relation (5) with C „=Eo:

0.4S in all the cases studied here. As N grows, the op-
timum value of the exponent seems to approach —,'. Fig-
ure 3 shows the N =60 and 80 results along with the
form (3) with o.=0.4,0.5, and 0.6. Apparently, a=0.5
gives the closest match. In the same figure, we also plot
the curves obtained using only the k =0 terms in (3) with
o. =0.5. This does not lead to nearly as good an agree-
ment with the Monte Carlo data as using also
k=1,2, . . . .

It appears that the spin correlaion function of the
spin- —,

' Heisenberg model is indeed well described by the

For the S =1 Heisenberg model exact data are available
for N up to 18.' Figure 4 shows exact data for X =16
and 18,' and our Monte Carlo results for N =32. The
form (12) seems to fit the data very well for r ~ 4, even for
the smaller systems. We obtain an N-dependent correla-
tion length g(16)=5.8, g(18)=5.9, and g(32)=6.5. The
correlation length for 1V =32 is slightly larger than previ-
ous Monte Carlo results ' ' (/=6. 2 for N=64 ' ), but
agrees with White's result' for the correlation length of
correlations with a spin- —,

' operator at the end of an open
chain.
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FIG. 3. The correlation functions D ( r, N =60) and
D(r, N =80) (squares), along with the theoretical form (3) with
o. varying. The solid lines are for o.=0.4,0.5, and 0.6 (top to
bottom in each graph). The dotted lines are for o =0.5, with
only the k =0 terms kept in (3).

FIG. 4. The logarithm of the spin correlation function in
periodic S=1 Heisenberg chains with 16, 18, and 32 sites
(squares), along with the theoretical form (12) (solid curves).
The amplitude and correlation length in (12) are chosen to give
the best agreement with the numerical results for each N. Data
for 16 and 18 are exact results from Ref. 12, and are shown on a
di6'erent scale in the inset.
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In conclusion, we have presented a hypothesis for the
relation between correlation functions in finite periodic
chains and the correlation function of the corresponding
infinite system. In order to test the hypothesis, we have
used a quantum Monte Carlo technique to calculate the
spin correlation function of the antiferromagnetic
Heisenberg models with S=—,

' and 1. We find good
agreement with the proposed relations. In particular, our
results are consistent with an exponent o. = —,

' in the log
correction of the asymptotic correlation function (1) for
S=—'.2'

We have also tested our hypothesis for the 1D Hub-

bard model at low temperatures. ' We find good agree-
ment in this case as well.
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