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Nonclassical disordered phase in the strong quantum limit
of frustrated antiferromagnets
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The rotationally invariant Schwinger-boson approach to quantum helimagnets is discussed. It
is shown that in order to get quantitative agreement with exact results on finite lattices, parity-
breaking pairing of bosons must be allowed. For the Jq- J2-J3 model on the special line J2 ——2J3, a
quantum disordered phase is found, though notably only in the strong quantum limit S = 2. The
theory predicts the direct melting of biaxial helimagnetic order into an isotropic spin fluid, without
the formation of an intermediate spin)-nematic phase as recently suggested.

The insulating phase of copper oxide high-T, com-
pounds is well described by a two-dimensional spin-2
square lattice Heisenberg model, displaying long-range
antiferromagnetic order at zero temperature. Upon dop-
ing this Neel order is rapidly suppressed due to the frus-
trating effects of hole movement, leaving a conducting
state which has been suggested to be different from a
normal Fermi liquid. Unusual properties of this spin-
liquid state might provide a mechanism for driving the
system into a superconducting phase.

How the antiferromagnetic order is destabilized by
doping, and the nature of the disordered state so gener-
ated, are central problems in the theoretical understand-
ing of high-T, superconductivity. One simple approach
to these questions consists in integrating out the holes
for small doping, leaving an effective spin Hamiltonian
with further-neighbor interactions:

H = Jg) S„.S„~„+J2 ) S„Sx~„
X)P,

+Js ) Sx Sx+p" ~

x,p,"

X)P

Here Jq and Js measure the frustration strength between
a given spin and its second and third neighbors, respec-
tively, and the region of interest is J2 2J3. Since in
this approximation the dynamical frustration produced
by holes has been replaced by a static one, clearly (1)
captures only gross features of the physics involved. On
the other hand, Hamiltonian (1) is interesting per se as
a model of a helimagnet, with the frustration knowns to
produce a spiral phase in some region of parameter space.
In fact, classically, when Js ( s J) the ground state of
the system is in a Neel phase for J~ & 2J2 + 4J3, while
for 2' & Jq + 4J3 it goes to a collinear order which is
ferromagnetic in one direction and antiferromagnetic in
the other. These two phases are separated by a twisted
spiral phase ordered at wave vector Q = ()r, Q), with Q
satisfying cosQ =

4&
'. For Js ) s J), a new sym-

metric spiral phase ordered at wave vector Q = (Q, Q),
with cos Q = 2z +4J, appears. The two incommensu-
rate phases are separated by the line J2 ——2J3, at which
an infinite number of degenerate spiral states coexist.
The way strong fluctuations due to the quantum na-
ture of spins alter this picture particularly near the line
J2 ——2J3—is an interesting question on its own, indepen-
dently of the above mentioned connection with supercon-
ductivity.

In this work we study the ground-state proper-
ties of Hamiltonian (1) "specially its incommensurate
phases —with particular emphasis on the strong quantum
limit S = z. First, we discuss the rotationally invari-
ant Schwinger-boson approach to quantum helimagnets, r

and a natural decoupling scheme for the efFective (quar-
tic) bosonic Hamiltonian. Secondly, we show that in or-
der to get qualitative and quantitative agreement with
exact results on finite lattices, parity-breaking pairing
of bosons must be allowed, contrary to previous work
in the literature. ' We present evidence that a quan-
tum disordered phase exists between the Neel and spiral
phases, though notably only for physical spin S = 2. On
the other hand, it appears only for the third-neighbor
coupling J3 larger than a minimum finite value J3 j„
0.038'. Our approach predicts no intermediate spin-
nematic phase between the biaxial quantum helimagnet
and disordered isotropic spin fluid, contrary to a recent
suggestion in the literature. 9 To our knowledge, this is
the first thorough examination of the twelve-dimensional
order-parameter space of (1) in the strong quantum limit.
In addition, we assess the reliability of our approach by
comparison with the few known exact (numerical) results
on finite lattices.

In order to obtain a rotationally invariant Hartree-
Fock (HF) decomposition of H it is convenient to
express the spin-operators in terms of the Schwinger
representation:~ S„=&at o'a„, where cr = (0, o.",0')
are the Pauli matrices, and the bosonic spinors a„=
(a„t,a„~) satisfy at a„= 2S. Then, by means of the
Fierz identity it is easy to show that S„Sz
Tr(Pgt Q„Pgt Q„):,where
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(a„, —at, l
q

and, as usual, ::means normal order of the operators
inside. The operator-valued matrix Q„ transforms under
rotations as @„~g@„,with g eSU(2), which naturally
suggests the following invariant decomposition of (2):

(S 'Sy)HF = 4Tr(W y@ g )+ 4Tr(g QyWy )

2Tr—(W„yPWy„P) . (2)

The order-parameter matrix W„z is given by

B(x) = ) - ~~(q) —~
cos(q x)

2N ~q

while the Lagrange multiplier forces

) - p~(q) —A

2X
q

(5)

where B„'z——
2 (p at a~~) and A„=~ (Q g g,„g,„

One can see that

((s. S„)HF) = —,'T (W.,PW.*,P) = IB-,I'- I&-, l',

(3)

that is, A„~ and B„z measure, respectively, antiferro-

magnetic and ferromagnetic correlations between spins

at sites x and y. In the following we will assume

them to be real. Notice that (2) is also invariant un-

der the (local) right transformation Q„-+ Q„A„, with

A„= diag(e'~~ &, e '«1). This gauge invariance is bro-

ken in (3), which means that strictly speaking W„„must
be zero (Elitzur's theorem~~). The apparent contradic-
tion of taking W„„g 0 in the calculations has been re-

solved in Ref. 12 in the context of lattice-gauge theories.
As stated above, our interest is mainly focused on spi-

ral phases, i.e. , stable magnetic structures with a uniform

twist about some arbitrary axis n. For these structures,

in the classical (large-8) limit, A„„Ssin ~z
" and

B~y ~ S cos
&

" . Then, for finite systems the or-

der parameters satisfy periodic or antiperiodic boundary
conditions depending on whether +2 is a normal mode

of the lattice or not. Consequently, one must Fourier-

transform Bose operators as a„=~ Pk ak e' "
where o. = +, the k's are the normal modes correspond-

ing to periodic boundary conditions, and C} has to be
found by minimizing the energy. In momentum space
the Hartree-Fock Hamiltonian can be diagonalized by a
standard Bogoliubov transformation, giving the quasi-

particle dispersion relation u~ = [pz(q) —A]~ —p&2(q)

and ground-state energy EHF =
z P~ w~ + (9 + z) AN.

We defined q = k —&~,

pg(q) = —) J(x)B(x)e

and A is the I agrange multiplier that enforces (on aver-

age) the constraint condition on the number of bosons

per site. Consistency equations require

Let us pause at this point to discuss the differences

between our calculations and those of recent works using

the Schwinger-boson representation. First, we have

not referred spin operators to a twisted coordinate sys-

tem with its z axis pointing at every site in the pre-

ferred direction of the local spin. This is only a rnat-

ter of taste, but using a single (global) quantization axis

helps in keeping the simplicity of the calculations. Sec-

ondly, we made no use of identities generated by means
of the exact (operator) form of the constraint in order
to simplify the Hamiltonian. We avoid their use since

they are largely violated when the boson-number restric-
tion is taken only on average. Actually this is the ori-

gin of the additional factor 2 obtained by Arovas and
Auerbach in the zero-point energies of the S
nearest-neighbor Heisenberg model. Since for the antifer-

romagnet B = 0, A = 0.579, according to (3) we found a
ground-state energy EHF/2N = —A~ —0.335. Instead,

by using the identity: BtyB.y . +AtyA. y
——S2, these

authors obtained EHF/2N = S —222 = —0.420. These
values should be compared with the quantum Monte
Carlo result EMc/2N = —0.335. Notice that, after re-

moving the classical energy —S2 from both results, what
remains in the Arovas-Auerbach case is exactly twice our

value for the zero-point energies.
The third difference, and the most important one, con-

cerns our allowing of nonvanishing values for (S'„hS'„) in

the spiral phase, which is related to the parity-breaking
pairing of bosons (here the prime means that spin opera-
tors are referred to the local quantization axis mentioned

above). In Ref. 8, the condition (S„' h S„') = 0 is explic-

itly introduced into the theory as a way of determining a
privileged twisted reference system. This was interpreted
as a simple gauge-fixing device, with the gauge invariance

being associated to the independence of physics from the
referential. Actually, this is a strong requirement which

affects the results in a quantitative and even qualitative

way. In order to show this we have evaluated (3) for a
20-site lattice with and without such a condition, and the
results were compared with those of numerical studies of
the same model. As can be seen in Fig. 1, when the con-

dition is used the energies of the spiral phases are much

higher than the exact values. Moreover, it can be shown

that they are never lower than those corresponding to the
Neel and collinear phases. (For collinear magnets one has

{S'„hS~) = 0 automatically, so that, modulo the use of
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the above mentioned identities, our results and those of
Ref. 8 do not difFer. ) In fact, introducing this condi-
tion is equivalent to ignoring terms with an odd num-
ber of operators in the standard (large-8) spin-wave ap-
proach to helimagnets, which produces gaps at k = +Q,
therefore losing Goldstone modes. Their recovery in-
volves consideration of cubic spin-wave interactions that
lead to spin-wave binding. On the contrary, our calcu-
lations keep the correct zero-mode structure, producing
only gaps for the phason zero modes. This can be seen
from the fact that for N —+ oo the chemical potential for
bosons sticks to the value A = pii(&z) + p~(&z), which

leads to w(~~) = a(—+z) = 0. Since the Bogoliubov
quasiparticles have dispersion relations ei, = w(k —o 2 ),cl

we have gapless modes at k = 0, +Q. Notice that we

pay a price for this: For 8 —+ oo we do not recover the
semiclassical magnon spectrum of a helimagnet. We
stress, however, that the excitations in the Schwinger-
boson approach are not the conventional magnons. The
Schwinger-boson Hamiltonian is quartic in Bose opera-
tors, so that magnon-magnon interactions are incorpo-
rated into the theory already at the saddle-point order.
The excitations are built upon this interacting saddle-
point background, which, as shown numerically below,
seems to be a very good starting point for perturbative
calculations in the strong quantum regime. Gaussian and
higher-order fluctuation above the saddle point should
become important for S —+ oo, restoring the agreement
with semiclassical results. Finally, we would like to stress
an additional feature of our approach: For J3 = 0 the re-
sults obtained are exactly the same as predicted by Taka-
hashi's modified spin-wave theory, which is known to
reproduce accurately exact results for the J~-J2 model.

Numerical evaluation of Eqs. (4) and (5) involves find-
ing the physical roots of 12 coupled nonlinear equations
for the order parameters A(x), B(x), plus the additional

FIG. 1. Ground-state energy per bond for S =- 2. The
small dashed line is our result for the 20-site lattice; the long
dashed lines are the energies of the spiral phases when the
gauge-fixing condition of Ref. 8 is used. Solid points are exact
numerical values from Ref. 6. The labels (a, b) correspond to
the @ wave vectors which minimize the energy. The solid line
is our prediction for the infinite lattice.
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FIG. 2. Staggered magnetization per site in the Neel
phase and effective length of the rotating vector in the spiral
phase for S = 2.

constraint condition which determines A. On a finite lat-
tice this has to be performed for several choices of the
mode Q, in order to find the one which minimizes the
energy. For the infinite lattice the constraint equation de-
couples and only determines the magnetization, while
one has to add an equation for the (quasicontinuous) vari-
able Q. By means of the chain rule for derivatives it is
easy to show that such an equation is BA/ctQ = 0. In
the particular case Jz = 2Js, S = z, we have at our
disposal numerical results on finite lattices to compare
with. Figure 1 shows a remarkable agreement between
our prediction for the ground-state energy of a 20-site
lattice and the corresponding exact values. In the same
figure we have plotted the result for the infinite lattice,
for which quantum fiuctuations select the (vr, Q) phase
as the stable one. Notice also the missing segment for
0.38 + ~J 0.47 . In this region of parameter space no

1
solution of the proposed spiral form was found, which is
better understood by looking at Fig. 2. There we plot
M(Q), the efFective length of the rotating vector in the
spiral phase [for Q = (vr, vr) it corresponds to the stag-
gered magnetization in the Neel phase]. These values
can be obtained by straightforward generalization of the
calculations in Ref. 18, and are related to the long dis-
tance behavior of the spin-spin correlation function by
lim~„~~ ~(S„S„)—M (Q) cosQ (x —y). As can be
seen, for 8 =

z both Neel and spiral orders are melted
by quantum fiuctuations, leaving a window in the above
mentioned region where no obvious structure is present.
Our theory predicts a simple disordered phase with a
gap, though other more interesting possibilities have been
suggested in the literature (in the connection with super-
conductivity this phase should correspond to the sought
spin-liquid phase). It is clear, however, that this ap-
proach predicts no intermediate spin-nematic phases as
proposed in Ref. 9. Our ground-state wave function is
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an isotropic singlet, with long-range magnetic order ap-
pearing as a Bose condensation phenomenon. When the
local moment vanishes, the condensate disappears and
no long-range tensor order can be sustained.

In Fig. 3 we show the stability regions of the Neel
and spiral phases for general spin S. Hatched areas are
metastability regions for Neel and collinear orders (for
J2 = 2Js ( oo the collinear order is neither classically

FIG. 3. Phase diagram showing lines of stability (solid)
and metastability (dashed) for the difFerent phases. Hatched
areas are metastability regions for antiferromagnetic and
collinear orders.

nor quantum stable). For physical spins 9 & 1 the spiral
phase goes continuously to an antiferromagnetic order,
but, quite remarkably, for S =

&
there is a window be-

tween both phases where the ground state is disordered,
in accordance with Figs. 1 and 2. UVe stress here that this
result questions the reliability of semiclassical expansions
based on the large-S limit, ' which predict a narrow
disordered phase for finite but arbitrarily large S. How-
ever, the inclusion of random-phase-approximation fluc-
tuations might modify this part of the phase diagram,
bringing it in line with spin-wave and nonlinear o.-model
results. The observed window shrinks by reducing Js,
and finally closes at J3;„0.038'. For J3 ——0 there
is a large overlap of the (meta)stability regions of Neel
and collinear orders, with a first-order transition between
them, and no disordered phase even for S = ~. 6 However
the small value of J3;„lends some support to the sug-
gestion that dynamical generation of Js could produce a
disordered phase for the Ji-Jq model. 2o

In closing, we mention that other physical quantities
like the spin-spin correlation functions and structure fac-
tor have also been considered. For the structure factor
we found again very good agreement with exact values on
the 20-site lattice. These results, as well as a study of the
geometry-frustrated triangular lattice, will be presented
elsewhere.
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