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An atomic structure model of the decagonal A1CuCo quasicrystal is proposed. The matching rules re-
cently found by R. Klitziug et al. [Int. J. Mod. Phys. B (to be published)] for an abstract triangle tiling
are enforced by speci6c Cu (Co) ordering, reducing the symmetry to P10,/m. The model renders very
simple Kalugin's homology indices of (1,0) for Al and (0,1) for Cu (Co) and the "magic" Al composition
of ~ =0.618. Coupling of the chemical and phason disorders is suggested.

An atomic structure model of decagonal AlCuCo and
A1NiCo was proposed by the author' and then slightly
amended. It has been in good agreement with experi-
mental data (high resolution electron microscopy images
and x-ray diÃracto-grams ) available until recently.
Here I communicate further refinement of the model and
discuss its compliance with the latest experiments, name-
ly thorough examinations of equilibrium phase diagrams
of the decagonal AlCuCo (Ref. 7) and AlNiCo, as well as
the icosahedral AlCupe. These studies show that though
at elevated temperature the quasicrystalline phase is
stable in a rather wide region of compositions (usually,
about 10%), with the temperature lowered the region
shrinks to virtually a point (as small as 1% at 550 C, the
lowest reported temperature). This suggests existence of
a single magic composition, below referred to as
"stoichiometric, " where the stability persists down to
T =0. Many recent experiments indicate that specifically
quasicrystalline properties, from structural perfection to
low conductivity, are the most salient at this magic com-
position, making it the best candidate for the composition
of the ideal, defectless, "theoretical" quasicrystal. Ac-
cordingly, below the consideration will be restricted
mainly to this stoichiometric composition.

(I) AlCuCo and AINiCo are not completely isostructur
al. Until recently they have been believed isostructural
because their reciprocal lattices are identical and even in-
tensities similar. In fact, the two alloys could be iso-
structural if one did not care about which atomic posi-
tions are occupied by which chemical species. However,
recent experiments point to at least systematic Al to Cu
(Co) substitutions, which violate full equivalence. Indeed,
the stoichiometric composition of AlNiCo (Ref. 8) seems
to be A173(Cu, Co)z7. The Al content, 0.73, is closely ap-
proximated by 5r/(5r+3), leading to Kalugin's homolo-

gy indices of (5,0) for Al, (0,3) for Cu (Co) and (5,3)
overall (the latter is corroborated by the density data" ).
In A1CuCo the stoichiometric A1 content was isolated

within the 0.62—0.64 interval, suggesting the true value
to be r '=0.618. (Incidentally, the same r ' value for
the Al content was recently reported by Bancel in the
icosahedral AlCuFe. ) Combining previously obtained
(1,1) overall homology indices' with the r ' composi-
tion one could suggest (1,0) for Al and (0,1) for Cu (Co),
which are obviously different from the analogous num-
bers of AlNiCo. [Recall that (1,1) is equivalent to (5,3),'

leaving a chance for partial isotypism, up to Al —Cu (Co)
substitution. ] Kalugin s homology indices are a funda-
mental characteristic of a perfect quasicrystal (in
simplified terms, they show how many times atomic
motifs wind over the hypertorus' ); they are almost as
fundamental as the space group. In any event, two per-
fect quasicrystals cannot be equivalent if their homology
indices differ. Thus, despite apparently identical indexing
the two quasicrystals, A1CuCo and AlNiCo, are charac-
terized by different hyperspace atomic motifs. The fur-
ther refinement of the model' reported below is applica-
ble only to the structure of AlCuCo; no ideas have been
suggested about A1NiCo.

(2) From binary tiling to Klotz triangle tiling The pre-.
vious version of the model viewed the structure as a
specifically decorated binary tiling. " The tiling sites
were occupied by two decagonal clusters, small and
large. ' The model gave reasonable (1,1) overall
Kalugin's indices (which agree with the density data), but
unrealistic (13,7) for Al and (8,6) for Cu (Co) (further
denoted as M); the Al content was 60%. This prompted
me to pick certain M atomic positions and place Al
atoms there, changing individual indices to (13,8) and
(8,5), which are equivalent to reasonable values of (1,0)
and (0,1) under r defiation. ' In the perpendicular space
this substitution should correspond to minor redrawing
of the Al-M border. This task can be achieved in several
manners, but one method looks preferable, as will be seen
from what follows. These new atomic motifs are shown
in Figs. 1(b) and 1(c), accompanied with a corresponding
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real space image of Fig. 1(a). (At the current stage, one
pays no attention to symbols distinguishing Cu from Co;
their significance becomes apparent later; here Cu and Co
are still randomly mixed, as in Refs. 1 and 2.) The struc-
ture so defined possesses the desired (1,0) and (0,1) indices
for Al and M, respectively, and the Al content becomes

'=0.618. However, the small cluster loses its decago-
nal symmetry and the present structure

I Fig. 1(a)j is not a
binary tiling anymore. It can be viewed as a decorated
tiling of the plane by two Robinson triangles, with large
clusters sitting at the tiling sites. The current tiling, as a
mathematical object, without any reference to atomic
decoration, was introduced and extensively studied in
Ref. 12 and will be called below Klotz triangle tiling
(KTT), because it was obtained by "Klotz construc-
tion. " KTT is not equivalent to the canonical Penrose
tiling' and, in a sense, is even simpler than the latter:
the vertices of this triangle tiling are generated by a single
atomic motif, a regular decagon. ' The above statement
concerning the equivalence of this tiling decorated as in
Fig. 1(a) and the quasicrystal generated by the atomic
motifs of Figs. 1(b) and 1(c) is not just a result of a specu-
lation or a computer simulation, but a mathematically
rigorous statement (the proof will be presented else-
where). Lastly, it is worth noting that the equivalence

guarantees the uniqueness of the decomposition of a
given projected atomic pattern into triangle tiles, as in
Fig. 1(a). (The same property holds for other models dis-
cussed below. )

(3) Matching rules for Klotz triangle tiling and distin
guishing Cu from Co. The mathematical concept of
matching rules was introduced by Penrose' and later ap-
plied and further developed (see, e.g., Refs. 14—17). The
matching rules mechanism is regarded as a possible
mechanism of expanding specific local order over the
whole quasicrystal, thus establishing true long-range
quasiperiodic order. Though the undecorated Klotz tri-
angle tiling possesses many properties of "perfect" til-
ings, ' it lacks the local matching rules. (Technically,
even undecorated KTT can be obtained by matching
rules in Levitov's formulation' by specifying an atlas of
allowed local configurations; however, physical im-
plementation of these rules looks quite implausible due to
the rather large size of the configurations, which would,
in turn, require nonvanishing interatomic interactions be-
tween, say, 100th neighbors. ) However, complementing
sides and vertices of triangles with arrows, Klitzing et al.
recently managed to prove the existence of matching
rules for the arrow-decorated KTT. ' These rules are
shown in Fig. 3: when two triangles share a side, the ar-
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FICs. 1. (a) Decoration of the Klotz triangle tiling (l, the long
bond, is 19.6 A): 0, Al, A, Cu, 0, Co; empty symbols mark
z =+1/4 layer, full z = —1/4. The hyperspace atomic motifs
of the z =+I/O layer: (b) A=+2; (c) /i= —1 [6 gives the
coordinate along the commensurate hyperspace direction (Ref.
I)].

FICi. 2. Decoration of the tiling with l =7.5 A (the v

deflation of the KTT of Fig. 1), same notations as in Fig. 1.
True elementary cells are the smallest triangles; composite tiles
of the three subsequent inAatory steps are also shown. The de-

0
cagon side length in b is 2.44 A, the quasilattice constant.
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FIG. 3. Arrow matching rules and their representation by Cu
(Co) ordering (same notations as in Fig. 1). Only those M atoms
relevant to the matching rules are shown.

rows must be codirectional and the rim of arrows around
every vertex must be as in Fig. 3 (up to a rotation). If an
arbitrary triangle tiling satisfies these rules it is inevitably
a perfect quasiperiodic tiling which lifts up to the decago-
nal atomic motif with sharp boundaries. In other words,
local matching rules establish the long-range quasiperiod-
ic order. One is tempted to decorate triangles with real
atoms, so as (i) the atomic decoration is equivalent to the
arrow decoration of Fig. 3, (ii) the hyperspace motifs for
individual atoms are still simple and not numerous' and
(iii) the structure agrees with the experiment. This ap-
pears to be possible; one such decoration is shown in Fig.
1(a): just the above introduced atomic structure but with
a special chemical ordering of Cu and Co. The mapping
to the arrow decoration is seen in Fig. 3: clockwise ar-
rows correspond to Cu, counterclockwise to Co (or vice
versa, opening the way for antiphase domain formation).
Note that the matching of the on-side arrows translates
into the requirement: Two neighboring I atoms adja-
cent to the shared side must be unlike [Fig. 1(a)], which
reduces the number of short Co-Co bonds, the feature
often believed to lower the cohesive energy. The compli-
ance with the criterion (ii) above should be further dis-
cussed. What happens when one lifts individual atoms
up into the hyperspace? It turns out (read: the proof will
be published elsewhere) that Cu and Co separate from
each other simply occupying 36 wedges [Figs. 1(b) and
1(c)].

(4) Alternatiue decorations and inflation deflation -The.
decoration of Fig. 1 is not the only one consistent with
the matching rules of the KTT; several more have been
developed. Modifications could include systematic Al-M
permutations (no more substitutions, to maintain the r
Al content) as well as relatively small atomic displace-
ments (not to be mixed up with atomic relaxations, the
atoms must hop from one site of a Penrose-like network
to another, to preserve simple hyperspace motifs for indi-
vidual atoms'). Certain M atomic positions are not vital
for the matching rules and, therefore, allow Cu-Co substi-
tutions. Along with such redecorations which leave the
tiles unchanged the inAations or deviations of the trian-
gles themselves could be considered. Figure 2 exemplifies
an atomic structure, which is also a decoration of the
same KTT, but the triangles are r defiated compared to
those of Fig. 1(a), l =r 19.6 A =7.5 A. (Further

defiations lead to physically implausible atomic
configurations. ) The true building blocks of the new til-
ing are small triangles of Fig. 2(a); however, infiated com-
posite triangles are clearly visible, in full accordance with
the inAation-delation rules proved in Ref. 12. Note that
the decoration of the tiles of / =19.6 A can be viewed as
a special redecoration of the tiles of Fig. 1(a). However,
in Fig. 1(a) the 19.6-A tiles are the elementary cells, they
cannot be decomposed, whereas in Fig. 2(a) the 19.6-A
tiles are composed of 7.5-A tiles, the true elementary cells
of this tiling. From the point of view of local environ-
ments the atomic structure of Fig. 2(a) is no worse, as
well as no better, than that of Fig. 1(a): no large cavities,
no interatomic distance shorter than 2.3 A, etc.; it is hard
to prefer one to another without detailed cohesive energy
calculations or comparison with the x-ray data (see
below). However, the model of Fig. 2 has one advantage
over that of Fig. 1: the phason Hip in the former is much
simpler, and can be achieved mainly by small atomic dis-
placements, without long jumps, which are required for a
couple of atomic positions in the model of Fig. 1. This
property is thought to be important for enabling the ma-
terial to get rid of phason defects introduced during the
solidification. Lastly, lifting into the hyperspace results
in extremely simple motifs of Figs. 2(b) and 2(c) (the
proof will be given elsewhere).

(5) Space group, extinctions, and the experiment Un-.
fortunately, the general belief that A1CuCo and A1NiCo
are isostructural served us badly. The best experiment-
al results are obtained for AlNiCo. ' ' The data on
A1CuCo is limited to the HREM of Ref. 3 and the
single-crystal x-ray analysis of Ref. 4. The accuracy of
both is insufBcient to distinguish between the three mod-
els proposed above or the old version, neither is it
enough to confirm or rule out even a random binary til-
ing. Indeed, the calculated R factor quantifying the
difference between, say, the structure of Figs. 1 and 2 is
only 4%; at the same time the effect of the shift in com-
position is much more pronounced, as well as the effect of
the crystal imperfection. The set of the x-ray intensities
was collected in Ref. 4 from an as-cast sample of
A165Cu2oCo)5 composition, whereas we need A16z. More-
over, such as-cast samples were recently shown to be
structurally inferior: comp ositionally inhomogeneous,
strongly supersaturated, and unstable under heat treat-
ment; they even give the wrong space group (see below).
For this reason the standard comparison of the calculated
diffraction patterns for the above introduced models with
those measured in Ref. 4 is pointless; more experiments
on good quality samples, which have become available
since the completion of Ref. 4, are needed. Experimental
verification of the Cu-Co chemical ordering, suggested
above, looks even less plausible than distinguishing be-
tween different decorations: the calculated R factor be-
tween chemically ordered and disordered versions of, say,
Fig. 1 is less than 1%; anomalous x-ray or neutron
scattering is needed to resolve very low x-ray contrast be-
tween Cu and Co (Z =27 and 29, respectively). Never-
theless, circumstantial evidence could be obtained from
the extinctions. The separation of Cu and Co, as in both
Figs. 1 and 2, is inconsistent with the 20 mirrors which
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were present in the chemically disordered version. Recal-
ling the atomic arrangement along the periodic Z direc-
tion, the space group becomes P105/m or V(r ', h), c in
notations proposed by Mermin and co-workers. ' A
chemically disordered version gave P10s/mmc or
V(r'~, h, m)&o, as in Refs. 1 and 2. Note that the point
group of the reciprocal lattice remains unaffected by the
chemical ordering: it is 10/mmm for both ordered and
disordered versions. Characteristic extinctions for the
two space groups are (0000n), odd n, for the ordered
structure (the last index marks the periodic Z direction)
and, for the disordered structure, the whole lines between
the star vectors in odd-n layers are extinct. ' These ex-
tinctions are the subject of the old controversy: most
diffractograms (both x-ray and electron) available until
recently showed these lines extinct, testifying for
F10&/mmc, whereas Yamamoto et al. ' saw these forbid-
den rejections. However, it has been recently shown that
whereas in as-cast samples the referred lines are extinct,
in properly cooked samples of well controlled and homo-
geneous composition they rekindle, though very dim.

Summary. A structure of Fig. I should be preferred
over that previously suggested on the grounds of better
Kalugin's homology indices, more realistic stoichiometric
composition (namely, the ~ ' Al content), and better

compliance with the density data (both measured and cal-
culated are 4.7 g/cm ). However, this structure is not the
only one consistent with available experimental data;
several more, such as one of Fig. 2, could be developed.
To distinguish between them more experiments on better
quality samples are required. The recently discovered
matching rules for the Klotz triangle tiling' could be en-
forced by a special chemical ordering of Cu and Co. This
mechanism implies strong coupling between the phason
and chemical disorders: no chemical order, no matching
rules, no exact quasiperiodicity (i.e., smeared boundaries
of atomic motifs). Atomic coordinates in parallel space
as well as calculated diffraction patterns are available
upon request (burkov@physun. physics. mcmaster. ca).
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