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Exactly solvable model of flux creep in high-T, superconductors
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An exactly solvable model of flux creep in high-T, superconductors within the framework of both
thermally activated and quantum-tunneling flux-creep theory is presented in this paper. The activation
energy and crossover temperature between activated creep and quantum tunneling are explicitly ex-

pressed for an elastic flux line in a typical weakly periodical or quartic pinning potential involving a
viscous medium. The exact analytic expression of magnetic relaxation rate is derived for the full param-
eter range. These expressions are somewhat better because several superconducting mechanism-sensitive
parameters have been included. The present results are in reasonable agreement with the experimental
data obtained in high-T, superconductors.

The classical Anderson-Kim model of flux creep in
type-II superconductors predicts a linearly vanishing
magnetic relaxation rate at low temperatures and a mag-
netization that decays logarithmically with time. Recent-
ly, however, experimental data on high-T, superconduc-
tors' have shown that the magnetic relaxation rate
does not appear to extrapolate linearly with temperature
to zero at the lowest temperature and rolls over to a pla-
teau over a broad range of intermediate temperature.
The data have also shown that the nonlinear logarithmic
time decay of magnetization appears if the measuring
time is long enough. On the one hand, it is well known
that the Anderson-Kim model assumes thermal activa-
tion of flux lines over a net potential barrier in which the
hopping rate obeys an Arrhenius law. However, in
deducing magnetic relaxation expressions, most au-
thors took the same approximation of considering the
motion of flux along the Lorentz force direction without
taking into consideration the reverse motion. It is clear
that this approximation is not appropriate for high-T, su-
perconductors; however, the expressions of this approxi-
mation have been extensively used. Although many au-
thors ' have considered the two processes of flux creep,
the exact solution of the flux-creep equation has not yet
been worked out. On the other hand, the essentially
temperature-independent magnetic relation rate as T~O
suggests a quantum tunneling of flux lines. ' ' ' It has
been pointed out by Caldeira and Leggett' that in mac-
roscopic systems dissipation should have a strong
influence on the tunneling rate. Larkin and Ovchinni-
kov' and Ivlev, Ovchinnikov, and Thompson' have dis-
cussed the quantum tunneling at 6nite temperature in a
dissipative system and in a sufFiciently perfect layered
high-T, superconductor, respectively. In this paper an

exactly solvable model of flux creep will be presented.
The value of the activation energy is determined by the
saddle-point solution for the system with the traditional
periodic or quartic potentials. At low enough tempera-
ture where the thermal activation processes are frozen
out, the quantum-tunneling process for flux soliton
motion dominates the magnetic relaxation. The nonzero
eigenvalue is identified with the crossover temperature
where the crossover from the classical to the quantum re-
gime of motion takes place. The calculated relaxation
rate explicitly shows a temperature-independent plateau
or at least a flat maximum over a broad range of tempera-
ture, usually with a downward trend at lower tempera-
ture, but with a nonzero value at T =0. The present re-
sults also show a nonlogarithmic time decay of magneti-
zation.

It is usually assumed that the flux line sits at the bot-
tom of a potential well of depth Uo due to the pinning of
defects which, even without external current, lead to a
distortion of the flux-line lattice. Considering the
Lorentz-force-induced flux motion, the e6'ective well
depth becomes Uo(1 —J/Jo) and Uo(1+7/Jo) on both
sides of the flux line, respectively, where J is the current
density and Jo is the current density without thermal ac-
tivation. Based on both the Arrhenius law for thermally
activated hopping and the phenomenological supercon-
ducting equation for current-density decay in time, the
equation of net rate of flux creep can be written in the fol-
lowing form:

OJ . JUO Uo= —2k sinh exp
Bt 0 B B

(0~J~J, ), (1)
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where J, is the critical current density and k is the decay
coefficient which depends on the geometry of the experi-
ment. By integrating Eq. (1) with the initial condition

I

J(t =to)=J(to), the exact solution can be obtained,
which leads to an expression of the parameter-dependent
current density of the system,

ka T 1+X J(to»o
J(t)=Jo ln, X—:tanh exp

2(r —ro)
exp

Uo

k, T
(2)

where r=Joks T /k Uo is the hopping attempt time. The
normalized relation rate S for the current density J can
be defined as S—:—8 lnJ/i) lnt. From Eq. (2) it is found
that

2tX exp( —Uo /ks T)
S(T)=

r(1 —X )tanh 'X (3)

but t ((rexp(Uo/kiiT), Eqs. (2) and (3) can be reduced
to the usual Anderson-Kim formulas which have been
extensively used in the form

J(t)=Jo[1—(ks T/Uo)ln(t /r)],
S(T)=(kiiT/Uo)/[1 —(ksT/Uo)ln(t/r)] .

(4)

In order to get the expressions of activation energy and
crossover temperature and to describe the quantum-
tunneling process, we consider a Aux system in a pinning
potential involving a viscous medium. The e6'ective Eu-
clidean action A in real-Fourier mixed space without
external current takes the form'

A/kB T
A I dz I d'rI —e [a,u (z, 'r)]'+ V [ii (z, &)]]

k~ T/A d~+ dz —,'Mw +qw u zw . 6

Here the two-dimensional field u (z, r) describes a local
displacement of the Aux line in the z direction from its
equilibrium position in the xy plane, u (z, w) is its Fourier
transformation, M is the flux mass per unit length, and

,2/c pz is the friction coeKcient with H, 2 the
upper critical field and pz the normal-state resistivi-
ty. ' ' The exact expression for the elastic energy of the
Aux-line lattice has been obtained by Brandt and Sudb@. '

Their results showed that the line tension in the isotopic
local case given by e&=(@o/4m', ) 1n(A, /g) is anisotropic
and weakly nonlocal, where No=bc/2e, and A, and g are
the London penetration depth and Cxinzburg-Landau
coherence length of the xy plane, respectively. From
Refs. 15 and 16, we are familiar with the finite tempera-
ture formalism for the problem, in which the upper limits
of the integ rations with respect to imaginary time
v.= —it, ' and its Fourier counterpart, frequency u, ' are
taken to be finite and given by hlkiiT and ksT/A, re-
spectively, as indicated in action (6). The pinning poten-
tials V traditionally considered are'

In particular, if Uo ))k~ T, the reverse creep is negligible.
At long times,

Uo
t ))~exp 1—

k~T

and

V~(u) = Vosin (~u /L ), periodic, (7)

V~(u)= Vo[(u/L) f (u/—L ) ], quartic, (8)

where the quantity Vo determines the scale of the height
of the potential barrier, L is the hopping length of the
fiux, and f is the nonlinear coeKcient. By variation of
the action (6) with u and u, the Euler-Lagrange equation
of motion can be obtained as

2L
uo(z) = g 'exp vr

2Vo z —zo
1/2

and

L
uo(z) =

i
sech

2VO z —zo
1/2

(12)

Let u (z, r) =uo(z)+u i(z, r) and assume u, (z, r) «uo(z),
we are able to determine u, (z, r) from uo(z) by perturba-
tion. From Eq. (9) one gets the equation for u, (z, r),

eiB„u, (z, r) —V„"[uo(z)]u, (z, r)

=V[(Mw +kiwi)u, (z, w)] . (13)

This is an eigenvalue equation. For the quartic potential,
it has one eigenfunction

u i(z, r) = Lsech—2Vo z —zo
1/2

r

To
cos 2'

T

with eigenvalue (crossover temperature)

(14)

Ag
2k M

24M Vo1+ —1gI
This describes the quantum-tunneling process for Aux sol-
iton motion at 0 & T ~ To. The tunneling frequency for
the barrier of height Uo(1 —J/Jo) can be written as

e,B„u (z, t) V'[u (z—, t)] =9'[(Mw +g~w~)u(z, w)], (9)

where V is the Fourier transformation operator.
The stationary function u (z,0) = uo(z) satisfies the

equation

eiuo (z) V [uo( )]=0
For potentials (7) and (8), the soliton solutions of Eq. (10)
with the conditions uo(zo) = ,'L and L/f—',respectively,
are
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FIG. 1. Normalized time-logarithmic current-density decay
rate S—:—8 lnJ(t)/0 lnt vs temperature T for high-T, supercon-
ductor Y&Ba2Cu307 with T, =90 K.

FIG. 2. Reduced current-density decay 3(t)/J(to) vs re-
duced logarithmic time ln(t /to) for high-T, superconductors at
T =20 K.

v~exp[ —Uo(1 —J/Jo)/k&TO] . (15)

Similarly, an expression for normalized quantum-
tunneling relaxation rate S&T is obtained, which takes the
same form as Eq. (3) but with Uo/k~T replaced by
Uo /kii Tp. Since kii Tp « Uo SqT is simplified as

k~ To
SqT ~

Uo t to + /Ok~ To /k Uo
(16)

It is obvious that S&T does not strongly depend on tem-
perature. Therefore at sufficiently low temperature, as
long as S&T)&S, the decay rate is temperature indepen-
dent and remains finite down to zero temperature.

The value of Uo is determined by the stationary solu-
tion. Substituting Eqs. (7) and (11) and Eqs. (8) and (12),
respectively, into Eq. (6), the expressions of activation en-
ergy for the periodic and quartic potentials can be ob-
tained, respectively, as

Uo( T)= (2Voei )'21
(17)

Uo( T)= (2 Voei )'
3

(18)

From Uo(T) ~
e&

~ 1/A, (T), one has Uo(T)
=Uo(0)(l —T/T, )'~. As a numerical estimation, we
choose Uo(0)=20 meV, ' JO=J(to), kto/J(to)=0. 025,
and T, =90 K in high- T, superconductor Y&BazCu307.
At fixed time t =1.60to, S(T) is calculated from Eq. (3)
for T» To (say, To=4 K) and from Eq. (16) for T & To
and the result is shown in Fig. 1. It is seen that the curve
has a Hat maximum in the range of S=0.021 —0.024 over
a wide range of T=15—60 K, with a nonlinear dropoff
around T= 8 K, and, particularly, with an essential
temperature-independent relaxation rate at the lowest
temperatures, which are in good agreement with the ex-

periments. Meanwhile, Fig. 2, according to Eq. (2) at
fixed temperature T=20 K, gives the relationship be-
tween the reduced current density J(t)/J(to) and re-
duced logarithmic time ln(t/to). A nonlinear logarith-
mic time decay of current density over both a long and a
short time is clearly shown. This behavior has also been
observed experimentally. '

In summary, we have presented the exactly solvable
model of fiux creep in high-T, superconductors within
the framework of both thermally activated and
quantum-tunneling Aux-creep theory by exactly treating
the magnetic relaxation rate, quantum tunneling, and ac-
tivation energy. The theoretical results show a Oat max-
imum magnetic relaxation rate over a broad range of
temperature where the reverse creep is not negligible, a
nonlinear downward trend at low temperature, in which
the Anderson-Kim creep is of major significance, and a
temperature-independent nonzero value at T =0 where
the quantum tunneling is dominant. The results also
show a nonlinear logarithmic time decay of current densi-
ty at high temperature. These are all in reasonable agree-
ment with the experimental data obtained for high-T, su-
perconductors.

Note added. We recently became aware of Refs. 21 and
22 which obtain the similar solution (2) of the Anderson-
Kim model (1).
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