
PHYSICAL REVIE% B VOLUME 47, NUMBER 18 1 MAY 1993-II

High-frequency linear response of anisotropic type-II superconductors in the mixed state
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Effective-mass anisotropy is incorporated into a self-consistent phenomenological theory of the high-

frequency electrodynamic response of type-II superconductors in the mixed state. The theory accounts
for two-fluid effects, including a possible anisotropic normal-fluid contribution, in addition to nonlocal
vortex interaction. The approach, applicable to the modeling of a wide range of complex response func-

tions, is illustrated in the calculation of the complex penetration depths and surface impedance for uni-

axially anisotropic type-II superconductors.

The inQuence of moving vortices upon the electro-
dynamic response functions describing the behavior of
isotropic type-II superconductors in the mixed state has
been self-consistently described. ' In the context of
such a phenomenological theory the isotropy refers to
that of the Meissner response. That is, for an externally
applied magnetic field below the lower critical field, the
superconductor expels it from the sample interior in-
dependent of the field orientation. Alternatively, shield-
ing supercurrents Qow equally well in all directions in the
bulk of the sample. Because important classes of type-II
superconductors are anisotropic, an extension of this pre-
vious theory is required. Prominent among such super-
conductors are the high-T, cuprates, which are well ap-
proximated as being uniaxially anisotropic owing to their
layered structure. In this description, conduction of su-
percurrents is much easier in the ab plane, corresponding
to the copper-oxide sheets, perpendicular to the e axis.
In this paper we include in the model of high-frequency
coupled electrodynamics a general Meissner response an-
isotropy by way of an effective-mass tensor or its
equivalent.

Anisotropic sup ere onductors exhibit striking elec-
trornagnetic properties. Among the static properties is
that a vortex in an anisotropic superconductor has a
transverse magnetic field when it is not aligned along a
principal axis. In addition, it is possible for vortices tilt-
ed away from a principal axis to experience a mutual at-
tractive force in such a material when the intervortex
spacing is of the order of the London penetration depth.
Further quantities that have been investigated in aniso-
tropic superconductors include the critical fields, the
torque between two vortices, and the elastic constants of
the Qux-line lattice. ' '

Effects of anisotropy have been suspected in a number
of rf experiments. ' The theory presented here can pro-
vide a tool in the analysis of such experiments since we
include (a) not only an anisotropic Meissner response, but
also the complicating angular dependence resulting from
an obliquely oriented static field, and (b) a description of
the coupling to an anisotropic normal fluid response
which is essential at high temperatures.

After presenting a description of our governing equa-
tions we concentrate on the modeling of superconductors
with uniaxial anisotropy due to the practical usefulness of

this case. Thus, these results depend upon two general
vectors: one describing the orientation of the vortex lat-
tice and the other the anisotropy axis. Sources of anisot-
ropy in the vortex dynamics are mentioned but not stud-
ied in detail.

In the presence of anisotropy the London equation
modified to include vortices may be written in terms of an
effective mass tensor M. The components of the mass
tensor come from certain averages over the Fermi surface
involving the gap parameter. " Using matrix-vector nota-
tion we have'

1 pa-
Ppg 17

Here j, is the local supercurrent density, a the local vec-
tor potential, y the phase of the macroscopic order pa-
rameter, A, the geometric mean penetration depth, and Pp
the Qux quantum. We develop a two-Quid model wherein

j,=j—j„, the total current density j is given by
Ampere's law (ignoring the displacement term5'3), the
normal current density j„=o'„p, and e is the local elec-
tric field, where we have introduced a normal-Quid con-
ductivity tensor. We may then perform the curl opera-
tion on Eq. (l) and a local averaging over several inter-
vortex spacings to obtain the equation

1 7 x (QV x S)—7x (Q&„,E)=-
Pp

(2)

where the unit vector kp gives the local vortex direction.
In Eq. (2) the continuum areal density n has resulted
from the average of a sum over 5-function contributions
representing the vortex lattice. Equation (2) is equivalent
to a generalized diffusion-London equation derived in
Ref. 5 in the isotropic case. The superconductor electro-
dynamics are completed with Faraday's law to describe
the coupling to the macroscopic electric field and a vor-
tex equation of motion to describe the coupling to the
density n.

Generally the vortex lattice response itself is nonlinear,
nonlocal, and anisotropic. ' In this study we wi11 treat
only the nonlocality, taking for the vortex displacement
u=i(P„/co) f, where P„ is a scalar dynamic mobility ' '
and f is the Lorentz force per unit length of vortex.
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=—5„VX(koX[(VXb)XBo]) . (3)

In the following we considerably simplify the normal-
fiuid (E field) term in Eq. (3). Taking the approximation—1o'„z=constM, we have M&„~=o.„~, the scalar normal-
fiuid conductivity, which, in turn, allows us to write the
normal-fiuid term as —poA. 0 „rb. Introducing the
normal-fiuid skin depth 5„&=(2/porvo „&)', this term be-
comes 2iA, 5„z b in linear response, as we are considering.
More general expressions for an electrical conductivity
tensor can be found in Ref. 17. Anisotropy in the
material's Fermi surface can lead to anisotropy in the
conductivity. The approximation we have employed
breaks down in the presence of significant quasiparticle-
scattering-time anisotropy. We additionally specialize
Eq. (3) to the case of uniaxial anisotropy, taking for the
efFective-mass tensor and its inverse

M-k =&
I +&»k

M k '=5;I, —[r/(1+r)]v, vk,
(4)

where r is a measure of the anisotropy. The inverse mass
tensor is easily identified with a superelectron density ten-
sor. The form (4) has a ready geometric interpretation
since v; are the components of the anistropy axis
( v~ =1). When v corresponds to the c axis in
YBa2Cu307 &, r is in the approximate range 30—50 while
in this case for Bi,Sr2CaCu, O, +z, I" is approximately
3000. These values come from vortex-lattice decoration,
transverse magnetization, and oscillator measurements. '

Using Eq. (4), we have a single partial differential equa-
tion for 1 suitable for uniaxial superconductors with sca-
lar vortex mobility,

More generally, p, must be taken as a tensor. For in-
stance, the viscous drag force is anisotropic' as is the
pinning force. ' In this study the introduction of a third
tensor will be avoided; in the final results it should be
borne in mind that the scalar mobility cannot fully de-
scribe the lattice dynamics.

Using the vortex continuity equation it is possible to
express the right-hand side of Eq. (2) solely in terms of
the rf magnetic induction b=B—Bo. The result is con-
veniently expressed in terms of the complex-valued
vortex-motion skin depth (which includes the effect of
fiux creep) 5„,=(2B~Pott„/poco)' . ' We then have

—A, V X (1&V Xb )
—b+ poA, V X (1&&„&E)

perconductor (see Fig. 1). The time dependence of b(x, t )

has been taken to be exp( —icot ); its spatial dependence is
taken to be of the form b(x) =f, ( x)y +f2(x)z. Substitut-
ing this form into Eq. (5) gives coupled second-order or-
dinary differential equations for the field components f,
and f2, which we write in the form

af", +Pf, +cf2 =0,
df 2'+pf2+cf", =0,

(6a)

(6b)

where a prime denotes diQ'erentiation with respect to x.
The coefficient p is given by p=2i A5„& . 1, —reducing to
—1 at low temperatures (where the normal-fiuid response
in negligible). The functions f, and f2 satisfy the four
boundary conditions

f, (0)=0, f2(0) =bc,
lim f, (x)=0, i.=1,2 .

(7a)

(7b)

D(s):—(ad —c )s —p(a+d )s +p =0 . (9)

The discriminant of Eq. (9) is 6= [(a —d ) +4c ]P .
Then its solution is

p(. +d)+~ ~

S+ =
2(ad —c )

The respective sine transforms off, and f2 are

(10)

The coefficients a, c and d in Eq. (6) depend upon the
components of the vectors Bo and v. Due to the semi-
infinite geometry, it is useful to employ either the Laplace
or Fourier sine transform to solve the system (6). It is ad-
vantageous to use the sine transform because of the form
of the boundary conditions (7). Of immediate interest in
this paper are the complex penetration depths X (Refs. 2,
3, 4, and 5) resulting from Eq. (6). Letting s be the trans-
form variable, we write

f(s)= J f(x)sinsx dx (8)
0

for the Fourier sine transform. As we identify s with—I/X2, 19 the squares of the negative reciprocal complex
penetration depths are given from the solution of the
quartic equation '

(2iA5„& 1),b+A,—V b A, rV X [(v—v)VXb]

=—5„VX(B X[o(VXb)XBo]) . (5)

We illustrate the solution of Eq. (5) in semi-infinite
geometry, which is useful in the modeling of surface im-
pedance. In finite thickness geometry our methods are
useful in the description of magnetic permeability, vibrat-
ing reed, oscillator, or other experiments involving vortex
dynamics.

Proceeding as in Ref. 5, the rf field is chosen to lie
along the z axis, and x measures the distance into the su-

FIG. 1. geometry of the semi-infinite anisotropic supercon-
ductor with an oblique applied static magnetic field. The mag-
netic Aux density Bo, rf magnetic field hh&=zh, &, and anisotropy
axis v are indicated. In this instance the anisotropy axis makes
an angle 0 with respect to the surface normal. The vector Bo is
inclined at the angle u with respect to the x axis and its projec-
tion on the yz plane is at an angle l( with respect to the z axis.
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f, (s) = —boPcs /D (s),

f~(s ) =bos [(ad —c )s —Pd ) /D (s) .

be inverted for general a, p, c, and d. The results are

boPc —is+ x —is xf (x)= —
»2 (e + —e ), (16a)

Suppose that the anisotropy axis v lies in the xz plane,
v, = —cos8, v, =sin8. (This is the plane formed by the
surface normal and the driving magnetic field. ) Then the
coefficients in Eq. (6) are

f2(x) = b 0 lS+ X lS X
e ++e

a =A, (1+r sin 8)+—5„,(SO„+BO2 ), (12a) P(a d ) is—+x —is x+ (e + —e )g1/2 (16b)

g —2 w P.
~vc~py~pz2

d=X +—5„(SO„+Bo,),VC

giving

a+d =A, (2+r sin 8)+—5„,(l+Bo ),

(12b)

(12c)

(13a)

Now that the magnetic induction has been found, all oth-
er electrodynamics fields and densities can be determined.
Ampere's law yields the total rf current density while
Faraday's law gives the total electric field E. By knowing
E, the surface impedance matrix Z, =R, —iX, can be cal-
culated in terms of the complex penetration depths:

5/P = —
—,'5t, (1—Bo )

+k r sin 8[A, r sin 8+i5„,(BO~ Bo,)], —

ad —c =A, (1+r sin 8)+ A, r sin 85„—(BO„+So,)

+ —I, 5„(1+Bo„)——,'5„,BO„.
2

&13b)

(13c)

Z~'= E (0)S
0

PpCO

2
1 1 P(a —d)

S g1/2
1 1

(17a)

a =A, (1+r sin 8)+—5„,(SO„+Bo ),UC
(14a)

Recall that in the isotropic case (r =0) b, is a perfect
square and the denominator in Eq. (10) can be factored,
resulting in simplifications in the form of the squared
complex penetration depths. In the anisotropic case,
note the additional angular combination which occurs in
b, ~ sin a cos2$ (see Fig. 1 for the components of Bo). In
Ref. 9, real penetration depths A, , A(1+r sin 8)'~ were
obtained for an anisotropic one-Quid model in the ab-
sence of vortices. When there are no vortices (5„=0)
and no normal fiuid (5„& =0, P= —1), our result (10)
reduces to this special case.

If the anisotropy axis lies in the yz plane (v~ =cos8,
v, =sin8), we find the coefficients

pocopcZ"= E (0)=-s b z
0

1 1
(17b)

The vortex density n can be found for anisotropic super-
conductors from Eq. (2) once B=Bo+b is known.

In this paper our phenomenological theory of high-
frequency electrodynamic response was illustrated in the
calculation of the complex penetration depths and sur-
face impedance for uniaxially anisotropic type-II super-
conductors. The geometric generality of the results in-
cludes the complicating effect of an oblique static mag-
netic field. The extension to model biaxial superconduc-
tors is straightforward: the effective-mass tensor in Eq.
(4) is replaced by

c 5vc8pyBpz A, r sinO cos8 (14b) M =I+r 1 v1 vi + r2v2@ v2,

d=A, (1+r cos 8)+—5„(BO +Bo,),
2

(14c)

whereas if v is in the xy plane (v =cos8, v =sinO) we
have

a =X'+ —'5'„,(8,'.+8'„),VC
(15a)

c =—'5'„S„8„,vc Oy Oz (15b)

d = A, (1+r sin 8)+—5„,(ko„+So, ) . (15c)

By noting the sine transform of the sum and difference of
two exponential functions the transforms in Eq. (11) can

where I is the 3 X 3 identity matrix and the two vectors v1
and v2 are orthonormal. The self-consistent coupling of
current density and vortex displacement was extended to
the case of anisotropic superconductors. The theory ac-
counts for two-Quids effects, including a possible aniso-
tropic normal-Quid contribution, in addition to nonlocal
vortex interaction. The normal-Quid contribution allows
the results to be continuously valid through the upper
critical field or the transition temperature, for then the
effective complex skin depth 5„, associated with vortex
motion and Qux creep vanishes and the complex penetra-
tion depth becomes proportional to the normal-state skin
depth. At T„ the governing tensor equation (3) or (5) it-
self becomes the normal-state diffusion equation. Al-
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though presented here with a scalar dynamic mobility,
the vortex dynamics nonetheless simultaneously includes
the e6'ects of pinning, Aux fIow, and Aux creep. Our ap-
proach is applicable to the modeling of a wide range of
complex response functions including the rf magnetic

permeability, inductances, conductivity, and transmission
and reAection coefficients.
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