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Zeeman effect of the energy levels of Fe + in diluted magnetic semiconductors
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We present a study of the magnetic-field dependence of the energy levels of Fe + in a wurtzite diluted
magnetic semiconductor. We limit our considerations to transitions in the infrared region of the elec-
tromagnetic spectrum. The Hamiltonian of the ion has been diagonalized to fourth power in the param-
eter ~A, ~/6, the ratio of the strength of the spin-orbit interaction A, to the splitting 6 arising from the
tetrahedral component of the crystal potential. We make no a priori assumption concerning the relative
strengths of A, and the parameters describing the eC'ect on the crystal field of the trigonal distortion. The
parameters describing the Fe + ion in CdSe are obtained from near-infrared absorption data at zero
magnetic field by Udo et al. [Phys. Rev. B 46, 7459 (1992)]. With these values we make a comparison
with the electronic Raman-eff'ect data obtained by Mauger et ai. [Phys. Rev. 8 43, 7102 (1991)]as func-
tions of the intensity and direction of an applied magnetic field.

I. INTRODUCTION

Following the intense investigation of the Mn-based di-
luted magnetic semiconductors' (DMS), i.e., compounds
of the form 3, Mn 8 where A and 8 are elements of
the groups II and VI of the periodic chart, respectively,
recent interest has concentrated on materials containing
other transition-metal ions. In this paper we are con-
cerned with the energy levels of Fe + occupying a cation
site in a II-VI wurtzite semiconductor. In particular we
focus our attention on the properties of Cd& Fe Se.

We have previously reported a study of Fe + and Co +

in both zinc-blende and wurtzite crystals using perturba-
tion theory. However, in view of the recent experimental
results of Udo et al. , it became obvious that the results
of Ref. 2 should be extended to include higher-order
terms in perturbation theory and a treatment of the spin-
orbit interaction and the trigonal distortion on an equal
footing. The results of Ref. 3 were concerned with the
absorption in the near infrared in zero magnetic field of
Fe + in both CdTe and CdSe. A number of transitions
were identified which will be described briefly in Sec. V
and are discussed in detail in Ref. 3. Studies of the elec-
tronic Raman spectrum of Cd& „Fe Se as a function of
magnetic field were carried out by Mauger et al. Refer-
ence 4 is concerned exclusively with the Raman transi-
tions between the ground state of Fe + and the next two
electronic excitations which occur in the far infrared.
The energy-level structure obtained in Ref. 3 also allows
one to determine the position of the Raman lines in zero
magnetic field.

In Sec. II we derive the 25 X25 Hamiltonian matrix of
the ground term D of Fe + in a crystal potential in the
presence of an external magnetic field. The 25 wave func-
tions that we use are obtained from symmetry considera-
tions using group-theoretical techniques. The diagonali-
zation of the Hamiltonian in the framework of perturba-

tion theory forms the scope of Sec. III. No a priori as-
sumption is made regarding the relative strengths of the
spin-orbit interaction and the trigonal distortion, which
are treated on an equal footing.

Section IV is concerned with corrections arising from
the mixing by the spin-orbit interaction of states originat-
ing from the orbital ground multiplet with excited levels.
Finally, in Sec. V, we give some applications of the
theory developed in the preceding sections. In particular,
we show how perturbation theory can provide invaluable
information about the phenomenological parameters A,

and the crystal-field constants. We develop an iteration
technique which, combined with the experimental results
of Udo et al. , allows us to get a first estimate of the pa-
rameters characterizing Fe + in CdSe. These are, later
on, refined by numerical diagonalization of the Hamil-
tonian matrix. We then use these values to present a
comparison with the Raman spectra of Mauger et al.

II. HAMILTONIAN MATRIX FOR Fe +

IN A WURTZITE CRYSTAL IN THE PRESENCE
OF AN EXTERNAL MAGNETIC FIELD

The total Hamiltonian for a particular term (defined by
L and S) of an ion in a crystal potential V„and in the
presence of an external magnetic field of induction B is

H =Ho+ V, +AL S+p~B (L+2S),

where Ho is the Hamiltonian of the free ion excluding the
spin-orbit interaction, kL S, and in the Zeeman interac-
tion we approximate the electron g factor, taking it to be
equal to 2. The terms in the Hamiltonian (1) have been
written in order of decreasing magnitudes.

We suppose that the most important part of V, is
tetrahedral with principal axes x,y, z and that in wurtzite
there is a small distortion along [111]which we call the
trigonal axis g. The site symmetry of the magnetic ion is
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V, = V, (Td)+ V, (C3, ),
where

(2)

V, (Td)=a'g —
—,', (35$—30/, r, +3r, )

then C3, . In a system of coordinates $, 21, $ with g~ [112],
@~[110],and g]~[111],the crystal potential takes the fol-
lowing form: '

where P„(p=2, 1,0, —1, —2) are the eigenstates of the
projection of the orbital angular-momentum operator L
along the g axis. vo belongs' to 1,(C3, ), whereas the
pairs (u„u, ) and (v„v, ) belong to I 3(C3, ); the sub-
indices 1 and —1 indicate that they behave as

(—/+i') and p, -g irl,—respectively, under the
operations of the group. Before proceeding further we
evaluate the matrix elements of V, in the states given in
Eqs. (7). We obtain'

and

V, (C3, ) = —,
'b' g (g;+21; —2g; )

+ g (35$, —30/, r, +3r; ) .
I

(3)

(4)
and

(u, / V, /u, ) =(u,
/ V, /u, ) = ——",a+

15

&, i V, i, &= —" —2b —-',

&., Iv, lu, &=&u, IV. u . &=,.+b+",
15

(u, / V, iv, ) =(u,
/ V, iu

The summation over i extends over all the electrons in
the 3d shell. The trigonal distortion V, (C3, ) is small
compared to V, ( Td ). However, it is necessary to include
the effect of V, (C3„) in the description of the energy lev-
els of the magnetic ion. The question that arises then
concerns the order of magnitude of V, (C3, ) compared to
that of the other terms intervening in the Hamiltonian
(1). This question and its consequences will be discussed
in detail in Secs. III—V. For the time being we make no
assumption regarding the relative orders of magnitude of
the crystal potential, the spin-orbit interaction, and the
Zeeman interaction, and derive the expression of the
Hamiltonian matrix in the D ground manifold of Fe +.
To evaluate the matrix elements of the crystalline poten-
tial we use, as in our earlier work, ' the method of
operator equivalents introduced by Stevens. ' In this for-
malism one replaces $, 21, $ by appropriate combinations
of the components of the angular-momentum operator in
such a way that the new expressions transform exactly as
the original ones under the operations of the symmetry
group of the site. This yields

V, (Td ) =a( ,'L& —", L&+ —",—)+ —{L'++L ',L&] (5)

and

V, (C3, )= b(2 L—t)—c( ,', L ——"L—+—')—

—
(

2 )1/2y + 3
—1/2y

—
(

2 )1/2y 3
—1/2y

uo 0o~
—3

—1/2y (
z )1/2y

3
—1/2y +( 2 )1/2y

(7)

where {u, u ]
= uu + uu and a, b, and c are phenomenolog-

ical parameters" to be obtained from experiment (see
Sec. V).

For the orbital states we choose the wave functions
which diagonalize V, (T„). (See Table VI of Ref. 2, with
cosa =3 ' . ) They are

=&v, iV, iu, )=&v, /V, iu, )

——2 1/2 b ——
3

In order to include the effect of the spin-orbit coupling
and the Zeeman interaction in the D manifold, we start
from a basis of 25 wave functions which are appropriate
combinations of orbital and spin states. Let
y„(p =2, 1,0, —1, —2) be the spin states. They are
classified under the operations of C3, as follows:

Xo+ ~$

X& X—&&I 3

x 2,
—x2 I3 ~

The choice of the second I 3 pair and the order of the
functions are mandated by the need to have two sets of
functions generating I 3(C3, ) in identical unitary form.
The total wave functions are combinations of u;, U, and
y„(i = 1, —1;j = 1,0, —

I;1M =2, 1,0, —1, —2), which can
be obtained using the Clebsch-Gordan coefFicients for
C3„. They are given in Appendix A together with their
symmetry classification.

In the absence of an external magnetic field, the 25 X 25
Hamiltonian matrix splits into a 5 X 5, a 4 X4, and two
identical 8X8 submatrices, corresponding to the I &, I 2,
and I 3 states, respectively. The Zeeman interaction
mixes I, with I'2 when B is along the trigonal axis g, and
I, with I 3 when Blg, contrary to the statement in Ref.
4. The Hamiltonian matrix in the presence of an external
magnetic field can be decomposed into blocks of the form
M„(p,v=a, g, y'+', y' ') corresponding to the wave
functions a;, f3, , yk+', y'k ' (i =1,2, . . . , 5j =1,2, . . . , 4;
k =1,2, . . . , 8) given in Appendix A. The submatrices
are given in Appendix B. We note that the 25X25 Ham-
iltonian matrix is Hermitian and that the diagonal blocks
have dimensions 5, 4, and 8, respectively. The off-
diagonal submatrices are rectangular matrices whose di-
mensions are obvious from their description in Appendix
B. Calculation of these matrices is simplified by the use
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of the time-reversal operator T. We note that

Ta, =a, ; T/3, =/3, ;
(+) (+ )

ya

(i =1, . . . , 5 j =1, . . . , 4;k =1, . . . , 8) so that

&y(+)JL Jy(
—

)& — &y(
—

)(L [y(+)&e

Here L+ =L&+iL„.

III. PERTURBATION THEORY

The 25 X 25 Hamiltonian matrix derived in Sec. II can,
of course, be diagonalized numerically. Such a diagonali-
zation has indeed been performed and we will discuss its
result in Sec. V. However, a numerical diagonalization
does not give a physical understanding of the experimen-
tally observed phenomena, e.g. , optical absorption, mag-
netization, or Raman-scattering measurements, and
reduces the determination of the phenomenological pa-
rameters A, , 6=6a, b, and c to a matter of sheer guessing.
We will show that perturbation theory, on the other
hand, provides useful physical insight, invaluable infor-
mation about the parameters, and can even, when used
with sufficient care and in the appropriate situation, give
an accurate description of the experimental results. Even
in those cases when it is not sufficiently accurate, it en-
compasses all the experimental features.

The starting point of the perturbation formalism is
based on information on the relative strengths of the vari-
ous terms intervening in the Hamiltonian (1). Of particu-
lar interest are the relative orders of magnitude of the
spin-orbit interaction and the trigonal distortion. They
are not known a priori but assumptions can be made re-
garding their strengths. The results obtained under these
assumptions can be compared to the experiments and the
phenomenological parameters extracted on a self-
consistent basis. Such "feedback" provides information
on the validity of the initial assumptions and, in turn, on
the strength of the trigonal distortion. The results ob-
tained from perturbation theory can then be refined by
the numerical diagonalization.

In a previous work, we had assumed that the trigonal
crystal field was much smaller than the spin-orbit interac-
tion, so that V, (C3„) could be treated as a perturbation
on the spin-orbit-split states. The resulting corrections to
the energies of the 25 lowest levels of Fe + obtained in
this framework are given in Tables VII and VIII of Ref.
2. The validity, limitations, and usefulness of this type of
perturbative formalism are discussed in Sec. V, taking the
case of Fe + in CdSe as an example. From this first ap-
proach it can be inferred that greater accuracy would be
obtained for the energies of the levels originating from
the lowest orbital multiplet if the spin-orbit interaction
and the trigonal field were treated on the same footing.
The Zeeman interaction is still assumed to be small, a
good approximation for magnetic fields below 60 kG
since for this field p~B ~ 3 cm

We calculate the energies of the ten lowest levels of
Fe + as a function of B for two orientations of the mag-
netic field with respect to the trigonal axis. V, (Td ) splits
the orbital term into a doublet I 3 and a triplet I 5, each
having a fivefold spin degeneracy. We neglect, for the
time being, corrections due to mixing with the levels orig-
inating from the I 5 multiplet. These form the scope of
Sec. IV.

When B~~g, in the I 3 manifold of Fe +, the Zeeman
interaction mixes the states a„a3, P„and ((33. The
second-order perturbation matrix is

6A, (2+-,'x+-,'x ' —M), (9)

where

—1+x
21/2

2 Lv 0
0 —2iv

Lv

2lv

1+x 2'
21/2 x

(10)

F.; = — (2+ —,'x+ —,'x —p ),
with

p =p;+v (Sp; —6p;x+5x +4) g (p; —
p, )

JWl

(i j =1, . . . , 4) . (12)

The p s are the eigenvalues of (10) in the absence of a
magnetic field (v=0) and are given by

p, z (x ) = —
—,
' + —,

( [9—4x +4x ]
'

corresponding to the two I 1 states and

(13)

p~3(x)= —p, z( —x) (14)

corresponding to the I 2 states.
A magnetic field parallel to the trigonal axis also mixes

the I 3 levels among themselves. The y', —+', y3
+—', y7

—' per-
turbation matrices are

[2+—'x N+ ], —6k.
(15)

where

+ v —2x/3
0

3
—1/2

0 3
—1/2

+2v+4x/3 —( —')'~' (16)

Here x =(3b —c)/3~A,
~
=(r/~A,

~
is essentially the ratio of

the trigonal field splitting and the spin-orbit splitting,
whereas v=((M&86/3A, ) is the ratio of the Zeeman in-
teraction to the spin-orbit splitting. In the absence of an
external magnetic field B the energies can be calculated
exactly and the effect of B is obtained solving by iteration
the secular equation corresponding to the Hamiltonian in
Eqs. (9) and (10). The energies of the two I, and two I z

states originating from I 3 are then of the form
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TABLE I. Energies of lines I, IIa, IIb and model parameters in cm

Experiment

E
Err.
Errb

2375.4
2362.8
2358.0

Perturbation

k= —93.3
6=2546. 1

b =12.5
c = —28. 1

2375.4
2362.8
2358.0

Theory
Exact

A, = —94.0
6 =2550.6

b =28.0
c = —22.0

2375.4
2362.8
2358.0

Mauger et al. (Ref. 4)

A, = —95.3
6=2620
b =17.5

c = —39.3
2453. 1

2440.2
2435.6

6A, (2+ —,'x —p, ) (i = 5, . . . , 10), (17)

which can easily be diagonalized. The energies of the
three lowest I 3 states are then of the form

p, 2(x)= —
—,'(1 7o——79o. )

+ —,'[9(1—3o —27o )

—4x(1 —3o —27o )+4x ]' (21)

where and

p5 6(v)= —,'x+ —+ [1+(x+3v/2) ]'i (18) p3~(x)= —,'(1+3 o+45o )

p8 9(v) =p5 6( —v),
and

(19)
+ —,'[9(1 cr ——15o )

+4x(1—o.—15o )+4x ]'i (22)

$7 10 (20)

When the magnetic field is perpendicular to the trigonal
axis all ten lowest levels are mixed. The energies at B =0
are, of course, known from what precedes and the effect
of the magnetic field can be included as a perturbation. E~ 8= — (2+ —,'x —p~ s), (23)

A similar procedure can be followed to include the
corrections proportional to o. in the energies of the E'3

states. The lowest I 3 level splits in a magnetic field into
states with energies

IV. CORRECTIONS DUE TO MIXING
OF THE I AND I ORBITAL STATES

BY THE SPIN-ORBIT INTERACTION

where

P s, s Ps, s+Pi~+P2O + ' ' (24)

The spin-orbit interaction A,L-S mixes the states associ-
ated with the I 3 and I ~ orbital multiplets, giving rise to
corrections proportional to powers of the parameter
o = A, ~/6, . These corrections were taken into account,
for example, in our study of the magnetic properties of
Fe + in cubic zinc-blende crystals, and are shown to be of
importance by optical-absorption studies. ' They have
thus to be included in our study of Sec. III. For this pur-
pose we first diagonalize the matrices in Eqs. (10) and (16)
when x =v=0, then apply the corresponding unitary
transformation to the complete matrices and include the
corrections in cr on the diagonal using, for example,
Table III of Ref. 9. When the magnetic field is along g,
the energies of the I

&
and I 2 levels are still given by Eqs.

(11) and (12) but now

p5 and ps are given in Eqs. (18) and (19), and the expres-
sions of the coefficients p& and pz are shown in Appendix
C.

V. APPLICATIONS

The theory developed in Secs. II—IV provides the
framework for the interpretation of experimental obser-
vations such as optical absorption, Raman scattering,
or magnetic-susceptibility' studies. The constants k, 6,
b, and c are taken as phenomenological parameters to be
determined from the experiment. We show in this sec-
tion how perturbation theory can be used to provide a
first estimate of the parameters which, in turn, can be
refined through numerical work. We take the case of

TABLE II. Matrix M of the Hamiltonian in the states a; (i = 1, . . . , 5).

cxr

CX2

a4
a~

0
—&2(sr+ A, )

0
2A

2&3K,

—&2(rc+ A, )

hr+A,
—2A,

0

0
—2A,

0
&2( —~+2k)

0

0!4

2k
0

&2( —~+2k)
61—2A,

0

2&3K,

0
0

b, 2
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TABLE III. Matrix M&13 of the Hamiltonian in the states P;
(i =1, . . . , 4).

P3

TABLE V. Matrix M & of the Hamiltonian between the
states a;(i = I, . . . , 5) and P, (j = 1, . . . , 4). Each element has

to be multiplied by i @&=ip&B&.

1

P2

3

p4

0
—v'2(~+ k)

0
—2k

—v'2(sc+ A, ) 0
61+1, 2A.

2A, 0
0 v'2( —a+ 2A, )

—2A,

0
v'2( —a+2K, )

61—2A,

A1

A2

CX3

CX4

A5

2
—v'2

0
0
0

—v'2
3
0
0
0

0
0

—4
—v'2

0

0
0

—v'2
—3

0

c= ——'b .4 (25)

Furthermore, in second-order perturbation theory, the
energy difference between E», and E»b js simply

E»b =4 8 cm

or using Eq. (25), we get

—,
'o.b =1.6 cm

(26)

(27)

It should be noted that E»a E»b =4.8 cm ' is in agree-
ment with the results of magnetic-susceptibility measure-
ments by Mahoney et al. ' and of Raman scattering by
Mauger et al. , which yield 4.6 cm ' for the energy

our values of A, , 6, b, and c, we calculate the magnetic-
field dependence of the two Raman lines observed by
Mauger et al. and compare our results to the experi-
ment.

The optical-absorption spectrum of CdSe: Fe + in Ref.
3 was obtained with incident light polarized either in the
direction of or at right angles to the trigonal axis. Three
lines are observed at energies E, =2375.4, E», =2362.8,
and E»b=2358. 0 cm ', which are attributed to transi-
tions between the electronic levels of isolated Fe + ions.
They are interpreted as transitions between the three
lowest states of Fe + and the lowest I 5 state originating
from the excited I 5 orbital multiplet and splitting into
I

&
and I 3 of C3, in the presence of the trigonal distor-

tion.
The line at E& =2375.4 cm ', which is a I

&

—+I, tran-
sition for light polarized parallel to g, occurs at the same
energy as the I

&

—+I 3 transition allowed with polariza-
tion perpendicular to g. From this we conclude that the
lowest I, and I 3 levels of the I 5(Td ) multiplet are not
split significantly by the trigonal potential. This implies
(using the energies in Table VIII of Ref. 2 and within the
approximations made there) that

difference between I 2 and I"3. In addition, the order of
the levels, namely that I 3 lies higher than I z, is con-
sistent with magnetic-susceptibility studies' and leads to
the condition b )c/3. Equations (25) and (27) will give b
and c once o. is known. We use E& and E», to determine
o. and A. We have

and

E, =f (o )5+rr (28)

E„,=g (o )b, +1r(1+4o ),
where

(29)

and

f (o )
—

1 3o + 138 ~2 4866 ~3 1 427946 ~4+. . . (30}
5 125 3125

g(o )=f (o. )
—6cr (1—So.—35o ) . (31)

X(1—Srr —35cr )
' (E, —1r) (32)

where for E, and E», we substitute the experimental
values. The iteration procedure converges rapidly to
rr =0.036657. From Eq. (28), for example, we then get
b, =2546. 1 cm ' and A, = —93.3 cm ', whereas Eqs. (25)
and (27) yield b =12.5 cm ' and c = —28. 1 cm '. This
gives the orders of magnitude of X, h, b, c as well as the
signs of b and c. Note that the value of A, we just ob-
tained is close to the free-ion value, namely —103 cm
We take these values of the parameters as our starting
point for the numerical diagonalization and finally obtain
refined values from the numerical fit. The best fit is ob-

Eliminating b, from Eqs. (28) and (29), we obtain a rela-
tion for o. which can be solved by iteration, namely

o =[—,'f(cr }(E,—E„,+41ro )]'~

TABLE IV. Matrix M (+) (+) of the Hamiltonian in the states y'; —' (i =1, . . . , 8)

~ (+)(+)r r
(+)

yl
(+)

y2
y3

(+)
y4

(+)
ys

(+)
y6

(+)
y7

(+)
y8

(+)yl

+ 2Eg
&2( —~+k+ e()

0
0
0

—2A,

0
v'6X

y'-+'

v'2( —a+ A. -+ eg)
b1 —k+ e(

0
0
0

—v'2A,

0

(+)
y3

0
0

+4eg—v'2(]a+ 2k+ e~)
2A,

0
0
0

(+)
y4

0
0

—v'2(sc+ 2A, +a~)
61+2k, +5eg

v'2A,

0
0
0

(+)
y5

0
0

2A

&2k
a2+2m~

0

v'3k

y( )

2A
—&2A,

0
0
0

62+ 4@~

0
0

(+)
y7

0

0
0

0
0

—&2(~+ e~)

y(+)

0
0
0

v'3A.

0
—v'2(~+ eg)

61+e~
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TABLE VI. Matrix M (+) of the Hamiltonian between the states u; anday-
yk

+—'(i = 1, . . . , 5;k = 1, . . . , 8). Each element must be multiplied by e+ = —'p~B+.

M (+)

A1

CX2

A3

CX4

CX5

(+)
1

0
v'2

—2v'2
0
0

y2-+'

—v'2
0
0

—2&2
0

(+)
y3

2v'2
0
0

v'2
0

(+)
y4

0
2v'2
—&2

0
0

y5

V'2

1

0
0

2&6

(+)
y6

0
0

v'2
1

0

(+)
y7

2v'3
0
0
0
2

(+)
y8

0
2v'3

0
0

tained with A. = —94.0 cm ', 5=2550.6 cm ', b =28.0
cm ', and c = —22.0 crn ', in close agreement with the
result of perturbation theory. With these parameters the
lowest I 3 and I, levels originating from the I 5(Td)
manifold are separated by 0.55 cm '. Table I shows a
comparison between theory and experiment for the ener-
gies of lines I, IIa, and IIb. The second column shows the
results of perturbation theory whereas the third displays
the numerical values of E„E»„E„bwith the appropri-
ate parameters. For comparison we also show the results
obtained using the parameters given by Mauger et al.
We see that the latter are not able to account for the
optical-absorption data. Figures 1 and 2 show the
magnetic-field dependence of the energy levels of Fe + in-
volved in the transitions discussed above for two orienta-
tions of the magnetic field with respect to the trigonal
axis. With the parameters A, = —94.0 crn ', 5=2550.6
cm ', b =28.0 cm ', and c = —22.0 cm ' we also cal-
culate the behavior of the two Raman lines observed by
Mauger et al. as a function of magnetic field. The re-
sults are shown in Figs. 3 and 4 together with the experi-
mental points of Ref. 4. The reasonable agreement be-
tween theory and experiment provides a further check of
our values of k, 6, b, and c.
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APPENDIX A

We give the wave functions of the 25 lowest states of
Fe + as a combination of the orbital states u;, v

(i =1,—1;j =1,0, —1) defined in Eqs. (7) and the spin
states y„(@=2,1,0, —1, —2). They are obtained using
the Clebsch-Gordan coefficients appropriate for C3„sym-
rnetry and can be classified as follows:

a, =2 ' (u)g, +u tg, ),
a2 2 ' (uty i+u &yt),

a, =2 '"(—u, y, +u,y, ),
a4=2 ( —V1X2+ v 1X 2),

—1/2

&s =voto

which belong to I, of C3„

P, = —2 '~ i(u, y, —u, g, ),
Pq — 2 ' i (uter &

—u &g&),

P3=2 '~ i (u, y2+u, y 2),
P4=2 ' i(v&g +2v tX 2),

belonging to I 2 of C3„and

V1 + ~ ~1X~] ~

(+)——
~2 + V %1X+1 ~

=&+1X+2 ~

(+)—

(+)—
T4 =v+1X+2 ~

(+)—
Xs =voX+»

V6 —voXT2 ~

(+)—

y(+) —g

y( ) —v

TABLE VII. Matrix M ~+ ~
of the Hamiltonian between the states P, and

Py( )

yk
—'(j = 1, . . . , 4;k = 1, . . . , 8). Each element is to be multiplied by + i e~.

M (+)Py—
(+)

y1

0

—2&2
0

(+)
y2

V'2

0
0

—2v'2

(+)
y3

2&2
0
0

—v'2

(+)
y4

0
2&2
v'2
0

(+)
y5

v'2
1

0
0

(k)
y6

0
0

v'2
1

(+)
y7

—2v'3
0
0
0

(+)
y8

0
—2v'3

0
0
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TABLE VIII. Matrix M (+) ( ) of the Hamiltonian between the states y&+' and yk '(k =1, . . . , 8).
Each element is to be multiplied by e+.

M (+)(—)r y

(+)
y1

(+)
y2

(+)
y3

(+)
y4

(+)
ys

(+)
(+)

y7
(+)

y8

yl

0
0
0
0
2
0

0

y2
'

0
0
0
0

v'2
0
0

2v'6

y3
'

y4

0
0
0
0
0

v'2
0
0

y5

2

0
0
0

0
0

y6

0
0
2

—4
0
0
0

y7
'

0
0
0
0
0
0

—2

y8

0
—2v'6

0
0
0
0
2
0

y,'.
+—' belongs to the first (second) row of I 3 of C3„, i.e.,

they behave as —(g+i2)) and (g i2)), —respectively, un-
der the operations of the group.

APPENDIX B

The submatrices M (p, v=a, P, y(+', y( ') of the
Hamiltonian in the states a;, P~, and y&
(i =1, . . . , 5;j=1, . . . , 4;k =1, . . . , 8) of Appendix A
are given in Tables II—VIII in terms of the parameters
A, , a=b —c/3., b, , =b, +tc, b,2=141+a.—3b —(4c/3),
e&=p~B&, and e+=p~B+/2=ps(B&+iB„)/2. In
Tables II, III, and IV the constant term

—(18a/5)+(7c/15) has been removed from all diagonal
matrix elements.

APPENDIX C

and

23+5 5, 8 +5,8+ P5, 8+6,9
Pi

ps, s(ps, s
—

p6, 9)

%'e give the coefficients p& and p2 intervening in Eq.
(24) in terms of the energies p5, p6, ps, and p9 of Eqs. (18)
and (19). They are

(p6 9 2p5 s )p1+(p5 s+p69 4)p1 30 41p5 s 2p6 9+18p5 s 44p69 92p5 sp6 9
P2

p5, 8(p5, 8 p6, 9)

and

—(10/7)'/ [ Y4(0;,P;)—Y4 '(0;,P;)]]

V, (C5, )=( 4b'/3)(2r/5)'"(r') —gYz(01~4)

+(4c'5r'/'/45)(r ) g Y4(0;,P;)

where the angle P is referred to [112]. In Ref. 4 the azimuth

See, for example, Diluted Magnetic Semiconductors, Semicon-
ductors and Semimetals Vol. 25, edited by J. K. Furdyna and
J. Kossut (Academic, Boston, 1988).

2M. Villeret, S. Rodriguez, and E. Kartheuser, J. Appl. Phys.
67, 4221 (1990).

M. K. Udo, M. Villeret, I. Miotkowski, A. J. Mayur, A. K.
Ramdas, and S. Rodriguez, Phys. Rev. B 46, 7459 (1992).

4A. Mauger, D. Scalbert, J. A. Gaj, J. Cernogora, and C. Benoit
a, la Guillaume, Phys. Rev. B 43, 7102 (1991).

5Note that Mauger et al. (Ref. 4) use a different set of axes,
namely g])[21 1], @([011],and g]([111]. This gives rise to a
change in sign in the second term of Eq. (3). This is most
easily understood if one writes Eqs. (3) and (4) in terms of
spherical harmonics. We have

V, ( Td ) = ( —ga'm'"/45) ( r ')

X g [ Y4(0;,P;)

(('1 is referred to [21 1] and is shifted with respect to that in the
present work by —m. /3, which changes the sign of Y4 and

3

M. Villeret, S. Rodriguez, and E. Kartheuser, Physica B 162,
89 (1990). Note that in Table VIII of this reference there are
the following obvious misprints: the last term in ez' should
read —5' ~U, 1) and the wave functions 5I', 5z', 55' belong to
r, .

M. Villeret, S. Rodriguez, and E. Kartheuser, Phys. Rev. B 41,
10028 (1990); 42, 11 375(E) (1990), where a trivial numerical
error in Fig. 2 of this reference is corrected. See also Refs. 8
and 9.
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a (
5

)
—1/2(t4) A O

28 4

~1(5/ )1/2( r2 )Bo

c (
5

)
—1/2(r4)B0

14
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We describe the irreducible representations according to the
nomenclature in G. F. Koster, J. O. Dimmock, R. G.
Wheeler, and H. Statz, Properties of the Thirty Tiu-o Point
Groups (MIT, Cambridge, MA, 1966).

' Using Ref. 11, we can express the matrix elements in Eqs. (8)
in terms of the constants A4, B~, and B4 used by Mauger
et al. (Ref. 4), i.e.,

&uII V, lu& &
= &u I V, lu, &= —

&
—(r &1 —A + 'B ) —.3

2&m.

&uol V, luo&= —13(r'&a,'+&5&r'&B20+3(r~)B4O),
7&~

&u, i V, iu, &=(u,
i V, iu

—(3(r )A~ ——'V5(r )Bz ——'(r )B4) .
7&m

The nonvanishing off-diagonal matrix elements are all equal

to

&uilV, lu&)= — —&
—&5(r')B', +-,'(r')B,') .

7&2

It is interesting to note that these matrix elements are identi-
cal to those of Eqs. (11) of Ref. 4 but they have been calculat-
ed not with the wave functions given in Eqs. (8) of Ref. 4 but
with the wave functions in Table VI of Ref. 2 with
a=are cos(3 ' ). The difference in sign between
(u, ~ V, ~u, ) and Eq. (14) of Ref. 4 is due to the choice of g
axis to measure the azimuthal angle. We also remark that the
symmetry assignments in Fig. 1 of Ref. 4 and in their text are
incorrect (see, e.g. , Ref. 2 for the correct assignments).
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