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One-dimensional t-J and Hubbard models in a staggered field
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The influence of the staggered magnetic field h on properties of the one-dimensional t-J and Hubbard
models with nearly half-filled bands are studied. Using the exact diagonalization method for small sys-
tems as well as analytical approaches possible in the anisotropic model and for h ))t, we determine the
phase diagram of the t-J-h model at low doping, which displays three difFerent regimes: the phase with
repelling holes for J &J„the phase with paired holes for J, &J & J„and the phase separation for J)J, ,

Employing for h&0 the analogy with the universal behavior of one-dimensional interacting fermions
within the Luther-Emery regime, we calculate the charge exponent K~, which can be K ) 1 in the pair-
ing regime, indicating dominant superconducting fluctuations. An analogous analysis, in particular the
perturbation expansion in t/h, performed for the Hubbard t -U-h model shows a phase of stable hole
pairs for U & U, . Again K seems to approach a nonuniversal value at half-filling.

I. INTRODUCTION

In recent years there has been an intensive search for
purely electronic models with repulsive electron-electron
interactions, which would exhibit the superconductivity
(SC) or at least strong SC pairing fiuctuations within the
ground state. These investigations have been motivated
by the discovery of high-temperature SC and unusual
normal state properties in layered copper oxides, which
are representatives of such strongly correlated systems. '

Although one-dimensional (lD) models cannot allow
for a long-range SC ordering, they are very instructive in
the way to find scenarios for the possible SC in higher di-
mensions (in particular 2D) systems. Moreover 1D sys-
tems of interacting fermions are much better under-
stood, since they can be classified into some universal
classes and characterized with few parameters. Of in-
terest in particular is the charge exponent K, which
in the 1D system with dominant SC fluctuations should
be K ) 1. So far only few repulsive correlated models
with the latter regime have been found. It has been
shown that within the prototype t-J model K ) 1 ap-
pears only at large J)2t in the narrow region before the
onset of the phase separation (PS). ' The regime of dom-
inant SC correlations can be moved to J & t by allowing
for longer-range spin exchange, still the qualitative be-
havior is expected to remain that of the Luttinger
liquid ' with K =

—,
' approaching half-filling. On the

other hand, a much more pronounced SC regime has
been found in the dimerized t-J model and in the extend-
ed Hubbard model, which can be in certain regimes
mapped onto the attractive Hubbard model.

In a recent Letter the present authors have introduced

and analyzed 1D t-J and Hubbard models in an external
staggered field h, which also shows a possibility of SC
pairing near half-filling. The motivation to study such
models comes clearly from 2D (or higher dimensional)
correlated systems, which exhibit long-range antiferro-
magnetic (AFM) ordering at half-filled band, but also
quite long-range AFM correlations away from half-
filling. Staggered field h induces such ordering also in 1D
and thus simulates some 2D effects. It, e.g. , introduces in
lD effects known from the studies of 2D (or higher di-
mensional) systems, e.g., the spin-string phenomenon, ' a
substantial mass renormalization, "hole pair formation, '

while the main difference remains in an entirely 1D
motion of charge carriers. It has been demonstrated that
the finite field h&0 has a dramatic effect for few holes
added to the reference AFM insulator, in particular it
leads to the appearance of bound states of two holes in a
broad range of model parameters. This can be demon-
strated analytically for the simplest anisotropic t-J, mod-
el, as well as for the t-J model and the Hubbard model at
large h ))t, while for the more challenging h & t regime
conclusions are based mainly on the exact diagonaliza-
tion results for small systems.

The aim of this paper is to present in more detail and
extend the analysis for 1D t-J-h and t-U-h models. One
evident question is the phase diagram for the stability of
bound hole pairs in both models. Since in the t-J-h mod-
el no bound states can appear at J (J, (h), while at
J)J, ( h ) hole binding coexists with the PS into a hole-
rich and a spin-rich phase, hole pairing is restricted to
the intermediate regime J, &J &J, . Boundaries of the
latter could be determined mainly from the study of small
systems. For the t-U-h model there is no indication for
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PS, so by analogy bound pairs are expected for
U(U, (h). This is confirmed by a recent Hartree-Fock
analysis of the problem, ' where also a simple explanation
for pairing in terms of h-induced bound soliton-
antisoliton excitations has been given.

Another goal is to classify properly the behavior of
models at finite doping and determine the character of
charge density and SC pairing correlations. Since h&0
introduces a spin gap and destroys the spin rotation in-
variance we claim that the universal behavior should be
that of 1D interacting fermions within the Luther-Emery
regime, with a single, i.e., charge exponent K which
determines the long-distance correlations. Here K ) 1

would indicate dominant SC Auctuations, so it is of im-
portance to study also the dependence K (n) on the elec-
tron concentration n at fixed h and J (or U). Note that at
h =0 both models have the universal value K
(characteristic for spinless fermions) when approaching
both half-filled, n = 1, as well as the empty band, n =0. '

We show that h&0 can lead to a nonuniversal value
K W —,

' at half-filling.
The organization of the paper is as follows. In Sec. II

we analyze the stability of hole pairs and hole clusters in
the anisotropic (Ising) and the isotropic t-J-h model.
Both analytical approaches, mainly for the anisotropic
model, and results of the exact diagonalization of small
systems are used to establish thresholds of the hole pair
stability J, (h) as well as of the PS separation J,(h). Sec-
tion III is devoted to the study of scaling properties of
the t-J-h model at general doping, which belongs to the
universality class of the Luther-Emery model. The single
relevant (charge) exponent K is calculated and shown to
have a nonuniversal value on approaching half-filling, al-
lowing also for dominant SC fluctuations. In Sec. IV we
study the pair stability within the t-U-h model by using
the degenerate perturbation theory in h ))t regime. Nu-
merical results within the t-U-h model for the pair stabil-
ity and K at general n are presented in Sec. V.

II. HOLE PAIRS AND CLUSTERS
IN THE 1D t-J-h MODEL

In the following we study the 1D t-J model in a stag-
gered external field h:

H= tg(c;+, ,—c;,+H. c. )

+Jg[S +,S + —,'y(S;+,S; +S;+,S;+)

mean-field-type decoupling of magnetic exchange be-
tween chains forming a 2D or higher-dimensional corre-
lated system. Here, the main underlying assumption is
the existence of the AFM long-range order even in the
presence of mobile holes. On the other hand, for main
physical implications a milder requirement, that the in-
terhole separation is smaller than the AFM correlation
length, seems to be sufFicient. Still the correspondence
with 2D (or D )2) is far from evident since the particle
motion remains entirely 1D.

The most transparent case, although not trivial at finite
doping, is the anisotropic Ising (t-J, -h) model with y =0.
Holes introduced by doping the reference AFM (in this
case the Neel spin configuration) behave as spinless fer-
mions (sf)—holons, with their motion only shifting the
background spins. The effective model for holons can be
written in general as

Hi, = —tg (a;+,a; +H. c. ) + W,

where now a; (a, ) are holon (sf) operators and the poten-
tial term 8' still depends on the spin background
configuration. To avoid unnecessary complications in 8'
in the following we restrict ourselves to long chains with
open boundary conditions (bc).

For a single hole NI, =1 introduced far from boun-
daries in a Neel spin state (with initial total S, =0), the
system has S,=+—,

' and contains one spinon, which ex-
plicitly shows up as an AFM domain wall (DW) if the
hole moves from the origin io. Since spins, shifted by the
hole motion, are opposite to the staggered field, the ener-
gy 8'can be represented in terms of a spin string poten-
tial,

W =Eo + —,
'

(J+ h ) +g V( i i o )n, , —

(3)

where Eo is the reference (AFM) energy and
n; =a,ta;=1 —n; is the hole density operator. The addi-
tional term —,J outside the origin is the spinon (DW) ener-

gy. Note that in Eq. (3) and further on we assume h )0.
The potential problem for N& = 1 can be easily solved and
leads for h )0 always to a localized holon-spinon bound
state. The solution is particularly simple in the case
h, J« t, where one can introduce the continuum approx-
imation (i~x) for the wave function (wfl V(x), with the
corresponding Schrodinger equation

,'n;+, n; j —hg( ——1)'S
d2—t 4+hlrl%=@&%, e, =Ei —

—,'J+2t .x' (4)

where c;,(c;, ) are projected fermionic operators, taking
into account that the double occupancy of sites is not al-
lowed. n; and S, are corresponding local fermion number
and spin operators, respectively. By introducing y as a
separate parameter we allow for the generalization of the
usual (y= 1) isotropic t Jmodel to an a-nisotropic y&1
model. Although in the above model h has been intro-
duced as a fictitious external staggered (AFM) field, the
same effect can be as well obtained by performing a

The lowest solution is symmetric 4( —x) =%(x) and can
be represented in terms of Airy functions, so that

Ei = 2t+ —,'J+1.102(th )'—
and the characteristic radius of a bound state (polaron) is
g~(t/h)' '.

For two holes, N& =2, or in general for an even number
of holes N& =2N introduced into a Neel state, the for-
mation of spinons is not necessary. Remaining within the
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Ã —1
P

=1 ip= Ip+1 Jp

(6)

provided that proper ordering of the hole positions is
satisfied i, & ji . &i~ &jz . &iz &jz . W' in Eq. (6)

P P

consists of the intrapair potential contribution with

V(r) = h (r —1)——,
' J5„, , r )0, (7)

and the interpair contact attraction, due to the fact that
two adjacent holes break one exchange bond less than
two separate holes. The same eftect results in the second
term in Eq. (7). It is also evident from Eq. (6) that due to
the ordering requirement and due to the long-range
string potential the problem of more pairs N & 1 be-
comes nontrivial and is not tractable by usual analytical
methods for interacting fermion systems.

Analyzing the ground state for N& =2 we notice that
bound hole (holon-holon) pairs, as determined by the po-
tential equation (7) for X = 1, are well mobile, in contrast
to the localized solution for NI, =1 in Eq. (4), and their
ground-state wf in an infinite system is delocalized with a
we11-defined pair total momentum q =0. Hence the
N& =2 problem again reduces to a single particle prob-
lem. The quantity determining the stability of bound
hole pairs is the pair-binding energy

eb —E2 —2E1+Eo,
where we compare the excitation energy E2 —Eo of a
holon-holon pair with energy 2(Ei Eo) of two separa—te
holes, i.e., two holon-spinon pairs. Within the continuum
approximation we get for the pair wf (with respect to the
relative coordinate) 4'(x )0) an equation analogous to
Eq. (4) by replacing t +2t, ei~e2=E—2=4t. Due to the
hard-core hole repulsion we require 4(0)=0, so that
@2=2.945(th )'~ and

S, =0 manifold these configurations can be reached from
the initial one, where holes are introduced as tight-bound
nearest-neighbor (NN) hole pairs. In this case W can be
written as

N

W=EO+N (J+h)+ g g V(j i~—)n n,
P Pp=1 i,j

J)J„due to the energy cost J, Eq. (9), which arises from
the two additional spinons for separate holes.

Explicit expressions for e& can be obtained also for
h ))t, where the perturbation expansion of E„E2 (Ref.
14) in powers of t/h can be performed, starting with the
localized hole and the NN local hole pair in a Neel state,
respectively. Apart from the broken bond term the
lowest nontrivial contribution to eb comes only in the t
order, i.e.,

J 2(2h J)t-= ——+
2 (h + —,

' J ) (2h + —,
' J )

(10)

4.0

so that J, /t -4(t /h ) (& 1 in this regime.
The complete critical line J,(t) interpolating between

both regimes, is presented in the phase diagram, Fig. 1.
Note that we get J, &0.24t for arbitrary h )0, J, being
far below the appearance of the PS.

To distinguish the pairing phase with separate hole
pairs from the PS where pairs collapse into a cluster, di-
viding the system into a hole-rich and a spin-rich phase,
we have to study the ground state with at least Nz =4.
The calculation of the ground state, reduced to Eq. (6) for
few bodies bound by strings, still cannot be treated
analytically. We solve it numerically by the exact diago-
nalization on a system of N=30 sites. The criterion for
the onset of PS is the clustering energy

6=E4 —2E2+Eo,

being 6 ~ 0 for two separate pairs, and 6 & 0 for a bound
cluster. The PS line J,(h), as determined by b, =0, is also
presented in Fig. 1. We notice that at h &t the numerical
curve J, (h) joins smoothly the point J, (h =0)=4t,
known exactly by mapping the t-J, model onto the XXZ
spin model.

One can again treat analytically the h ))t regime. For
J)J, pairs become very tightly bound, due to the steep
increase of the potential in Eq. (7). They appear as hole
dirners hopping by one site with an e8'ective
t =t /(h + —,

' J) and interacting with a contact attraction,
so that an efI'ective dimer model can be written

eb=0. 909()/th )' —J . (9)

The bound hole pair is characterized by eI, &0, hence the
binding appears for J)J, =0.909(Vth )'~ in the h ((t
regime. Note however that the above analysis applies
only for h )0. h =0 is a singular point, since here g= ~
and the concept of a hole pair is meaningless, at least for
J &t. Nevertheless, the binding appears also for h =0
due to the contact attractive term in Eq. (7), however this
instability coincides with the onset of PS at J=4t.
From the above results the origin of hole pair stability,
which remains qualitatively valid even for the isotropic
y=1 case, can be explained as follows. Finite h )0 al-
lows the hole pair to form a bound state (with the charac-
teristic size g'), while the pair becomes energetically favor-
able relative to two separate holes (holon-spinon pairs) at

3.0

2.0
Hole pairs

1.0

Unpaired holes

1.0 2.0
J/t

3.0

FICx. 1. Phase diagram of the t-J, -h model at low doping.

4.0
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Hd = tQ—(b, +,b, +H. c. )+ —,
' g U(i j—)p, p~,

for ~i
—

j~ =1,
U(i —j)= . —

—,'J for ~i
—j ~

=2,
0 for )i —j~)2,

(12)

2y Jt
(h + —,

' J)(2h + —,
' J) (13)

with the minimum at the wave vector q=~/2. Eo and
E2 do not get linear contributions in y, so the leading
corrections in the h ))t regime appear to be

where b; (b, ) and p, now refer to dimer creation (annihi-
lation) and number operators, respectively, and the form
of v (i —j) accounts for the fact that dimers may not
overlap. Pairs thus behave as bosons (or equivalently sf)
with extended hard core, so again the model can be
mapped onto an anisotropic spin chain model. As a
consequence the PS appears at J, =4t ~4t /h ))J, for
h ))t, consistent with numerical results for J, in Fig. 1.

The isotropic (y = 1) t J hmode-l b-ecomes much more
difficult for any analytical treatments and for few holes
cannot be reduced to a few-body problem, as for y =0 in
Eqs. (2) and (6). Still one cannot expect essential qualita-
tive changes, except at h —+0, since the spin rotation sym-
metry is anyhow lost due to h&0. On the other hand,
spin flips allowed at y) 0 connect configurations, e.g. ,
describing two separate holes and a bound hole pair, re-
spectively, which are disconnected in the Ising case.
Here no abrupt transitions can be expected in the ground
state, at least in finite systems.

It is then plausible that for h ))t there should be no
difference between the Heisenberg and the Ising cases,
since spin flips become irrelevant under a strong field. In
this regime we can also estimate the influence of the
spin-flip processes by performing a perturbation expan-
sion in y )0 as well. Restricting ourselves to the correc-
tions being first order in y, we note that they appear only
in E, . Namely, for N& = 1 spin flips introduce the possi-
bility of hole propagation by a double hop followed by a
spin flip"' erasing the remaining spin string, or of a re-
versed process. This leads to

typically get eb & 0, although two holes would be nearly
free sf for J, & t. These effects on eb are expected to be-
comes less pronounced for h )0, since h )0 prevents the
existence of free spinons and holons and binds them in
pairs of spinon-spinon, holon-spinon, or holon-holon
types. In Fig. 2 we present the variation of eb with J at
fixed h/t. One can notice a qualitative similarity with
the Ising case, Eq. (9). Namely, for J)J, eb varies near-
ly linearly with J. The slope is only weakly dependent on
h/t, still it is substantially reduced from the Ising case,
Eq. (9). In Fig. 2 we present also the result along the
J=2h line, where one can establish an appealing relation
with the 2D t-J model and the variation of eb in Fig. 2
indeed follows the one observed in 2D studies. '

eb )0
found for h =0 is typical 1D finite-size (or bc) effect.

An alternative criterion for binding can be obtained
from the hole density-density correlations within the
ground-state wf ~%'p)

g(r) = (%p~n;n;+„~%p) (15)

0.05

0.00

In contrast to eb, g(r) is calculated at fixed NI, and is
usually less sensitive to size and boundary effects. We ex-
pect for NI, =2 a rather simple structure of g(r) with a
single maximum at r = r . Hence a bound state should
be characterized by r &N/2, while for unbound holes
the maximum should be at r =N/2. Note that the
latter case applies to h =0, where holes behave as sf and
g(r) cc sin (mr IN). A slight complication arises at h ) t
due to even-odd oscillations in g (r), since holes prefer to
be on the opposite sublattices, i.e., odd r become pre-
ferred.

As an example we present in Fig. 3 correlations g(r)
for increasing J/t at fixed h /t =0.5. It is easy to notice
that at J=0 holes are repelling each other, in fact we are
in this case (at J=0 charge degrees are insensitive to y)
dealing with two separate polarons (holon-spinon pairs),
as given by Eqs. (3)—(5). On increasing J we are moving
through an intermediate regime with g(r) as for two sf
into the regime of pronounced binding appearing for

2y Jt 8yt6eb— (14) -0.05

The spin flips are thus expected to increase J„still the
change should remain small even at y = 1, i.e.,
5J, ((J, (h =0) in the investigated regime.

Entering the most interesting h & t regime we have to
rely on numerical results obtained by the exact diagonali-
zation of small systems, where we are able to study chains
with up to N=20 sites for N& =2 and N=18 sites for
NI, =4. To define the onset of binding J, in a finite sys-
tem with N&=2 we can again use as a criterion mb=0,
Eq. (8), comparing the energies of the systems with
N& =0, 1,2. This procedure can be misleading sometimes,
in particular for 1D systems. For example, in a t-J, mod-
el (h =0) on an even chain with periodic bc we would

-0.10

-0.15

-0.20

-0.25
0.0

I

0.2 0.4 0.6 0.8 1.0

FIG. 2. The pair-binding energy e& for Nz =2 vs J/t in the
isotropic t-J-h model at two di6'erent values of h/t (o) and
along the line 7 =2h (Q'), as obtained for an N= 16 chain.
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J&J -0.3.3t, where r &X/2. An analogous behavior of
g ( r) is observed along the J=2h line, as presented in Fien e in ig.

The characteristic radius g of the pair depends mainly
on h, as in the Ising case. This is evident from Fig. 3,
where the maximum r remains nearly constant in a
broad regime of J for J)J„except in the vicinity of PS
at J) 1.5t. The explicit dependence of g is even more
evident in Fig. 4, where we present results obtained at
fixed J=0.5t, but increasing h )0. Here we define g as
the first moment of g (r),

/=gehrig(r) gg(r),

8.0

6.0

4.0

2.0

J/t = 0.5

and r is taken as the closest distance between holes on a
c ain with periodic bc. At /i =0 g is the same as for sf
(for given chain size). It is understandable that no
changes are seen for finite h « t, since the size of the
bound pair (g, r ) exceeds the available chain length. On
the other hand, for h )0.2t the pair radius g as well as r
steadily fall off, in qualitative agreement with the Ising
case. In Fig. 4 we present also the variation of the total
spin S = ( S S ) in the ground state. Due to h )0, S is
not a goo quantum number, still it is instructive to f 1-

ow S for a pair. Figure 4 indicates that a bound pair
steadily evolves from a singlet S=0 state at h =0 and is
thus expected to possess a rather well-defined S ~0 even
for h & t. Clearly S loses its meaning for h ) t.

In Fig. 5 we compile results for the critical line J, (h),
as obtained mainly from the criterion based on g(r).
Points are calculated for chains with up to N=20. This
large size allows us to trace the binding down to h -0.1t,
where we find r -77. For lower h the characteristic pair
size reaches and exceeds X/2, still we expect that eventu-
ally in a large system J,~0 for h ~0, as in the Ising case
in Fig. 1. An indication for the latter is also a weakly
pronounced maximum J, -0.33t at finite h -0.5t. Still
the question of the h ~0 limit remains a rather subtle
one.

In order to determine the PS line J, (h), results for

0.0 r
0.0 0.5 1.0

h/t

1.5 2.0

FIG. 4G. 4. h dependence of data extracted from the two hole
g(r) at fixed J/t =0.5: (a) r locating the maximum of g(r); (b)
the effective pair radius g, defined by Eq. (16); and (c) S' of the
ground state.

4.0

Xh =4 are needed. Two criteria are again possible: (a)
the vanishing of the clustering energy b, =0, Eq. (11) and
(b) the fall--off' of g (r), now for Nh =4, at large distances
r ((r (&X/2 in the PS regime. Consistent with the
picture of two separate pairs, we find in the intermediate
regime J, &J & J, two maxima in g (r): one at r =r cor-
responding to the intrapair correlations, and another at
r=N/2 related to the interpair correlations. The shift
and the disappearance of the second maximum is taken as
the sign of cluster formation and hence PS. Results of
both methods are shown in Fig. 5, with calculations per-
formed on an N = 14 chain for 6 and an Ã = 18 chain for
g(r), respectively. Both results merge with the known
value J, ( h =0) —3.5t. Still there is a substantial
discrepancy among results at intermediate values

0.40

3.0

0.30

0.20
CD

Hole pairs

0.10

1.0
Unpaired holes

0.00
1

0.0
0.0 1.0 2.0

Jlt
3.0 4.0

FIG.IG. 3. Hole-density correlation function g(r) vs distance r
for N/, =2 in the t-J-h model, presented for different values J/t
at h/t =0.5.

FIG. 5. Phase diagram of the isotropic t-J-h model at low
doping. The PS line is determined either from 6=0 (0 ), or
from the disappearance of the second maximum in g(r) (0).
Both lines coincide for h ) 1.5t.
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0.2 &h/t &1.0. The latter can be to some extent recon-
ciled by the fact, that in rather short chains we are work-
ing with a substantial doping at Nz =4, and that the vari-
ation with doping remains strong. Namely, using 6=0
as a condition we are effectively calculating the inverse
compressibility (i~

' —b, ) at the doping ni, =NhlN= —,'„
whereas the g (r) analysis belongs to ni, =

—,', . The
correctness of this interpretation is supported by the cal-
culation of ~ '-64=E6 —2E4+Ez=0 at the effective
doping ni, =

—,'„where the resulting J, (h) agrees quantita-
tively with the one in Fig. 5 obtained from g (r). It is still
not easy to predict from Fig. 5 a detailed behavior of J,
for h & t for an infinite system.

Let us comment here on the relation of the obtained
phase diagram to a more challenging 2D t-J model at low
hole doping. The correspondence can be established by
assuming the mean-field h =2J ( 5, ) —J /2 emerging
from the exchange with AFM-ordered neighboring
chains. From Fig. 5 we get along the J=2h line J, -0.3t
and J, -2t. These values are quite consistent, respective-
ly, with the onset of binding' and clustering (PS).'

Although for the PS transition in 2D smaller thresholds
J, —1.2t are obtained by various methods, ' it has been
recently pointed out that possibly the lowest instability is
not toward the clustering, ' which we are considering
here in 1D system. The main novelty of the 1D t-J-h
model is however in the fact that it allows for quite small
binding onset J, « t, being well distinct from J, ) t, the
scenario possibly valid also for 2D t-J model.

III. t-J-h MODEL AT FINITE DOPING

The question of the macroscopic charge density and
SC pairing correlations can be discussed only in connec-
tion with the finite hole doping, where the fermion densi-
ty n =N, /N=1 —

n& becomes an additional parameter.
Since in 1D systems of interacting fermions the large-
distance asymptotics of correlation functions as well as
several macroscopic physical properties are determined
by few interaction-dependent exponents, ' it is important
to find out the proper universality class to which the
t-J-h and the t-U-h models belong at finite doping n & 1.

At h =0 the 1D t-J model as well as the 1D Hubbard
model are characterized by gapless spin and charge exci-
tations. It has been shown that in the whole parameter
regime, except for the PS regime J & J„both models be-
long to the universality class of Luttinger liquids, with
a nontrivial charge exponent E . The latter divides the
Luttinger liquids into two qualitatively different regimes:
K & 1 induces dominant (slowly decaying) charge density
wave (CDW) fiuctuations, while K ) 1 indicates dom-
inant SC correlations. For the t-J model outside the PS
regime, in particular for the symmetric J=2t case, ' it
has been shown that E & —,', where the limiting value
E

p T is manifested at limiting densities n ~0, 1 for al 1 J
due to the similarity with sf.

Finite h )0 introduces a gap in the spin excitation
spectra, while the charge excitations remain gapless. The
universal behavior should be in this case that of the 1D
interacting fermionic system within the Luther-Emery

(LE) regime. While spin correlations decay exponential-
ly with distance, the CDW and SC large-distance correla-
tions should exhibit a power-law behavior, characterized
by the charge exponent E, i.e.,

Q —E'

Ccow(r) = (n;n;+„) n——
2

+br 'cos2kFr,
r

Csc(r) = (OtO, +„)-cr
where 0, is a (singlet) pairing operator

1
Oi ~,—(CitCi+1L Ci(Ci+1T)~2 (18)

8 EpD=
2N A@2 o=o

u E

i.e., D can be obtained by studying the dependence Eo(8)
[around the minimum Eo(OO)] on the phase 0, entering
the kinetic term in Eq. (1) as t~t e p(x+i9) 'On .the
other hand, ~ can be in a finite system calculated as

1 N——[Eo(N, +2) 2EO(N, )+E—o(N, —2)],
n ~

(20)

taking into account only states with even N, to avoid
even-odd finite-size effects.

The evaluation of E in a finite system through ~ and
D has the advantage, that we rely on properties of the
ground state. A more direct evaluation through ~ and
u, used by other authors, ' would require the analysis of
excited states, which is often more delicate.

In Fig. 6 we present as an example results for E, ob-
tained for N = 14 chain, as a function of electron density
n for various J/t at fixed h = t. As expected, for n ~0 all
results converge to the sf value Ep 2

since h )0 does
not introduce any essential changes in this case. On the
contrary, h & 0 dramatically changes the behavior at
n —+1. In contrast to Kp 2

observed at h =0, the limit-

ing IC (n =1) becomes nonuniversal, depending on pa-
rameters h, J. This is evident from Fig. 7, where we show
E, calculated close to half-filling, i.e., at n& =

—,'„as a
function of Jjr for various h It.

At fixed h &0 we can clearly establish two limiting
casesforE .

(a) For J~O the model equation (1) reduces to the

It should be noted however, that due to the doubling of
the unit cell at h & 0, one should regard separately corre-
lations, Eq. (18), for the even and the odd sublattice, re-
spectively. Still due to the symmetry this merely leads to
the possibility of either equal or opposite coeKcients on
both sublattices.

Again, SC correlations become dominant for E ) 1.
In order to calculate E and the renormalized charge ve-
locity u for a finite system, we use their relation to mac-
roscopic quantities, i.e., the compressibility ~ and the
charge stiffness D,

1 1 8 Ep 7TQ

n'sc N Bn'
(19)
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3.0

2.0

h/t = 1.0
J/t = 1.5

simple analytical argument in favor of SC correlations. If
we are at h &)t in the regime of bound pairs J, (J &J„
pairs are well localized and we can use at low do in the
re resentationp ation in terms of spinless fermions E . (12).

e a ow oping the

Since sf in E . 12
ions q.

the
q. ) have charge 2, we can simply r 1 t

quantities of the original model to the ones of sf i e
y reae

~ ~ )

1.5

1.0

0.5

0.0
0.0

I

0.2 0.4 0.6 0.8 1.0

(21)D=4D f, n a=4n ~ K =4K'
sf sf & p

has been well
Model equation (12) with a finite NN

'
e interaction only,

as been well studied through the mapping onto the an-
isotropic 1D XXZ spin model. ' ' F 1 de . ' or ow doping with
n,f= , 1 n—)((1—one gets K' =

—,
' independent of the
e is not reached.particular form of v, as long as th PS

'

ence we expect K -2 in a broad regime J (J &J f
h»t. C or

FIG. 6. The char ge exponent E vs electron densit t
fixed h /t = 1.0

P iy n a

1V = 14.
and varying J/t, obtained on h

'
a c ain with

5.0

4.0

3.0

2.0

1.0

0.0
0.0 0.5 1.0

J/t
1.5 2.0

FIG. 7. Th7. The inverse charge exponent 1/K vs J/t for
different fields h /t at the hole density n/, =—.ensi y n/,

much simpler t-h model, which is equivalent to the t-J, -h

model with J, =0, discussed in Sec. II. For n ~1 we are
dealing with a low concentration of unbound holes, as de-
scribed by Eqs. (3)—(5). Such holes are entirely localized,
hence D=0 and K ~ ~ ~—0. In this limit one obtains not just

CDW
dominant CDW correlations but r th 1ra er a ong-range

ordering.
(b) A r) pproaching PS (J~J, ) v diverges and this leads

to K ~~. This is the regime of extreme SC fluctua-
tions.

While the vicinity of PS induces dominant SC correla-
e, ere is an essentialtions also in the 1D t-J model th

iA'erence in the width of the SC regime. Namely, the t-J
model K )1 is ris restricted to a narrow regime above
J)2t, whereas h )0 induces a K ) 1

'
in a regime start-

ing well below J=t.
In particular for larger fields h ) t one obtains a very

wi e region with K ~2. We can present for h ))t also a

IV. PERTURBATION EXPANSION
FOR THE t-U-h MODEL

In the nexnext two sections we consider the Hubbard
model in a staggered field (t U hmod-el)-, defined as

H = tg(c;—,c; +, , +H. c. ) + Ug n, t n, i
1S

—
—,'hg( —1)'(n;t n;t) . — (22)

In the strong-correlation limit U&)t th be a ove model is
expected to become equivalent to the t-J-h model equa-
ion ( ) with J 4t I-U, if we neglect NNN h

termss which are of the same order as J. This holds how-
opplng

ever only for h « t. Outside the strong-correlation re-

equivalence no longer holds so one h t gone as to investigate
both models separately.

At h =0 the 1D Hubbard model is exactly solvable, it
shows the Luttinger-liquid behavior ' in the whole phase

iagram, and there is no pair formation at b t U

pairs is a rather subtle problem, both analytically and nu-
merically. Besides the numerical evidence for bound
pairs, presented in Ref. 9, recently a simple interpretation
for the origin of binding in the t-U-h model has been
given in the framework of the Hartree-Fock approxima-
tion. ' Unfortunately the latter analysis is not exact in
any imit, so one needs alternative methods.

One approach is the analytical evaluation of the
ground state for NI, =2 via the perturbation series in t /h
Ref. 9)—hence limited to the region tlb ((1—but for

arbitrar U. H
the de

ry . However, the calculation is corn li t d b
e egeneracy of the zeroth-order ground state. More-

over, the second-order correction does not lead to a
bound state so th at the fourth-order correction needs to
be considered and consequently calculations become

e proce ure in somequite tedious. We are presenting the d
etai below.
At h»

H =H t=0
))t one starts with the unperturbed H 1

t =0) which is diagonal in the site representa-
tion. For N =2 the ground state is highly degenerate,

4 ~

allowing for any distance between two holes. All other
sites are singly occupied with spins in a perfect Neel or-
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der. Thus degenerate perturbation theory (DPT) must be
used and we take version of the secular determinant as
presented in Ref. 21, which up t;o the fourth order in per-
turbation H' reads

(E —Eo)5 p

a H' H' + o. H' H' H' H'

O 0 ]It

)(

]1 ](
)( O 0

)( 0

(c)

(b)

00)( 0

—z(u H' H'
y)(y H iH'' p)

+ ~ ~ ~ (23)

iV"'= — +2k
4t2 t2 t~~I2)

JJ g J g+U ' JJ+2 I +U (24)

where k p=3 and k.&p=4. The energy is measured
with respect to the X], =0 case, so the second-order
correction Eo ' = 2Nt /(h + U) has already been sub-
tracted from M'- '.

E2 ' is obtained as the lowest eigenvalue of the secular
determinant, which has the tridiagonal form with diago-
nal elements (ao =Moo', a =M22', a, . . . ) and with a con-
stant subdiagonal (b =Mzz', b, . . .). For the given form

The (bra)kets denote the set of degenerate states with the
unperturbed energy Eo, Po, and Qo are the projectors
onto this subspace of states and its complement, respec-
tively. M' is taken to be the hopping part in Eq. (22),
while gp stands for the energy denominator Ep Hp.

There are two classes of configurations in the subspace
I ~a) I which do not mix in any (finite) order of PT, i.e. ,
configurations with holes separated by an even, respec-
tively, odd, number of lattice sites (including zero), which
we denote as ~0), ~2), etc. , and il), 3), etc. Evidently,
the "even" class has total S'=0, whereas the "odd" class
belongs to the S'=+1 sector.

We consider here only the "even" class, since it in gen-
eral yields lower ground-state energy. Within the second
order there are at most four distinct contributions, of
which one is nondiagonal and results from the transition
to the state with holes separated by two more (less) lattice
sites, i.e., to ~2j+2), and the rest are diagonal contribu-
tions corresponding either to charge fluctuations or to a
"caterpillar" translation of the hole pair (present for j=0
only). Thus, from Eq. (23) we have for the right side the
following nonvanishing matrix elements:

]1 0 ]I
i(

2 1

(e)

FICx. 8. The sequence of connected processes involved in the
contribution mp2, Eq. (25), to the fourth-order matrix elements.

of the tridiagonal matrix, a bound state would appear
below the continuum band for ap (a —b. In our case we
get from Eq. (24) ao =a b, hen—ce we are in the marginal
case with no states below the bottom of the band. To es-
tablish the question of the existence of a bound state one
has to go to the next nontrivial, i.e., fourth, order in
DPT.

In the fourth order there are many processes to be con-
sidered. The contribution of a particular process to the
matrix element in the secular determinant may be con-
veniently labeled according to its energy denominator g
and to its multiplicity u. For example, for the process in
Fig. 8 which connects states ~0) and ~2) one has
g=h(2h+ U)(h + U) and w = 12 giving the contribution

—1 —=12 t4

h (2h + U)(h + U)
(25)

4

n n In

(26)

In Table I the last column refers to the chain with no

The extra "minus" sign comes from step (d) in Fig. 8
where fermions on sites 1 and 2 interchange. (g„,w„) for
all the different processes m(n) are given in Table I from
which the total contribution M,.' ' is obtained by summa-
tion

TABLE I. Values for w„and corresponding energy denominators g„ in Eq. (26) for two-hole processes, representing the fourth or-
der of DPT. In the last column no-hole corrections are given. Note that also contributions from disconnected processes are
included.

In

2h
2h 2(h + U)
h2(2h+ U)

h (2h + U)(h + U)
2h(h + U)'

(h + U)(2h + U)
2(h + U)

mpp

16
16

8(N —4)
16(N —4)
4(N —2)
16(N —4)

8(N —4)(N —5)

mp2

12
4

12
8
8

16(N —5)

mp4 m2p

20
8

8(N —5)
16(N —5)
4(N —3)

8(2N —11)
8(N —11N+ 33)

m24

8
4

16
8

12
16(N —6)

4N
8N

8N(N —3)
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holes and its entries should be subtracted from the diago-
nal matrix elements m "(n). The resulting secular deter-
minant in the fourth order is a five-diagonal matrix with
the following structure: the main diagonal has the form
(ao, a, a, . . . ), the first subdiagonal is (bo =Mo2', b =M24',
b, . . . ) and the second subdiagonal is (c =Mo4', c, . . . ).

Given the structure of the secular determinant we are
now ready to calculate the ground-state energy correc-
tions. The linear system of equations may be solved by
the ansatz

P. = A ( —1)~e ' +Be

and p& 2 are solutions to the equation

—E—b + —E+b +
bo b+ c—/x bo b —c/—y

(27)

x,y =e ", (28)

which can be solved perturbatively to the necessary or-
der. Analyzing Eq. (28) we find that y ——c/b whereas
x —1, i.e., the second term in Eq. (27) dies off very fast
and consequently the first term is more important. After
some algebra we find

b' 'p]=2bo —3b —ao+a+2c . (29)

Ut '(24h ' U')—
h (h+ U)(2h+ U)

(30)

where Eq. (30) naturally applies only to the regime pI )0,
where the bound state exists. In this regime the pair-
binding energy can be expressed as

Note that only fourth-order corrections enter the right-
hand side (RHS) of Eq. (29), since within the second or-
der a =ao+b, bo=b, and c =0. An important check of
the calculation is also that p =0 for U =0, where no lo-
calized states exist.

Explicit calculation of p&, which has the meaning of
the inverse pair radius, gives

make results, concerning hole binding and possible dom-
inant SC pairing in the t-U-h much less reliable.

To determine the threshold for the hole binding in the
t-U-h model we could again use as criteria either the
binding energy eb or g (r) correlations. eb, however, does
not become negative in most of the studied systems. The
failure to establish e& (0 can be traced back to the usual
h =0 Hubbard model, where we find quite large eb )0
(for a long chain one would expect eb-0). h )0 does
reduce substantially eb, still it does not make it negative.
Also g(r) do not yield a unique answer. If we take
N = 14 chain, or similarly N = 10, we get on increasing h
more pronounced maximum in g (r) at smaller
r =r «1V/2, as presented in Fig. 3 of Ref. 9, indicating
a tightly bound pair. This can also be concluded from
the average radius g which decreases substantially with U
at fixed h, as shown in Fig. 9. At finite U= U, an abrupt
crossover happens to an unbound state of two holes,
hence a jump in Fig. 9. Since at U ) U, holes behave ap-
proximately as two (possibly repelling) sf we observe that
g) g(U=O). The crossover shows that the bound-pair
and the unbound-pair solutions have different symmetries
(parity) in the %=4m+2 chains, leading to an overem-
phasized discontinuity at U= U, . On the other hand,
there is no crossover for X= 12, since both types of solu-
tions belong to the same symmetry as in the case of the
t-J-h model. However the transition between both situa-
tions is less pronounced in the latter case, so we use as re-
sults for the binding transition at U, the crossover ob-
tained for %=14.

The calculated transition line U, (h) in the t U hmodel--
is presented in Fig. 10. We notice that at h ))t, U, in-
creases nearly with h, in qualitative agreement with the
analytical result equation (30). U, increases also at small
h ~0, fount( also within the Hartree-Fock approxima-
tion. ' If we assume the correspondence J=4t /U we
observe an overall qualitative similarity with the behavior
of the j,(h) in the t-J-h model. However, one should not

2i' 2

I, +UPi (31)

Equation (30) has an interesting consequence that for
h ))t any finite repulsion U) 0 induces pair binding and
pairs remain stable in the regime 0 ( U ( U, =v'24 h.

V. NUMERICAL RESULTS FOR THE t-U-h MODEL

40
Cx.

4/t = 2.0

I

I

I

I

I

I

I

I

Q I

—0

The t U hmodel equati-on -(22) proves to be much more
challenging for the numerical exact diagonalization stud-
ies. Due to larger basis in the Hubbard model we are
only able to study chains of lengths % ~ 14, smaller than
for the t-J-h model. h&0 also doubles the unit cell and
oscillations of period 2 in g (r) appear more pronounced
in the t-U-h model at larger h ) t, effectively reducing the
number of available data. In addition, we observe quite
disturbing size effects. In particular, results for fixed
number of holes, e.g. , for most studied case Xz =2, de-
pend substantially on whether we use the lattices with
X=4m+2 or %=4m sites. All the above drawbacks

2.0

0.0
0.0

I

5.0 1 0.0
U/t

15.0 20.0

FICs. 9. The pair radius g vs U/t for the t U-h model on an-
%=14 chain for h/t =2.0. The crossover between the paired
and the unpaired ground state occurs abruptly (vertical dashed
line).
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2.0

1.0

Hole

seems to be nonuniversal in the n~1 limit, i.e., results
indicate a systematic increase of IC =K (n~1) with h

at fixed U and a decrease with U at fixed h. Due to
finite-size effects it is hard to make a more definite state-
ment on the values E . At fixed h&0 and U~ ~ theP'
model reduces to the t-h model, so that we expect again
E =0. For U «h we are approaching the limit of
noninteracting fermions, hence E =1, consistent with
the result in Fig. 11. Still it is not clear whether the vari-
ation between both extremes is a monotonous function of
U, h and whether values E ) 1 are possible.

0.0
5.0 10.0 15.0

U/t

20.0 25.0

FIG. 10. The phase diagram of the t-U-h model at low dop-
ing, as obtained for %=14chain.

forget quite pronounced uncertainties in the above results
for the t-U-h model. There exists also a possibility for
another binding threshold, so that the bound pair would
again become unstable for U & U,*(h). Namely, it seems
plausible that for U « h « t we enter the regime where
U presents a small perturbative effect, which is not
enough for binding. Clearly this regime has no mapping
onto the t-J-h model.

We study the behavior of the t-U-h model at general
fermion concentration n & 1 in the same way as per-
formed in Sec. III for the t-J-h model. Results for K, as
calculated for N = 12 chain and presented in Fig. 11, are
subject to well-pronounced oscillations between N& =4m
and Nh =4m+2 cases. These have the same origin as
the differences observed between N =4m and N =4m +2
chains at fixed N&. From Fig. 11 we see that again
E —

—,
' for n —+0 independent of h. On the other hand E

U/t = 8.0

0.5
0.0 0.5

n

1.0

FIG. 11. The charge exponent K vs electron density n for
the t-U-h model at fixed U/t and different fields h /t, calculated
for X= 12 chain. The oscillations can be traced back to the well
known NI, =—0 or 2 mod(4) effects.

VI. CONCLUSIONS

In this paper we have considered properties of 1D
t-J-h and t-U-h models near half-filling, where one can
expect a novel qualitative behavior of holes in the system.
We have shown that h&0 can lead to the appearance of
stable hole pairs, in particular in the regime
J,(h) &J & J, (h) for the t-J-h model and for U & U, (h)
for the t-U-h model. In the t-J, -h model we were able to
show that the effect of h )0 is nonperturbative, since any
weak h &0 induces binding. It seems plausible that the
same applies for the isotropic t-J-h model, although in
this case the regime h « t remains so far inaccessible to
analytical as well as numerical methods. There are
several open questions concerning the pair formation in
the t-U-h model. While numerical results for the critical
line U, (h) are less conclusive due to finite-size effects and
the analytical result is restricted to the extreme region
h ))t, one could also speculate on the basis of perturba-
tion theory arguments that the binding could disappear
at small U «h.

Within presented 1D models we partly answer also the
important question, whether pair formation induced by
h %0 leads also to dominant SC fiuctuations at finite dop-
ing. We show that h&0 qualitatively changes CDW and
SC correlations near half-filling. Due to the finite spin
gap, both models belong to the Luther-Emery regime of
interacting fermions with a nontrivial charge exponent
E . In contrast to usual 1D t-J or Hubbard model with
gp=21, hxo introduces a nonuniversal Icp For the
t-J-h model we have shown that K increases steadily at

P
fixed h from E =0 at J=O to E = oc at the PS onset,
J=J,(h). Although we cannot give a definite conclusion
on the relation between K and the pair binding, our re-
sults indicate that E —

—,
' at the onset of binding,

J=J,(h). Nevertheless, the regime with dominant SC
Auctuations E ) 1 appears to be very broad within hole-
pairing phase J, (h) & J &J, (h) and extends to J & t for
not too weak fields, e.g. , h )0.3t. Again, only some con-
clusions can be made for the t-U-h model. Still E seems
to be nonuniversal, it is however unclear whether E ) 1

can be reached in some parameter regime of the t-U-h
model.

Finally let us comment on the relevance of obtained re-
sults to even more challenging 2D t-J or Hubbard mod-
els. It is obvious that there exist several common features
between, e.g., the 1D t-J-h model and the 2D t-J model
at low doping. If we assume Ii —J/2 (Ref. 9) we can
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simulate within the 1D model even quantitatively the 2D
AFM order, and consequently the 2D string potential,
the coherent mass enhancement, etc. It is promising that
along the J=2h line we get clearly di6'erent onsets for the
pair formation J, -0.3t and for the PS J, -2t. We can-
not establish a direct relation of 1D dominant SC Auctua-
tions with 2D SC, still the intermediate regime with low
concentration of formed hole pairs remains a candidate
for possible SC in 2D model systems.
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