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We discuss the statistical mechanics of magnetic Aux lines in a finite-thickness slab of type-II super-
conductor. The long-wavelength properties of a Aux-line liquid in a slab geometry are described by a hy-

drodynamic free energy that incorporates the boundary conditions on the Aux lines at the sample's sur-

face as a surface contribution to the free energy. Bulk and surface weak disorder are modeled via Csauss-

ian impurity potentials. This free energy is used to evaluate the two-dimensional structure factor of the
Aux-line tips at the sample surface. We find that surface interaction always dominates in determining the
decay of translational correlations in the asymptotic long-wavelength limit. On the other hand, such
large length scales have not been probed by the decoration experiments. Our results indicate that the
translational correlations extracted from the analysis of the Bitter patterns are indeed representative of
behavior of Aux lines in the bulk.

I. INTRODUCTION

The nature of the ordering of the magnetic-Aux array
in the mixed state of high-temperature copper oxide su-
perconductors has received considerable experimental
and theoretical attention in the last few years. It has
been shown that Auctuations are important in these ma-
terials and can lead to a number of new phases or regimes
of the Aux array, including entangled Aux liquids, hexatic
Aux liquids, ' and hexatic vortex glasses. ' Most experi-
ments probe the properties of the Aux array indirectly by
measuring bulk properties of the superconductors, such
as transport, magnetization, or mechanical dissipation.
At present direct measurements of the microscopic order
of the magnetic-Aux array are mainly limited to decora-
tion experiments at low fields. These experiments aim
to extract information on the vortex line configurations in
the bulk of the material by imaging the pattern of the
magnetic-Aux lines as they emerge at the surface of the
sample. The surface patterns are determined by the in-
terplay of thermal Auctuations and impurity disorder.
Both these mechanisms can be responsible for disrupting
translational and orientational order of vortex arrays. ' '"
Surface roughness can also play a role in determining the
surface magnetic patterns. It is clear that to interpret the
experiments and assess whether one can indeed consider
the surface patterns as representative of vortex line
configurations in the bulk of the sample, one needs to un-
derstand what are the relative effects of bulk-versus-
surface interactions and disorder in determining the
configuration of the vortex tips as they emerge at the sur-
face. Almost 30 years ago, Pearl' showed that the in-
teraction between the tips of straight Aux lines at a
superconductor-vacuum interface decays as 1/r~ at large
distances, with r~ the distance between Aux tips along the
interface. In contrast, the interaction between Aux-line
elements in bulk decays exponentially at large distances.

For this reason Huse has questioned the assumption that
surface patterns are representative of Aux-line
configurations in the bulk and has argued that at low
fields, where the intervortex separation is large compared
to the penetration length, surface effects may play the
dominant role in determining the magnetic-Aux patterns
seen at the surface. '

By analyzing Aux decoration images one can extract
quantitative information on the decay of both translation-
al and orientational correlations of Aux-line tips at the
sample surface. In this paper we focus on the long-
wavelength behavior of translational correlations in the
Aux-line liquid phase. This case may be relevant to the
interpretation of decoration experiments such as those by
the AT%T group for the following reason. The decora-
tion experiments are carried out by quenching the sample
in a small field from high to low temperature. The ob-
served Aux patterns do not represent the equilibrium
configurations of vortices at the low temperature where
the decoration takes place, but equilibrium configurations
corresponding to a higher temperature, Tf, where the
Aux array falls out of equilibrium. While the value of Tf
is not known, there are indications that it may be near
the irreversibility line, T;„,which in turn has been found
to be very close to T, at low fields in the Bi-Sr-Ca-Cu-0
samples used for the decorations. The experiments may
then be probing a rather narrow range of temperatures
between T;„and Tf where the flux array is in the poly-
merlike state proposed by Nelson and Seung. ' The
long-wavelength static properties of such a glassy poly-
mer can be described in terms of a hydrodynamic Aux-
line liquid free energy. '

Translational correlations of Aux lines in three dimen-
sions are described by the density-density correlation
function. For convenience we consider the Fourier trans-
form of this correlation function in the plane normal to
the applied field,
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n (r L,
z)= g 5(ri —r;(z)) . (1.2)

Here r;(z) is the position of the ith vortex in the (x,y)
plane as it wanders along the z (zIIH) axis and
5n (ri, z) =n (ri, z) —no denotes the fiuctuation of the lo-
cal density from its equilibrium value, no =B/Po, with B
the average induction at equilibrium and Po the fiux
quantum. The angular brackets denote a thermal average
and the overbar the average over quenched impurity dis-
order. The subtracted term on the right-hand side of Eq.
(1.1) vanishes in the absence of quenched disorder.

The two-dimensional structure function of a constant-z
cross section of fiux liquid is obtained from (1.1) by let-
ting z1 =z2,

noS2(qi, z
&

) = & I
5n ( qi, z

~ ) I

'
&
—

I & 5n (q~, z
~ ) & I

' (1.3)

A factor of no has been extracted from the definition of
the structure function so that S2(qi, z, )~1 as qi~~,
for all values of z1.

The behavior of the fiux-line structure function (1.1)
for bulk Aux-line liquids in the presence of both thermal
Auctuations and quenched disorder has been discussed be-
fore. ' In an infinitely thick superconductor the correla-
tion of density Auctuations at different heights only de-
pends on the distance, z, —z2I. The results are then
most conveniently discussed in terms of the full three-
dimensional structure function obtained by Fourier trans-
forming (1.1) with respect to z&

—z2,

noS(qi, q, ) = &15n (qi, q, )I'& —
I &5n (qi, q. ) & I' . (1.4)

For simplicity we only discuss in this section the contri-
bution to the structure factor from thermal Auctuations,
Sr(qi, q, ). This is easily calculated in the long-
wavelength limit from a simple hydrodynamic theory, "
with the result,

nok8 rq 2

ql L(ql q )+q. 44(qi q, )

where cL (qi, q, ) and c44(qi, q, ) are the wave-vector-
dependent compressional and tilt rnoduli of a bulk Aux-
line liquid, as given, for instance, in Ref. 1. In the long-
wavelength limit one can invert the q, transform by ap-
proximating the elastic constants in (1.5) with their
values at q, =0, with the result,

noka T
(1.6)

where

1
g~~(qJ )=+K(qi)/B3(qi )

q~

is the correlation length describing the decay of correla-

noS(qJ, z„z2)=&5n(qi, z, )5n( —
qL, zp)

—
& 5n (qi, z& ) & & 5n (

—
qL, z2) &,

where n (qi, z) is the in-plane Fourier transform of the
coarse-grained Aux-line density,

tions in the z direction, with B3(qL)=cL(qL, O) and
K (qi ) =c44(qL, O). The asymptotic long-wavelength

(qi —+0) behavior of the correlation function is deter-
mined by the constant values of the moduli at zero wave
vector, B3(0)=B /4' and K(0)=B /4~+c44(0), where
c44(0) is the tilt coefficient of a single line at q, =0. ' On
the other hand, the nonlocality of the elastic constants is
often important in the high-T, superconductors even at
small wave vectors because of the large values of the
penetration lengths. '

Correlations in any constant-z cross section of the bulk
are described by the two-dimensional structure factor
defined in Eq. (1.3) and do not depend on z&. The contri-
bution to this two-dimensional structure factor from
thermal Auctuations is immediately obtained by letting
z, =z2 in Eq. (1.6),

noka T
2T qJ.

nok~ T

+KB3

According to a well-known sum rule that relates the
value of the structure factor at zero wave vector to the
bulk modulus of the liquid, the denominator on the
right-hand side of the first equality of Eq. (1.8) can be in-
terpreted as an effective two-dimensional bulk modulus.
This effective bulk modulus diverges in the long-
wavelength limit, due to the divergence of the correlation
length g~~. As a consequence the two-dimensional struc-
ture factor of any constant-z cross section of a bulk Aux-
line liquid vanishes linearly as q~ —+0. As discussed else-
where, ' ' this behavior arises here from the constraint
that Aux lines cannot start nor terminate inside the sam-
ple.

Decoration experiments measure correlations of flux
lines in a constant-z cross section at the surface of a sam-
ple of finite thickness L. Most researchers have implicitly
assumed that these surface correlations are representative
of correlations in a constant-z cross section of bulk. If
this is the case, Eq. (1.8) should describe the correlations
of Aux-line tips at the surface as extracted from the
decoration experiments. On the other hand, it is clear
that whenever

g~~
~L finite-size effects may become im-

portant. Since g~~(qi) diverges as qi~O, finite-size effects
may in fact dominate the long-wavelength behavior. In
addition, we have mentioned that in a finite-size sample
the boundary conditions modify the pair interaction be-
tween Aux lines at the surface. The boundary conditions
are determined by the requirement that on length scales
larger than the penetration length the spatially uniform
magnetic field outside the sample must equal the field of
the vortex tips at the surface. In other words, the super-
conductor surface can be thought of as the boundary be-
tween a strongly anisotropic magnetic medium where the
field is concentrated in the Aux lines and an isotropic
magnetic medium (the vacuum). At the surface the fiux
tips then behave like magnetic monopoles of
"charge" Po/2m and therefore interact at large dis-
tances via a repulsive Coulomb-like potential,
V, (ri)=(po/2~) (1/ri). The two-dimensional correla-
tions of Aux-line tips as they leave the sample could then
be very different from those in a constant-z cross section
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deep in the bulk. If in fact the long-range surface interac-
tion would dominate in determining long-wavelength sur-
face properties, ' then decorations would image the
configurations of a two-dimensional liquid of vortices in-
teracting via a 1/rj potential. The long-wavelength bulk
modulus of such a two-dimensional liquid is
8 & ( q~ ) =8 /(4~q ~ ). The corresponding two-
dimensional structure factor is given by
SzT(q~)=nok&T/82(q~) and again vanishes linearly as
qi~0, but with a different slope from the result of Eq.
(1.8). A more detailed analysis is clearly needed to
discriminate between these two possibilities.

In this paper we describe a model that can be used to
study the long-wavelength properties of flux arrays in
finite-size samples incorporating the appropriate bound-
ary conditions for the Aux lines at the sample surface.
We consider a slab of a uniaxial anisotropic type-II su-
perconductor. The field is applied along the c axis of the
superconductor which is chosen as the z direction. The
slab is infinite in the xy plane and has thickness L in the z
direction. The starting point for the calculation present-
ed here is a model hydrodynamic free energy that is a
simplified version of the full hydrodynamic free energy
obtained in Ref. 19. In essence we neglect any nonlocali-
ty and spatial inhomogeneity in the z direction other than
the presence of the sample boundaries. The free energy is
then written as the sum of a surface free energy, that in-
corporates the boundary conditions, and the usual hydro-
dynamic free energy of a bulk Aux liquid. This free ener-
gy can be used as the starting point to study both how the
coupling to the bulk affects the surface properties and
how the bulk behavior is modified by the presence of the
boundaries. In this paper we focus on translational
correlations at the surface. Our main result is the two-
dimensional structure factor at one of the surfaces of the
sample. We find that the contribution to this structure
factor from thermal fluctuations is given by,

nok~ T
S»(q~, L) = (1.9)

Bz'(qi L)

where 8 z~( q~, L ) is an effective two-dimensional surface
bulk modulus,

8' (q,L )=8 (q )+8 (q )g~~(q )F(L /g~~), (1.10)

with Bz(q~)=8 /(4~q~). ' The crossover function F is
given by

8
$3~~ +28ctoh( L/g~~)

82 +38/(( tcho( /Lg)()

The crossover wave vector q~ is defined as the wave vec-
tor where the correlation length

g~~
equals the sample size,

g~(q~ )=L. For q~~0 the correlation length
g~~

diverges
and the Aux lines are essentially rigid. The surface in-
teraction dominates in this limit and the surface bulk
modulus is simply that of a 2d liquid of magnetic mono-
poles. When q~ ) 1/L and

g~~
)L, corresponding to

qi &qi, Aux lines are still correlated in the z direction
over the entire thickness of the sample, but the exponen-
tial interaction between straight Aux lines in bulk dom-
inates in this case and the surface modulus is LB3. Final-
ly, when

g~~
& L, or q~ )qz, Aux lines are correlated over a

length
g~~

smaller than the sample size and the surface
bulk modulus is determined by the compressional energy
per unit area of an array of essentially straight Aux lines
of length g~~. The typical behavior of the surface struc-
ture factor as it crosses over from a linear function of q~
at very small wave vectors to a linear function of q~ with
a smaller slope at large wave vectors is shown in Fig. 1.
For both q~ &1/L and q~ &qi, ' the surface structure
factor (1.9) is predicted to be linear in qz. The depen-
dence of the slope on the areal density no of Aux lines is,
however, different in two regimes. For q~ & 1/L we find

S»(q~, L)-qi/no dphil~ for q, )q,*, S»(q„L)
qi /n 0 . The latter behavior is consistent with experi-

ments. The experiments are carried out on slabs which
are typically of 1-mm extent and 5 —30 pm thickness.
Due to the finite size of the decoration images only infor-
mation on the structure function for qz )0.4 pm can typ-
ically be extracted from the experiments that are there-
fore unable to probe the range qi & 1/L. In fact the ex-
perimental structure factors appear to level out in the
small q g I ange. OIlc can thcI'cfol c conclude that the
patterns probed by decorations are indeed representative
of bulk behavior. Only the asymptotic behavior at very

0.20
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If the ratio K/B3 is large, as it can indeed be at the low
fields used in the decoration experiments, one can dis-
tinguish three regimes in the behavior of the effective sur-
face bulk modulus as a function of the in-plane wave vec-
tor qz,

0.00
0.0 1.0 2.0

q (pm ')
3.0 4.0

82 (q~, L)-B~(q~)-q~ ', q~ &—

1—LB3 qg,

(1.12)

FICx. 1. Thermal contribution to the surface structure func-
tion, as given in Eq. (1.8), for H = 8 G (for this value of the field
the first maximum of S2(q~) is at q~ =4.26 pm '), T =88 K,
A,,b =0.3 LMm, y =55, and L =25 pm. Here B3(0) was treated as
a parameter determined by fitting our results to the small wave-
vector part of the data of Ref. 22, as discussed in Sec. III.
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long length scales is dominated by surface effects. These
large length scales have not, however, been accessible in
experiments.

In Sec. II we present a simple-model hydrodynamic
free energy for a Aux-line liquid in a finite-size supercon-
ductor sample that properly incorporates the boundary
conditions at the superconductor-vacuum surface. This
free energy is used to evaluate the thermal part of the
structure function at the sample's surface. In Sec. III we
introduce disorder in the hydrodynamical treatment and
discuss its effect on the translational correlations at the
sampIe surface. The comparison with experiments is dis-
cussed in Sec. IV. In Appendix A we present the results
for the full three-dimensional structure function defined
in Eq. (1.1).

II. HYDRODYNAMIC FREE ENERGY
AND SURFACE STRUCTURE FUNCTION

The pair interaction between Aux lines in a finite-size
superconductor sample has been derived before in the
London approximation for both isotropic and aniso-
tropic ' superconductors. In Ref. 19 we calculated the
magnetic energy of the Aux-line array in a semi-infinite
sample of anisotropic CuOz superconductor occupying
the half space z & 0, where the z direction is the c axis of
the material and the field is applied along the c axis. The
calculation of the energy for a superconducting slab of
thickness L can be carried out along the same lines. In
general, the magnetic energy from the stray fields in the
region outside the superconductor can always be rewrit-
ten as a surface contribution to the pair interaction be-
tween Aux lines that decays exponentially with the dis-
tance from the interface. For straight lines the pair in-
teraction behaves as discussed by Pearl and it decays as
1/r~ at large distances at the superconductor's surfaces.
Following Ref. 19, this pair interaction can then be used
to obtain the coarse-grained hydrodynamic free energy.
The presence of the superconducting-vacuum interface
modifies the compressional and tilt elastic constants of
the Aux-line array. In addition to the familiar nonlocality
of the elastic constants associated with the range of the
repulsive interaction between Aux-line elements, the pres-
ence of the interface introduces additional nonlocalities
in the z direction. The corresponding surface contribu-
tions to the elastic constants depend exponentially on the
distance of the deformed Aux volume from the interface.
The surface contribution to the wave-vector-dependent
bulk modulus diverges as 1/q~ at small wave vectors, as
expected for particles interacting via a 1/r~ potential in
two dimensions. The surface contribution to the tilt
modulus is negative and finite in the small wave-vector
limit.

Instead of using this general hydrodynamic free ener-
gy, here we propose a much simpler model free energy
that neglects all nonlocalities in the z direction, other
than the presence of the superconductor-vacuum boun-
daries. For clarity we consider in this section the case of a
clean superconductor. The effect of weak impurity disor-
der on the translational correlation functions of a finite-
thickness Aux-line liquid will be discussed in the next sec-
tion. The Aux liquid free energy is then written as the

sum of bulk and surface contributions,

F =F~+Fz, (2.1)

where F~ is the usual hydrodynamic free energy for a
bulk Aux-line liquid. It includes terms quadratic in the
hydrodynamic fields, which are the density field defined
in (1.2) and a tilt field, defined as,

Br;t(r,iz)= g 5(ri —r, (z)) .
i=1

(2.2)

The bulk free energy is given in Ref. 1,

Fs= g j dz[B3(qi)I5n(qi, z)I
2noA qq&

+K(qi)It(qi, z)I ) . (2.3)

+B~(q& ) I5n, (qi, z =L, ) I' J, (2.4)

where B2(qi) is the surface contribution to the bulk
modulus obtained in Ref. 19 and given by

B 1B2(qi)=
~«(1+qik, b) (qiA, ,„+Ql+qiA. ,t, )

(2.5)

For q~A, ,b &&1 it is well approximated by the compres-
sional modulus of a two-dimensional Auid of particles in-
teracting via a I /ri potential, Bz(qi ) =B /(4vrqi ).

Statistical averages over vortex line configurations
have to be carried out over the free energy (2.1) with the
constraint that Aux lines cannot start nor stop inside the
medium,

B,5n (qi, z)+ iqi. t(qi, z) =0 . (2.6)

It is convenient to separate t(qi, z) in its longitudinal and
transverse parts, t=q~tL+zXqitT, with tL =q~. t and
tT = (z Xqi) t. As a result of the constraint (2.6), the den-
sity and the longitudinal part of the tangent field are not
independent hydrodynamic variables. In fact they can
both be expressed in terms of a "vector potential"
u(qi, z), which plays the role of a two-dimensional dis-
placement field for the Aux-line liquid,

5n(q zi)= —noiqi u(qi z)

tL (qi, z) =noB, qi. u(qi, z) .
(2.7)

The transverse degrees of freedom tT are decoupled from
the longitudinal ones. Since in this paper we are only in-
terested in calculating correlation functions of density
Auctuations, we only need to consider the longitudinal
part of the free energy. This can be expressed entirely in
terms of uL(qi, z) =qi.u(qi, z) so that the constraint (2.6)
is automatically satisfied, with the result,

Since we are allowing for in-plane nonlocality of the elas-
tic constants, we have written the free energy in terms of
the Fourier components of the hydrodynamic densities.
There are two surface contributions to the free energy,

Fs= g (B2(qi)I5n, (qi, z =0)I1

2n OA
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2

& J '& (qi) +B3(q& )q Jul (qi, z) ~'+ [5(z)+5(z L—)]B2(q& )q& I~I, (q&, z) I'
2w, 0

' dz
q&

(2.8)

The tilt energy provides the coupling between bulk and
surface terms. The model free energy of Eq. (2.8) has the
same structure of model free energies used to study sur-
face phase transitions, particularly in the context of wet-
ting. The longitudinal component of the vector poten-
tial takes the place of the order parameter and the pres-
ence of interfaces introduces spatial inhomogeneities in
the order parameter.

One could now proceed directly to evaluate correlation
functions of the field ul by taking statistical averages
with the free energy (2.8). The two-dimensional structure
factor of the Aux-line tips at the top surface is simply
given by Szz-(q|)=naq~( ~ul (qj, L)~ ), where the angular
brackets denote the statistical average over the free ener-
gy (2.8). Since the free energy is quadratic in the fields,
these correlation functions can be calculated exactly. On
the other hand, due to the coupling of the field at the sur-
face to the field in the bulk of the sample the calculation
is somewhat lengthy and tedious. A much simpler way to
obtain the same results is to use linear response theory.
Let us apply a spatially inhomogeneous surface pressure
5p(rz) at z =L and consider the linear response of the
system to this perturbation. The surface pressure couples
to the density and the free energy of the corresponding
perturbation is given by

5[F'"+5F ]
0

5uJ (qi, z)
(2.10)

The minimization of the total free energy yields an equa-
tion for the displacement field in the bulk of the sample,

—I~a,'(, ( )),+q,'B,&,( )),=0, (2.1 1)

for z&0, L, and boundary conditions for the displace-
ment field at the superconductor-vacuum surfaces,

IC [B,(uL ) ], I +q~B2(ul. (L)) iq 5p=—0, (2.12)

—K[8, (ul )~], 0+qiB2(ul (0))~ =0 . (2.13)

By solving Eq. (2.11) with the boundary conditions (2.12)
and (2.13) we obtain,

The response to this perturbation is a nonvanishing aver-
age displacement, (ul (qj, z) ), that can be determined
by minimizing the total free energy, that is, by requiring,

5F = dr~5p(r~)5n(r~, L)
1

na
(uL (qJ, z)) = A, e "+A~e (2.14)

1 y iq, 5p(q, )u, (q„L) .
qi

(2.9) where /II(qj ) is the correlation length defined in Eq. (1.7)
and

E B3(II 2

22 2 5s (qi»
3~II+ ] ' h L/~ll + 3~IIB cosh(L

B34II+Bz
2 2 2 2 5p(q~) .

2e. [B',g'I+B', ]»nl (L/gI )+2B,(IB,cosh(L/g )

The surface displacement is then given by,

(2.15)

( uL (q~, L) ) =i
q

1

Bz(qz )+B3(q~ )g'II(q~ )F(L //II)
(2.16)

where F(L/(II) is the crossover function given in Eq.
(1.11). As expected, the response to the applied pressure
is linear in the perturbation. The corresponding linear
response function defined as

5n (q~, L)
Xr(9i,L)=

5 ( )

is the wave-vector-dependent surface isothermal
compressibility, which is in turn the reciprocal of the
two-dimensional surface bulk modulus, B2 (q~, L)
=1/X(qj, L). The denominator of Eq. (2.16) is then the
effective surface bulk modulus given in Eq. (1.10). Final-
ly, the surface structure factor is given by Eq. (1.9).

III. WEAK DISORDER
iqina(ul (—qi&L) )~

5p (qj )
(2.17) The e6'ect of weak disorder both in the bulk of the sam-

ple and at the superconductor-vacuum interfaces can be
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Vb(rJ, Z) Vb(rIZ') =Ab5(rJ —rJ )5(z —z'),

V, (r~) V, (rI ) =b,,5(r~ —rI ),
(3.2)

with Vb(r~, z) =0 and V, (r~) =0.
It was shown by Nelson and Le Doussal' that in bulk

fiux-line liquids a hydrodynamic treatment of weak bulk
disorder produces "Lorentzian squared" correction to
the hydrodynamic result for the structure factor, given by

2 2
noq

bd qi q. )=no~a (3.3)
q~B3+q, E

modeled in a standard way in terms of a random poten-
tial that couples to the density field. In general, surface
disorder may include surface roughness and therefore
differ considerably from impurity disorder in bulk. We
therefore model bulk and surface disorder separately by
adding to the free energy given in Eq. (2.8) two terms,

L5~~= f

draff

[Vb(r~, z)5n(rz, z)
0

+ [5(z)+5(z L)]—V, (rj )5n (rj, z) ],
(3.1)

where the random potentials Vb(rj, z) and V, (rz)
represent the effect of random impurities and small-scale
inhomogeneities in the bulk and at the surface, respec-
tively. If the defects are randomly distributed, as for in-
stance in the case of oxygen vacancies, we expect that the
quenched fluctuations in the impurity potentials will
obey,

The contribution from weak disorder to two-dimensional
density correlations in a constant-z cross section of bulk,
is then obtained from (3.4) by letting z, =z2,

n o~bkll(qJ. )
(3.&)

Notice that this contribution to the two-dimensional
structure factor of a cross section of Aux-line liquid also
vanishes linearly with q~ at small wave vectors.

To evaluate the two-dimensional structure factor of
Aux-line tips at the surface of a slab of type-II supercon-
ductor in a field, we proceed as in Sec. II. The total free
energy F' '+FD of the Aux-line liquid consists now of the
sum of Eqs. (2.8) and (3.1). To this we add the surface
perturbation given in (2.9) and evaluate the response of
the system by minimizing the total free energy. As in
Sec. II we obtain an equation for the displacement field in
the bulk of the sample,

K[8,(ui )~], I +qj82(ui(L))

iq~no—V, (q~) iq~5—p =0, (3.7)

—KB, ( ui (z) )~+q~83(ui (z) )„iq~—no Vb(q, z) =0,
(3.6)

for zAO, L, and boundary conditions for the displace-
ment field at the superconductor-vacuum surfaces,

or, by inverting the q, transform,

n0
Sbd(qq, z) —z2) =noAb

83 qj gll q

2 rC [a, (—u, ), ], ,+q 8 (u (z =0)),

iq~no V, (q—~) =0 . (3.8)
—Iz

&

—z2 ~ /gl~X [gll(qJ )+ lz) —
z21 ]e

(3.4)
I

The solution of Eq. (3.6) with the boundary conditions
(3.7) and (3.8) is given by,

with

/gll /gll 0 fll
( uI (qz, z) )z = & &e "+3 2e ' — dz'cosh[(z —z')/gll] Vb(qz, z'),

0
(3.9)

I l 1

2qj [83~II+8&]sinh(L/~ll +283~II82cosh(L/

L /~IIX [83)I~I
—82]5p(qi)+no V (qj)[(83('ll —82)+(83/II+82)e "]

L
+no(83/I 82) dz Vb(qj, —z) cosh + sinh (3.10)

I l 1

[83 ~II +82 ] sinh(L /~ll ) +283~IIB2cosh(L /gll )

X [83(II+82]5p(qx)+no V (qx)[(8 ALII+38 )+z(8 gll 382)e "]—
L I.—z B2 . L —z

+no(83/II+82) dz Vb(qj, z) cosh + sinh (3.11)
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The solution (3.9) depends explicitly on the impurity potentials Vb and V, and represents the longitudinal displacement
field for a given realization of the disorder. In the presence of quenched disorder the fIuctuation-dissipation theorem no
longer holds and one cannot simply identify the ratio of the mean displacement ( uL (qi, z) ) to the perturbation 5p (qi)
with the system's compressibility. In fact the mean displacement in the presence of weak disorder is simply equal to
that given in (2.14) for a clean superconductor. This is because the terms linear in the impurity potentials in Eq. (3.9)
vanish when averaged over the quenched disorder and A ', = 2, and A 2

= 2 z. One then needs to calculate directly the
correlation function of the fluctuations as defined in Eq. (1.4), or, in terms of the linear response, ( uI (qi, L) ),

S(qi, z„zz)=n0qi[(uL(qi, z, ))~(ul ( —qi, zz)) —(ul (qi, z, ))~(uL( —qi, zz)) ] . (3.12)

After some algebra, one finds that the two-dimensional structure factor at the surface z =L of the slab,
Sz(qi, L) =S(qi, zi =L,zz =L), can be written as the sum of three contributions,

Sz(qi, L)=S2T(qi, L)+Szdb(qi, L)+Sz,d(qi, L),
where Szz.(qi, L) is the contribution from thermal fluctuations that was already obtained in Sec. II,

nok~ T
Szz, (qi, L)= Beff( L)

(3.13)

(3.14)

with Bz (qi, L) the surface bulk modulus given in Eq. (1.10). The other two terms in Eq. (3.13) represent the contribu-
tions from bulk and surface disorder, respectively. They are given by

2[B2 (qi, L)] [Bz+B3~llcoth(L

X [B3~ll+Bz]coth(L/(ll)+2B2B3/ll+ [B3/ll B2]—
sinh (L/gll)

(3.15)

aiid

noh,
S2 d(qi L)= . 1+

[B ff'( L)]2

B ~ll / sinh (L /
[Bz+B3$'llcoth(L /g'll) ]

(3.16)

While these expressions appear rather complicated, one
can show that for all q~ of interest here the terms inside
curly brackets in Eqs. (3.15) and (3.16) are of order one.

IV. DISCUSSION

The surface structure factors extracted from the
analysis of the low-field decoration experiments carried
out by the AT%.T group show clearly a large peak at
qua=4~/(&3a0), where a0=(2/V3a0)' is the nearest-
neighbor vortex spacing in the triangular Abrikosov lat-
tice. At smaller wave vectors the structure functions ob-
tained at different applied fields all decrease linearly with
wave vector according to Sz(q&, L)-qi/n0~ . At the
smallest wave vectors probed in the experiments, the de-
cay of the structure functions seems to be leveling out.
This behavior is most apparent in the experiments at the
lowest fields.

To discuss the comparison of our results with these ex-
perimental findings, it is useful to consider some limiting
forms of the expressions obtained in Secs. II and III.

When the sample thickness L is large compared to the
correlation length gll the expressions given in Sec. II and
III for the surface structure factors reduce to those for
the two-dimensional structure factors at the surface of a
semi-infinite sample of type-II superconductor. In this
limit, L ))gll or qi ))qi, the crossover function given in

Eq. (1.11) is F (L /gll) =1 and we find

noka T
Szr(qi, L) =

B2 3&ii

n 0 bk
ll

3

2[B2+B3

noh,(,L)=

(4.1)

(4.2)

(4.3)

In this limit all contributions to the surface structure fac-
tor are determined by an effective bulk modulus

Bz+B3(ll -B3(1+QK/B3 )/qi, where we approximat-
ed Bz-B3/qi. ' As indicated in Eqs. (4.1)—(4.3), while
both the contributions to the structure factor from
thermal Auctuations and from bulk disorder are linear in

q~ in this regime, the contribution from surface disorder
is proportional to q~. We argue below that the linear
dependence of the surface structure factor on q~ observed
in the decoration experiments by the ATILT group '

probably corresponds to this regime. If our interpreta-
tion is correct, our results indicate that surface roughness
does not play an important role in these experiments.

In the opposite limit, L ((g'll, the flux lines are essen-
tially straight over the entire thickness of the sample.
The crossover function (1.11) becomes F (L /gll )

=(Bz+B3L)/B3gll and the various contributions to the
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surface structure factor are given by

nok~ T
Szz.(qi, L)=

2 3

nohbL
Sz~d(qi L)=-

2[2Bz+B3L]

2n oh,
[2Bz+B3L]

(4.4)

(4 5)

(4.6)

When q~~0, B~-qj ' while B,-q~, and B~ always
dominates in the denominator of Eqs. (4.4) —(4.6), yield-
ing,

nok~ T
lim Szr(qi, L) =

q~~O 2B~

nohbL
lim Szid(qi, L) =

z -qi,
q~~o 4B~

noh,
lim Sz,id(qi, L) = -qi .

q, o 2B~

(4.7)

(4.8)

(4.9)

If Bz-B3/qi, the above limiting forms apply in the en-
tire range qi ((1/L. Finally, if the ratio K/B3 is large
enough so that there is a nonvanishing range of wave vec-
tors where 1/L & q~ & q~, in this range the surface struc-
ture factors level out to a constant value, given by

noka T
Szr(qi, L) =

3

nohb3

Szid(qi, L) =
LB3

2no
Sz d(q&, L) =

(LB~ )

(4.10)

(4.11)

(4.12)

We remark that if one evaluates the surface structure fac-
tors for a finite-thickness superconducting slab using free
boundary conditions for the Aux lines at the sample sur-
faces, one finds that in the limit q&~0 the various contri-
butions to Sz(qi, L) have precisely the sample-size-
dependent constant values given in (4.10)—(4.12). In fact
for all values of q~ where our hydrodynamic theory is
relevant, the expressions for Sz(qi, L) for the case of free
boundary conditions on the Aux lines are obtained from
those given here by setting B~ =0. The precise nature of
the boundary conditions only affects the very small q~ be-
havior of the correlation functions.

We conclude by discussing in some detail the compar-
ison of our findings with the experimental structure fac-
tors obtained by Murray and collaborators from low-field
decoration images. ' The fields in these experiments are
in the range 8 —50 G, corresponding to Aux-line areal
densities of 0.4—2.5 pm . The smallest wave vectors at
which one can construct a structure function from the
decoration images is -0.4 pm '. The long-wavelength
tail of Sz(qi) is found to fit a qi/np in an intermediate
range of wave vectors. The slope of Sz(qi) in this linear
region is typically —5 X 10 —10 pm. At the smallest

wave vectors where data are available Sz(qi ) appears to
be leveling out to a constant value -0.02, almost in-
dependent of the applied field.

Our model predicts a linear decrease of Szr(qi) with

q~ in the limit q&~0. The corresponding slope is deter-
mined by Bz —n pPp/(4~qi) according to Eq. (4.7). One
finds Sz&(qi ) —2 X 10 pm ' K '( T/n p )qi. Using
T —88 K and np —1 pm, we obtain Szz-(qi)-2X10
pm q~, a slope over two orders of magnitude smaller than
observed in experiments. In addition the dependence of
the slope on the density is not of the form obtained in the
experimental fit. Finally, in the limit q~ —+0, both contri-
butions to the structure functions from weak disorder
vanish as q~. All of this is consistent with the expecta-
tion that this asymptotic long wavelength regime is never
probed in the experiments.

If the ratio QK/B3 ~ 1, then for all wave vectors ac-
cessible to experiments

g~~
(L and the various contribu-

tions to the surface structure function are given by Eqs.
(4.1)—(4.3). Again we have a linear dependence of
Szr(qi) on qi, but with a slope even smaller than in the
asymptotic q&~0 case discussed above. A similar esti-
mate can be carried our for the contribution from bulk
disorder. In this case the size of the linear slope is deter-
mined by 6b. If the pinning is by isolated Oz vacancies,
we can estimate b.&

—Up(, &, with Up —5K a typical pin-
ning energy barrier. The corresponding linear slope is
then even smaller than for the thermal part of the corre-
lation function.

Our results are qualitatively consistent with the experi-
mental findings if QK/B3 ))1. In this case we predict a
crossover from the linear dependence of Sz(qi) on qi de-
scribed by Eqs. (4.1) and (4.2) for qi )qi to the sample-
size-dependent constant values given by Eqs. (4.10) and
(4.11). On the other hand, the predicted size of the con-
stant value of Sz(qi) for qi ~qi and the linear slope at
larger wave vectors are more than an order of magnitude
smaller than from experiments, even when we take into
account the in-plane nonlocality of the elastic constants.
We can in turn try to fit our results to experiments to ex-
tract experimental values for the elastic constants. For
instance, in Fig. 1, by requiring
Sz(qi ) 1/L) —npk&T/(B3"~L)-0. 02 for H =8 G, we
find B3" /kz-70K pm for L —10 pm. This value is
about 500 times smaller than B3(0)=B /4', nor can the
in-plane nonlocality of B3 account for the difference. We
can then extract a value of the tilt modulus K by fitting
the slope in the linear region, Sz(qi q J )
—(npkii T/QK'"~B3" )qi -0.02 pm qi. We find
K'" /Kzi -4.4X 10 k pm, a value not inconsistent
with the theoretical value for K(0). The corresponding
crossover wave vector is qi =(1/L)QK'""/B3"" —1

pm '. A mechanism that can account quantitatively for
the very small value of B3 could be the strong downward
renormalization of the compressional modulus that was
predicted by Nelson and Le Doussal at low density. '

In conclusion, our work indicates clearly that, while
the decay of translational correlations at very long wave-
lengths (qi —+0) is indeed governed by surface properties
and finite-size effects, the correlation functions extracted
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from the decoration experiments are in fact representa-
tive of bulk behavior. More data at small wave vectors
and low fields with a detailed analysis of such data are,
however, needed for a quantitative comparison.

The free energy (2.8) is immediately rewritten in terms of
the Fourier amplitudes of the displacement field, with the
result,
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APPENDIX A:
THREE-DIMENSIONAL STRUCTURE FUNCTION

B2+ qg (
—1)~u (q~)

p= oo

2

In this appendix we discuss the full three-dimensional
structure function given in Eq. (1.1). We only sketch the
derivation of the thermal part of this correlation func-
tion, ST(q~, z, zo). This derivation is instructive as an ex-
ample of how to evaluate correlation functions directly
by taking statistical averages with the free energy (2.8)
rather than by using linear response theory.

It is convenient to expand the displacement field
uL (q~, z) in a Fourier series,

1
u~(q~, z) =—uo(qj )

(A2)

with

2

a„(q~ ) =K +B3q~, (A3)

where vo(q~)=0 and we used that u (
—q~)=u (q~) and

vz( —q~)= —vz(q~). Using Eq. (2.7), the thermal part of
the three-dimensional structure function can be written
in terms of the longitudinal displacement field,

+2 g [u (q~) cos(pvrz/L)
p=l ST(ql zl z2 ) Oq L ( (Llq, lz)uL( ql z2 ) ) (A4)

+v (q~)sin(p~z/L)] ' . (Al) By inserting Eq. (Al) into Eq. (A4) we obtain

2
noq~ST(qTzjzp)gg I (u~(qgup(qJ))cos(prrz, L)cos(p'rrz, /L)
L

+ ( v (q~)v„*(q~) )sin(p~z, /L)sin(p'~z2/L) [ . (A5)

The correlation functions of the Fourier amplitudes of the displacement field can be calculated by using standard tricks
to deal with coupled Gaussian integrals. The result is

and

Lk, T
( v~(q&)v~ (

—q, ) ) =&»
ap

(A6)

k~ TB2q~ 1

a~a~ (1+B2qjS, ) (Bzq~S,)—
X [(1+Bzq~S,)[1+(—1) +~ ] B2q~S, [(—1) +—( —1)~ ]}

Lk T
(u~(q~)u~( —qj)) =o~~

ap

1 cos(pnz/L) 1 cosh[(z L)/gii]—g (q~, z)= ,(q, ) B,g q,'h(L/g„)
1

"
( —1) cos(pvrz/L) 1g (q~, z)=-

L a q~) B3$ qz sinh(L g~~)

The quantities denoted by S, and S, are special cases of more general sums that will be needed below. These are,

(A7)

(A8)

(A9)

with g'~~(q~) the correlation length given in Eq. (1.7). The quantities S, and S, are given by the values of the above sums
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at z =0, i.e., S,=g, (qt, O) and S, =g, (qt, O).
Finally, by inserting Eqs. (A7) and (A6) into Eq. (A5), one obtains

npk~ T cosh[(z, —z2 L—)/(II ] B2

B3(II sinh(L /~II B2 +B3~IIF (

cosh[(z& +z2 L)—/g'II] cosh [(z, —zz ) /g
IiI
]

X +
sinh(L/(II) Bz +BE IcIoth( L/g'

II) sinh (L//II)

The two-dimensional structure factor in a constant-z cross section is obtained from Eq. (A10) by letting z
&
=z2,

nok~ T 1

B2+B3&II+(L /&II)

(A10)

X B3(I~I+B2coth(L/(II)—
B2B3$II

B 2+B3g cIIot h(L/(II)

cosh[(2z, L)/g—
I]I

sinh(L //II )
(Al 1)

Sr(q~, L, O) =S2r(qt, O)R (qt, L), (A12)

where Szz(q~, O) =Szz.(qt, L) is the two-dimensional
structure factor of one of the two surfaces, and

For z& =L and z& =0 this is identical to the expression
given in Eq. (1.9).

It is interesting to consider the correlation of density
fluctuations on the two opposite surfaces of the sample,
corresponding to the three-dimensional structure func-
tion of (A10) for z& =L and z2=0. From Eq. (A10) we
obtain

R (q~, L) =
B2 sinh(L /~ll +B3 ~Ilcosh(L /

(A13)

measures the correlations between flux-line patterns at
the two opposite ends of the sample. If the size of the
sample is small compared to the correlation length,
L «(II, Aux lines are straight throughout the sample and
R (q&, L)=1. The patterns on the two surfaces are per-
fectly correlated in this limit. Conversely, if L ))/II, the
patterns on the two surfaces are uncorrelated and
R (q~, L)=0. A measure of the deviation of R (q~, L)
from 1 would give us information about the degree of
Aux-line wandering in the superconductor.
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