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We show that the unusual normal-state properties of the copper oxide superconductors can be derived
from the one-band ¢-J model with the use of a rigorously imposed constraint of single-electron occupan-
cy and the Wigner-Jordan representation of the spin-excitation spectrum. These include the linear resis-
tivity in the ab plane, the 1/T resistivity along the ¢ direction, the anomalous spin-relaxation rate in the
Cu site, the excessive absorption in the infrared conductivity over that expected from the Drude theory,
the flat electronic Raman background, the broadening of the photoemission spectra, and the linear-bias
dependence of the normal-metal-normal-metal tunneling conductance (along the ab plane). The zero-
bias tunneling conductance along the ab plane is predicted to have a linear temperature dependence. A
particularly interesting prediction is that the ratio of the linear temperature term of the zero-bias con-
ductance to the linear-bias term of the zero-temperature conductance is 27" /|eV]|, independent of all oth-
er parameters. The static spin susceptibility at low temperature is predicted to have the form
A +BIn(w,./T), where o, ~J is a cutoff energy. The doping (x) dependences of various physical quanti-
ties are also predicted for the range of x large enough to allow the holons to form a band and the spins to
have a disordered (liquid) ground state, but not too large to destroy the antiferromagnetic spin correla-
tion. The imaginary part of the spin susceptibility has a wave-vector-independent component with an x
dependence of x (1—x)?. The nuclear relaxation at the Cu site, 1/(TT}), has a 1/T component with an x
dependence of x (1—x)>. The zero-bias tunneling conductance along the ab plane at zero temperature
increases with x2. The 1/7 resistivity along the c direction at low temperature is inversely proportional
to x, and the linear resistivity of the ab plane has a weak x dependence in the doping range mentioned
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above.

I. INTRODUCTION

The normal-state properties of the copper oxide super-
conductors are just as puzzling as the high-transition
temperature of the superconductivity itself, if not more
so. These include (a) the linear resistivity in the ab
plane,! (b) the low-temperature resistivity in the ¢ direc-
tion? (perpendicular to the ab plane) behaving roughly as
1/T, (c) the infrared conductivity showing excessive ab-
sorption over that expected from the usual Drude
theory,? (d) the NMR spin relaxation at the Cu site not
satisfying the Korringa law,* (¢) the Raman spectra show-
ing a flat electronic background,5 () the lifetime of the
electrons near the Fermi surface measured from photo-
emission spectra® depending on energy roughly as
|E—Er| ™!, rather than (E—E) 2, and (g) the normal-
metal—-normal-metal tunneling conductance showing a
mysterious linear dependence on the bias.” These unusu-
al properties put severe constraints on any successful
theory, and have been taken as indications that the con-
duction electron system in the copper oxide superconduc-
tors is not a conventional Landau Fermi liquid. In par-
ticular, Anderson® has strongly argued that these unusual
properties are characteristic of spin-charge separation.
The possibility of a non-Fermi liquid would have enor-
mous implications on both the ground state and the
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mechanism of superconductivity, since it raises funda-
mental questions such as what is the quasiparticle in the
system, what to pair, and how the new quasiparticles
respond to various interactions. The understanding of
the normal-state properties is therefore a crucial first step
towards the understanding of the superconducting state.
Interpretation of the normal-state properties has been
a focus of theoretical studies for the last few years. An-
derson and Zou® first suggested that the linear ab-plane
resistivity, the 1/7T c-direction resistivity, and the linear-
in-bias normal-state tunneling conductance are the conse-
quence of spin-charge separation. They used a bosonic
holon, fermionic spinon representation. If the momen-
tum conservation law is strictly applied, and a free-
particle spectrum for both holon and spinon is used, how-
ever, the temperature dependence of the ab-plane resis-
tivity would be T3/2, and similarly the temperature
dependence of the c-direction conductivity would also be
T3/2, as shown by Kallin and Berlinsky.!® As argued by
Anderson and Zou,'! this deviation points to a strong in-
teraction between their holons and spinons. Nagaosa and
Lee!? later developed a gauge-field theory based on the
uniform resonant-valence-bond theory of Baskaran, Zou,
and Anderson, and showed that the linear resistivity can
be obtained. Anderson!® later developed a Luttinger-
liquid theory to interpret the normal-state properties.
The normal-state properties have also been modeled
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through phenomenological modes. Varma et al.'*

showed that many of the properties can be derived from a
particular form of the spectral density of the quasiparti-
cles, and systems with such a spectral function are
termed as a marginal Fermi liquid. Calculation'® of the
spectral density for the Hubbard model for small to inter-
mediate U has also been carried out, and a significant
change from the free-particle-like spectral density is
found. The marginal-Fermi-liquid-like behavior could
also give rise from an electron gas with a nearly nested
Fermi surface, as shown by Virosztek and Ruvalds,'® pro-
viding an interpretation of the electronic Raman back-
ground. From investigations of the nuclear magnetic res-
onance experiments, Pines et al.!” proposed an antifer-
romagnetically correlated Fermi-liquid model. In a re-
cent work, we have shown, with the Wigner-Jordan (WJ)
representation of the spin-excitation spectrum, that all
the above-mentioned properties can be derived!® from the
t-J model in a unified way. The purpose of this paper is
to give a more detailed derivation of our theory, and to
present results which are not presented in our previous
work.

The paper will be organized as follows. In Sec. II, we
discuss our treatment of the #-J Hamiltonian, especially
the effect of spin fluctuations on the hopping process of
the electrons in the presence of doped sites. In Sec. III,
we review the spin-excitation spectrum derived previous-
ly using the Wigner-Jordan representation for the disor-
dered (paramagnetic) spin state of the antiferromagnetic
(AFM) Heisenberg model in a square lattice. A detailed
derivation of all the above-mentioned normal-state prop-
erties will be presented in Sec. IV. A brief summary and
discussion will be presented in Sec. V.

II. TREATMENT OF THE ¢-J MODEL

As strongly argued by Anderson,® and by Zhang and
Rice,!® the appropriate model for describing the copper
oxide materials is the one-band Hubbard model in the
large-U limit. In this limit, the Hubbard model can be re-
duced to the 7-J model,

=—tSclei,+I 3 (S8, —inn)), (1)
ijo (ij)
where S, is the spin operator at site i, and the other nota-
tions are standard. The electron operators in the
kinetic-energy term are understood to be already project-
ed into the single-occupation space. Mathematically, this
single-occupation restriction can be expressed as

> Citfciaz l—v;, (2)
o

where v; is the doping index, v; =1 if the site is doped,
and v; =0 if it is not. There have been numerous stud-
es?® of the ¢-J model since the discovery of the high-T,
superconductors, and various techniques have been
developed. In this work we shall use the CP!-boson rep-
resentation?! of the ¢-J model. In this representation, an
electron operator is considered as a composite of a fer-
mionic holon, and a bosonic spinon (the CP! boson), i.e.,
c[a=e,~Tb,»a, where e,~T is a holon creation operator obeying
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Fermi statistics, b;, is a boson annihilation operator car-
rying spin o. Using this representation, we have

H= —t 2 eie]TbiLbjg
ijo
+J 3 (1—efe)(s;-S;—H)(1—e]e;) , 3)
(ij)
where S,~Z=%(b,-TTb,~T——b,.le;rl), and similar definitions for
S;t and S;”. The doping index in Eq. (2) can now be
identified as the holon occupation number, i.e., v,»=e,-Te,-.
The single-occupation constraint in Eq. (2) can thus be
expressed as

Ebz‘trbiazl . (4)

Equation (4) states that there is one CP! boson at each
lattice site, regardless of doping, and that these bosons
are hard-core bosons. The existence of a CP! boson at a
doped site does not contradict with the absence of the
electrons at that site, since a holon is created at that site.
In this sense, the CP! bosons at the doped sites are
“ghost” bosons, only those at the undoped sites are
“real.” Since the CP'-boson operators are defined to be
present for every lattice site, S7 (and also S;" and S;7) is
also defined for every lattice site, and is related to the
true spin operator, 57, by §?=(1—e/e;)S?. For conveni-
ence, here we still refer to S7, etc., as spin operators. Fi-
nally, we notice that one could also start from the
Schwinger boson representation of the #-J model, and
with appropriate redefinition of the boson operators, one
could derive the same expression as that given in Eq. (3).

If the spin-charge separation as suggested from the
CP'-boson method (or other methods such as the slave
boson or slave fermion method) is rather robust, we
would expect a mean-field separation of the holon and the
boson in the kinetic-energy term in Eq. (3) to be reason-
able. This leads to

H~—t3eel(blb,,)+K,

ijo
+scattering term+J term , (5)
where
=_tz<e >[bla'b_]0—<b10b]0)]
ijo

and the scattering term represents the scattering between
the holons and the CP! bosons [cf. Eq. (12)]. The term
K, represents the direct hopping of the CP' bosons.
Since each lattice site is occupied by a CP! boson which
has a hard core, direct hopping is forbidden, and only vir-
tual hopping (second-order process) can be considered
(the latter process contributes a kinetic energy on the or-
der of Jx2, where x is the doping concentration). We
shall neglect the contribution of K, to the kinetic energy
in this work.

The difficulty is the evaluation of quantmes such as
(bl b o ), since the spectrum of the CP' boson is not well
established. It would be preferred if one could express
the CP!-boson operators in the first term of Eq. (1) in
terms of the spin operators, since the spin-excitation
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spectrum is relatively well established. To do this, we
draw attention to the following resemblances between the
CP! -boson operators and the spin operators:
SZ— (b, b,T blib;)) vs Si= ‘(S*S_ —S8;78), and
blib;i+bib; =1 vs SIS;7+S;” s+ Clearly, the
CP'-boson operators are related to the spm operators by
bl =(—1 )Sfe' ¥ and b}, =(—1)iS;7¢'%", where @;; and
@;, are real operators, and the reason of including the
factor (—1)" has to do with the antiferromagnetic cou-
pling in the J term. While we are not able to obtain @;;
and @;, explicitly, we notice that ¢,;; can be replaced by
@:1— {@;1) and still satisfy the above equations. Thus, in
an appropriately chosen guage, the fluctuation in ¢;; and
@;, can be suppressed at least to first order and we have
approximately b,T ~(—1)is;t and b, N =(—1 )'S;”. The
actual approximation required in all of the following cal-
culations can be slightly relaxed from that stated above,
since we only need to have bn‘bn"( —1)"Hs* S/, ete.,
where i and j are two nearest-neighbor sites. (Notice that
b,Tb,T =S;tS;” is an identity.) It is evident from this ex-
pression that the approximation is for the second-order
process of the CP!-boson hopping, and preserves the con-
tinuation of the above-stated identity. We notice that the
single-occupancy constraint is automatically satisfied by
the above-stated identity when the spin operators are
transformed into Wigner-Jordan fermions (see the discus-
sion in Sec. III). The approximation also gives the
correct total degrees of freedom of the system: The de-
grees of freedom of the 2N electron operators now are
partitioned into that for the N holon operators, and that
for the N spin operators. These features show clear ad-
vantages of our approximation over mean-field treat-
ments of the constraint. [In the mean-field treatment of
the constraint, the N equatlons implied in Eq. (4) are re-
placed by the average, {b;,b;,)=1. In so doing, the con-
straint is satisfied only in the average sense, and the total
degree of freedom of the system is that of 3N —2 opera-
tors (e;, b1, and b; ), exceeding the correct number, that
of 2N operators.] While it is not clear with our approxi-
mation whether higher-order fluctuations in the phase
factors (more precisely, the phase differences, @;, —@;,»
for neighboring sites i and j) are important, we shall not
settle this question in this work by direct calculations of
the fluctuations. Instead, we approach this problem by
calculating all the normal-state properties mentioned in
the Introduction with this approximation and compare
them with experimental results.

III. REVIEW
OF THE SPIN-EXCITATION SPECTRUM

In the last section, we have expressed the z-J model in
terms of the holon operators and the spin operators. The
spin-excitation spectrum is therefore crucial for the holon
dynamics. Before discussing the spin-excitation spec-
trum, we first notice the following two facts. (1) The spin
state of the undoped copper oxide materials is antifer-
romagnetically ordered at low temperature. The order-
ing is largely due to a small interlayer coupling. With a
small amount of doping (x =~0.05), however, the long-
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range spin order is destroyed, although strong AFM
correlations remain. (2) The Mermin-Wagner theorem??
states that, for the two-dimensional (2D) AFM Heisen-
berg model, the spin state has no true long-range order at
any finite temperature. The relevant spin-excitation spec-
trum for the copper oxide superconductors, therefore, is
that of the disordered spin state of the 2D Heisenberg
model. The disordered spin state can, of course, have
short-range orders within the size of its spin correlation
length.

We shall first review the spin-excitation spectrum of
the disordered spin state of the undoped Heisenberg mod-
el using the Wigner-Jordan fermion representation,?® and
then extend the discussion to the doped system. The spin
Hamiltonian for the undoped system is

Hin=J 2) S;"S; 6)
Cij

The spin operators can be transformed into WJ spinless
fermions?® by Si+=d,Tel¢i, and Sz‘de —4, where
Q= 3 ki ddejIm In(7;—7;), and 7; is the complex spin
coordinate at site j. The advantage of using the WIJ
transformation is that it automatically satisfies the
single-occupancy  restriction, since S;7S;+S;, ST
=d;"d;+d,d;f =1. Within the mean-field approxima-
tion of the phase, ¢;, we obtain a mean-field Hamiltonian:

Hyp=J(14+2A) 3 e ”de +J 2 A1 @)
(ij)

The resulting spin state is the m-phase flux state.’>?* In
Eq. (7), 6,; is the gauge phase factor. In the gauge chosen
in Fig. 1, 0;;=m for the heavy bond, and O for the light
bond (the 7-flux state). The in-phase bonding amplitude,
A, can be calculated self-consistently through
(d; dT>—Ae i and is approximately 0.24 at T=0. The
energy spectrum of the in-phase flux state is

Ef =£E,=+J(1+2A)V sin’, +cos’k, . (8)

All the negative-energy states are filled by the WJ fer-
mions, and all the positive energy states are empty. The
density of states of the in-phase flux state is linear at
small excitation energies, and has two van Hove singular-
ities, one at —J(1-+2A) for the filled states, and the other
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FIG. 1. The gauge used for calculating the energy spectra of
the in-phase flux state.
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at J(1+2A) for the empty states [cf. Fig. 4(a)]. It is also
useful to write down the Green’s functions of the WJ fer-
mion for our later use:

1 1
(O_Ek 0)+Ek

Gﬁ“(w)=Gﬁb(w)=%

] ) (9a)

1
O)_Ek Q)+Ek

) (9b)

where a and b are two sublattices of the square lattice,
and

'O = (i sink, +cosk, )/V sin’k, +C°S2ky .

That the in-phase flux state is a good description of the
disordered spin state of the quantum AFM Heisenberg
model in a square lattice can be inferred from several re-
sults. The mean-field energy at 7'=0 of the in-phase flux
state is —A(1+A)J = —0.3J per bond,?* reasonably close
to that from numerical calculations (—0.334J). Higher-
order corrections from fluctuations around the mean-field
state are likely to lower the energy further. The specific
heat?* of the in-phase flux state is in excellent agreement
with numerical calculations, as shown in Fig. 2. In par-
ticular, the temperature dependence is correct over the
entire temperature range, namely, T? at low temperature,
a peak at T /J=0.6, and a 1/T? decay at high tempera-
ture. The spin Raman spectra?*?> of the in-phase flux
state are in excellent agreement with the experimental
spectra of the undoped copper oxide materials, as shown
in Fig. 3, and shows considerable improvement over that
calculated from the spin-wave theories. Finally, the tem-
perature dependence of the staggered and the uniform
spin susceptibility of the in-phase flux state is also quali-
tatively correct over the entire temperature range.?’

We now extend our calculation to the doped system.
The spin Hamiltonian is the J term in Eq. (3). We as-
sume that a holon can stay in a doped site longer than the
spin fluctuation time, ~1/J, so that from the spins’ point
of view, the holon is localized. This assumption is con-
sistent with our approximation described in the previous
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FIG. 2. The specific heat of the in-phase flux state. The solid
circles are numerically calculated by Makivic and Ding [Phys.
Rev. B 43, 3562 (1991)] for the Heisenberg model in Eq. (6).
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FIG. 3. The Raman spectra of the in-phase flux state. The
experimental data are measured for La,CuO, [R.R.P. Singh
et al., Phys. Rev. Lett. 62, 2736 (1989)].

section. According to our approximation, a holon can
hop to its nearest neighbor only if the spins at both sites
are reversed. The time required to reverse a spin, in an
antiferromagnetically correlated background, is on the
order of 1/J. We thus believe that for small doping and a
reasonably large value of J, this assumption is valid. The
spin Hamiltonian then becomes the ‘“‘defected” Heisen-
berg model®® in the sense that the bonds connected with
the “spins” in the doped sites are statically cut, as one
can see by setting l—e,-Tei =01in the J term in Eq. (3).
Before discussing the detailed energy spectrum of the
WIJ fermions for the doped Heisenberg model, we notice
two intrinsic properties**?® of the WJ representation of
the AFM Heisenberg model in an even numbered lattice
with N — o0. The first is that the WJ fermions always fill
half of the total available states at 7T=0, and the second
is that the excitation spectrum of the WJ fermions has a
particle-hole symmetry. The two properties are the
direct consequence of the fermionic nature of the trans-
formation, and the relation d,-Tdi=%+Sf. The energy
spectrum and its filling of the in-phase flux state of the
undoped Heisenberg model are the examples of the two
properties. We also notice that since we have defined
“spin” operators to be present in the doped sites in the
CP'-boson formalism, the WJ fermions are also defined
for every lattice site. This means that the flux state re-
sulting from the mean-field treatment of the WJ phase
factor will always be 7 phased, i.e., we always have half-
flux quanta per elementary plaquette. There is no PT
violation from our treatment of the doped system. With
these properties, we expect that the structure of the
Green’s function of the WJ fermions as given in Egs. (9a)
and (9b) does not alter significantly at small doping. [The
m-flux state may become incommensurate upon doping.
For the physical properties described in Sec. IV, howev-

. . s 0
er, the calculations are rather insensitive to the phase ek
in Eq. (9b). We therefore shall neglect the complications
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from the incommensurability.]

Within the same mean-field approximation as that for
the in-phase flux state of the undoped Heisenberg model,
the defected Heisenberg model can be reduced to that of
the doped in-phase flux state:?°

=J(1+2A) 3 (afbje " +H.c.)
(ij)

—J(1+28) S (afb;, e
(18)

spm

~i6
“LI+8 L ¢.)+const ,

(10)
where & is the nearest-neighbor vector and !/ the doped
sites. This Hamiltonian can be exactly diagonalized nu-
merically.?® The density of states of the WJ fermions is
shown in Fig. 4(b) for the case of one hole for each 20 lat-
tice sites. Comparing with the undoped density of states,
the density of states of the defected Heisenberg model has
a finite value at small excitation energies together with a
S function at zero excitation energy, whereas at large ex-
citation energy, the overall spectrum does not alter
significantly. The 8-function density of states comes from
the doped sites, since the “spins” at the doped sites are
isolated from the rest of the system. The finite density of
states at small excitation energy comes from the undoped
sites.

For most of low-energy phenomena, we only need to
use the density of states of the WJ fermions at small exci-
tation energies,

DENSITY OF STATES

DENSITY OF STATES

0 b—— L Lo 1
-4 -2 Q
ENERGY

PERUN S S
2

FIG. 4. Density of states of the in-phase flux state. (a) Un-
doped. (b) Doped with one hole per 20 lattice sites. The energy
is measured in units of J(1+2A)/2.
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where x is the doping concentration, and Ny; is a con-
stant.

Using the WJ representation of the spin operators, the
Hamiltonian in Eq. (3) now can be written as

H= 2 skelek

kz '"V(k,p, q)ek+qekbp qdp tH.c.]
pq

+J term , (12)

N/2

where g, =2¢(2y )(cosk, +cosk,)—p is the holon band
energy,

7:<bitrbi+8a>z -

is the nearest-neighbor bonding amplitude of the in-phase
flux state. A~=0.24 for the undoped system and

V(kpq)= —t[cos(k, +g,—p,)+cos(k, +p,)
+isin(k, +p,)—isin(k, +q,—p,)] .

<Si+Si—;8 )=A

From g, we see that the holon bandwidth is reduced by
roughly a factor of 2 at small doping because the holon
has to carry spin fluctuations when it hops from site to
site. Equivalently, the holon band mass is increased by a
factor of 2 compared to the “free” holon band mass. For
a large value of doping, we expect the effective mass of
the holons to be close to the free-holon band mass. The
prime in the summation in the second term means that
the q=0 term is excluded. Finally, we notice that the
Hamiltonian in Eq. (12) has precisely the form suggested
by Wang, Rice, and Choi previously.?®

IV. NORMAL-STATE PROPERTIES

We now report our calculation of various physical
quantities. We shall restrict ourselves in the doping re-
gion where the doping concentration is small so that the
spin-charge separation method is valid (equivalently, the
strong AFM correlation between the electron spins is not
destroyed), but is also large enough to allow the holons to
form a delocalized band and the spins to have a disor-
dered (i.e., liquid) state even at T=0. In this region, the
spin excitation spectrum can be described by that of the
in-phase flux state, and all the derivations of the normal-
state properties can be done within one-loop expansion.

A. Spin susceptibility and nuclear spin-relaxation rate

Experimental measurements of the in-plane Cu nu-
clear relaxation rate, T1 reveal that it can be described
approximately as T';! ~AT—1—B. The surprise is the
temperature-independent term B, which is absent in a
conventional Fermi liquid. 7| !is related to the spin sus-
ceptibility, x(q,), by

T~ limo(T/a))(l/N) 2 Imy(q,w) .
The spin susceptibility can be calculated from the corre-

lation function (7 ,S7(7)S7(0)) by taking the Fourier
transformation of both space and time. Define
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1 aa
Ft(q,r )—7\,‘/—2“ (G q(T)G (=)

Gab

@ (TGE(—D)], (13

where 7 is the imaginary time.
=x1(q,0)+x,(q,w), where

i@ io)=—(1—x? [ dreF g,

We find x(q,0)

(14a)

(1

Imyi(q,0) =" 4(N/2 2

+g (k,q)[np(—E})

where we have defined g *(k,q)=1%cos( Ok+q—Ok). We
next carry out the summation over the 8-function density
of states of the WJ fermions. For them we can set either
E,=0 or E, ;=0 (the term with E, =0 and E,,,=0
simultaneously is zero). The geometry factors,
cos(0y + q—6y), are averaged to zero by considering all k
in the Brillouin zone (BZ). We then have

Imy,(q,0)=—x(1—x )*tanh(w /2T )p,(»)

+Imy,(q,®) , (16)

where Imy,,(q,®) is given by Eq. (15) with the d-function
density of states of the WJ fermions excluded, and

1((0)—N—/228(w E.) (17)

is the density of states of WJ fermions in the undoped
sites (E,70). For small w, p;(w)=Nv;. The imaginary

D [nple)—

(q,iw )-—°—‘-
Xqu 4N2(N/2 kpa'

where

L(q,io;k,p,q")=¢g " (p,q—q")[nzl

+g (p,q—q')ng

nF(8k+q:)]L(q,iw;k,P,q') >

nB(E
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; 1 B ioTeye e
XZ(q’lCO)ZFE fo dre k+q'(T)Gk(_T)
kq'

F*(q—q',7) . (14b)

In Eq. (14b), G{(7) is the holon Green’s function. Carry-
ing out the calculation, we obtain,

2 I4 (k q) nF(Ek+q) nF(Ek)][8(w+Ek+q_Ek)—S(w—Ek+q+Ek)]

—-nF(Ek+q)][8(w—Ek——Ek+q)—5(w+Ek+Ek+q]} N (15)

[

part of the spin susceptibility therefore has a gq-
independent component. This is in accordance with the
marginal-Fermi-liquid suggestion of Varma et al.,'* and
also in agreement with neutron-scattering experiments.?’
X12(q,®) is peaked near q=(=x,*7), a feature required
in the previous phenomenological models.!’

The summation of Imy,(q,w) over q in the ®—0 limit
can be easily done. We obtain, for T <<J,

% S Imy(q,0—0)="T(1—x 2Ny Ny; +x /T) .
q

7{

(18)
The experimental T'; ! follows from this result. The rela-
tive magnitude of order of 4 and B is also correct since
Ny is scaled by 1/J.

X>(q,®) is derived from the terms in which the holons
are dynamically coupled to the WJ fermions,

(19a)

p+q—q’—Ep)_nB(Ek+q'—£k)

Epiq-q)np(Ep)]

(_Ep)—nF(Ep+q—q')]

iotey—erqtEp1q—qg —E,
np(Ep —Epiq—q)
iote,—gg— E
ng(—E,—E

ioteg —

_n3(8k+q1_€k) ]
+EP
ptq—q )—nB(8k+q'_8k)
—E,—E

pta—q’

Ek+q’
_ ng(E,+E
iw+€k_

ptq—q’

p+q—q')—'n3(5k+q1_€k) ] (lgb)

£k+q'+Ep +Ep+q*q’
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FIG. 5. Temperature dependence of the spin susceptibility.
The sharp drop below about 50 K in the experimental data is
due to the formation of the superconducting state.

The contribution of x, to T;! at low temperature is

small,

% S Imyy(q,0—0)= ToxN2x + 72N T/2) .
q
(19¢)

Figure 5 shows the temperature dependence of
Imy,(q,w) for q=(37 /10,37 /10) and ®=2 meV with the
parameters J=1300 K and x=0.1. The experimental
data are from Ref. 28.

The real part of x,(q,w) can be obtained from Eq. (15)
by replacing all the 8 functions by their corresponding
energy denominators. ' Alternatively, it can be obtained
from Eq. (16) by the Kramers-Kronig transformation. In
particular, the static (or Pauli) susceptibility, x,p, is ob-
tained by taking w—0 first and then taking the q—0 lim-
it. For T <<J,

. tode ae ng(E,—E )+ng(e) nB(Eq*Ep)+"F(5)
. = E E -
G;lio) N/2 INN 22 2 f_w o Ai(e) [np(Eq)—np(E,)] iot+e+E,—E, iote—E +E,
ng(E,+E )+np(e) ng(—E,—E)+ng(e)
+ —E E -
[np( p)—nr( q ] ia)+E—Ep_‘Eq iotetE,+E; ’

where Ajg(e) is the spectral density of the holons. For a
doping concentration x not too small, the condition
Ef>>J is valid, where Ef is the holon Fermi energy.
Under this condition,

%ZE%Aﬁ(e)zNe. (22)
k

Most of the calculations in this work are done in this
doping region. The summation over p and q in Eq. (21)
can be done easily, using the density of states of the WJ
fermions in Eq. (11). We obtain, at T=0 and to the
linear order in V,
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X1p=1(1—x ) Ny;[1+2x In(1. 140, /T)] , (20)
where o, is a high energy cutoff of the WJ spectrum
(w,~J). The static susceptibility therefore will increase
logarithmically at low temperature. It would be interest-
ing to see if this prediction can be verified experimentally.

B. Normal-state tunneling conductance
and photoemission

The experimental tunneling conductance’ of a copper
oxide superconductor in the normal state is found to be
g=gy+g[V], for the applied bias |¥|<0.1 eV. This
linear dependence of the conductance in bias is very
unusual. The tunneling conductance between two metals
in the normal state, one conventional and one copper ox-
ide, is

g(V)=2¢*T,|’Ny 3[
k

—2ImG(k,eV)],

where T, is the tunneling matrix element assumed to be a
constant, Np the density of states of the conventional
metal, and G(k,w) the Green’s function of the electrons
in the copper oxide metal. Since

S [—2ImG(k,eV)]= 3 [—2ImG, (eV)],
k i

the calculation only requires the use of the on-site elec-
tron Green’s function, G;(w). Within our approxima-
tion, the on-site Green’s function of the electrons is
Giio(T)=(T e (1)e;(0)){T,S;"(7)S;(0)) .

For a disordered spin system, one can replace
(T.S;7(7)S;7(0)) by 2{ T, S#7)S%0)). With the help of
the spectral density representation of the holon Green’s
function, we obtain,

(1/N) 3 [—2ImG(k,eV)]=x7N,(x +2NyyleV])
k

(23)

where N, is the density of states of the holons. The ex-
perimental observation follows from Eq. (23). We notice
that a similar result has been derived by Anderson and
Zovu® using the slave-boson method. Since N, can be tak-
en approximately as a constant for a wide range of dop-
ing concentrations, Eq. (23) predicts that the zero-bias
conductance at zero temperature is proportional to x2. It
is interesting also to calculate the temperature depen-
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dence of the zero-bias conductance. We find

g(V=0)=2mxe*|T,|*’NxN,(x +4N,T) . (24)

In deriving Egs. (23) and (24), we have used
[np(Ek)—np(Ep)][nB(Ep—Ek)—nB(Ek—Ep)]—»% s
(25)

when Ep—>0 and E;—0. Unlike conventional metals,
the zero-bias conductance of the copper oxide materials
has a strong (linear) temperature dependence at low tem-
perature. The ratio of this linear temperature term of the
zero-bias conductance to the linear-bias term of the zero-
temperature conductance is predicted to be 2T /|eV], in-
dependent of all other parameters. It would be interest-
ing to see if these predictions can be experimentally
verified.

It is also appropriate to comment here that our ap-
proximation of the on-site electron Green’s function
rigorously conserves the total number of electrons, i.e.,
(chein)=(clie; ) =(1—x)/2, since

lin})( T.S7(1)S7(0)) = 1ir%< T, SH7T)SH0))=1,

using Eq. (9a). In terms of this aspect, our approximation
is better than other approximations with mean-field treat-
ment of the single-occupancy constraint.

The result in Eq. (23) can also be used to interpret the
broadening of the experimental photoemission peak,
since the term linear in |eV] implies a broadening linear
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in energy. Detailed calculation of the photoemission
spectra will be discussed in a forthcoming paper.

C. Resistivity in the c direction

The temperature dependence of the resistivity in the ¢
direction? is experimentally found to be approximately
1/T at low temperature Following the suggestion of
Zou and Anderson,’ we assume that the resistivity is de-
rived from electron tunneling between adjacent Cu-O
planes. The tunneling Hamiltonian can be written as

Hr=t.3 [c] (1)¢;(2)+H.c.],

io

where ¢, is the tunneling matrix element which is as-
sumed to be a constant, and the sum is over all the ab-
plane lattice sites. Using our approximation, we have

e (Ve (2)=e (Def(2)d](1)e 14 4

di(2) .
Since the WIJ phase difference between two layers,
@;(1)—@;(2), is static and has the same plane site index i,
it can be taken to be zero. The tunneling Hamiltonian
can be written as

T~:z (Def(2)[df (1, (2)

+d,(1)df(2)]+H.c.} .

The - tunneling current, I, is calculated® by

I=2e ImX(eV), where

X(io)=—|t, |22 f dre“(T,e;(1,7)e(2,7)e;(2,00e](1,0))( T,d(1,7)d,(2,7)d[(2,0)d,(1,0)) . (26)

This can be written as

X(zco)——N— z f dre'"G{ . (1,7)GL(2,—7)F t(q,7) . @27
Taking the V' —0 limit, we obtain the c-direction conductivity at low temperature:
o (T)=e? 2 A3(0)A45(0)Q(k—k') (28)
kK’
where
Q(q)-m Eg (P, @) np(Ey q)—np(E,)(E,—E ANE,—E,.q)
+g~ (p,q)[nF(—-Ep)— (Ept ) UE,+E L JAE,+HE o) . (29)
[
In Eq. (29), shall first integrate k and k’ in Eq. (28), thus giving a fac-
tor N2. The wave vector q=k —k’ in the function Q( q)
Aly)= dnp(y) + dng(—y) 30) becomes the difference between two Fermi wave vectors
)= Ay a—y) of the holons, and can vary from |q| =0 to 2kg. We next

We have assumed Ef>>J in deriving Eq. (28). Since
A3 (0) is strongly peaked at the holon Fermi energy, we

consider the contribution from the 8 function in the den-
sity of states of the WJ fermions in performing the p in-
tegral of the function Q(q). Again, for this contribution,



12 148

the geometry factor cos(6,,,—06,) is averaged to zero,
and we can set either E, or E,,, to be zero. When
E,=0, the momentum ptqin E,  can still vary over
the entire BZ. Similarly, when E, =0, p can vary over
the entire BZ. Integrating over these momenta, we ob-

tain
TT3 2 2a72
o'c(T)zXTe [t |’N Nyw,; T, (31
where we have used

2
foooy tanh(y /Z)d sl 32)

sinh(y /2) 2

The temperature dependence of the resistivity in the ¢
direction at low temperature is therefore 1/7. It should
be appreciated that this temperature dependence is the
result of spin excitations inevitably accompanying the
tunneling process. The importance of the temperature
dependence of the c-direction resistivity is even more
clear when compared with the ab-plane resistivity (see the
discussion at the end of Sec. IV D). The x dependence of
the c-direction resistivity is also interesting. Since we ex-
pect Nyj to be not very sensitive to the doping concen-
tration for not too small doping concentrations, Eq. (31)
predicts that in this doping region the c-direction resis-
tivity at low temperature is inversely proportional to the
doping concentration.

The part of integration in Eq. (29) with E,70 and
E, . 470 can also be done. It is proportional to T? for
T <0.15J. For 0.15J < T <J, we find its contribution to
0.(T) is approximately (71'/2)e2|tc|2C1N22NWJT, where
the constant C; =0.73.

D. Resistivity in the ab plane
and the infrared conductivity

Since we start from a one-band Hubbard model, the
current operator is?® j=iet 3;5,8¢/ 5 ,¢;o- In our repre-
sentation, we have
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correlation function. We obtain, m(w,T)=m(w,T)
+m,(w, T), where 7, comes from the holon conductivity
carrying static spin fluctuations. Using

S (blbiis,) =2y ~2A= F—;Z— > (b:,ap —a;r,bp )sinp,
7 p

(34)

from the definition of the in-phase flux state, we arrive at
—_ 2 2 B ioTe e 22
m(w)=—t*(4y) Efo d1e' "G (T)Gy(—71)sin’k,
k

(35)

We next follow the standard derivation of the dc conduc-
tivity (w—0) from the Kubo formula, and use

e

E
[ ;e[Aﬁ(O)]zdekzz‘n-/Ez(k%,T) ) (36)
—EF

where 3,(k,T) is the imaginary part of the holon self-
energy. This gives

o(T)=— llmImﬁl(w)/a)

=1t22(4y )*N,(sin’k, /=,(k,T)) . (37)

The average is taken over the holon Fermi surface with
proper vertex correction. (The vertex correction, as usu-
al, is to convert 1/2, into the transport lifetime.) X,
could be contributed from various scattering mecha-
nisms. One contribution is from electron-phonon scatter-
ing. (The electron-phonon interaction only depends on
the charge density, which is equal to the holon density.)
For T >20.20,, where O, is the Debye temperature, the
phonon contribution is linear in 7. We shall not exclude
such contributions here. Instead, we show that the con-
tribution from scatterings between holons and WIJ fer-
mions as given in Eq. (12) is also linear in 7, and that this
linear dependence can be extended to 7'=0.

The evaluation of 2, can be done using the standard
procedure by including a WJ fermion bubble in the holon

= iet s U(kpq)ek+qe£(b;+qap”’a;+qbp) , (33)  self-energy. This gives
N/2
where U(kpq)=cos(k, —p,)—cos(k, +p,+q,), and we 2(k,i0)= N/3/2 q% Gi+qliotig,)B(q,ig,) , (38)
have used the gauge shown in Fig. 2. The conductlvxty ’
can be evaluated from the standard Kubo formula,?
o(w)=—Imm(w)/w, where m(w) is the current-current  where
J

B(q,ig,)= NB/Z 2 {|V(k,p,q)*G ip, +ig, )G (ip,)+Re[ VXK, p,q)G % o (ip, +ig, )G (ip,)]} . (39)

The Ref[ - - - ] term contains a geometry factor ei(eerqu "), which can be taken as zero when we consider the 8-function

part of the WJ fermion density of states. We therefore shall neglect it below for simplicity. With the same reason, we
can further simplify the expression by replacing |V(k,p,q)|? with {|V(k,p,q)|?), where the average is done on p and q.

With these simplifications, we obtain



3(k,iw)=1(|V(kpq)|*) ——

(N/2)2 2 [nF(Ep-i-q)_—nF(Ep)]

+[np( ——EP)_

Taking the imaginary part, integrating out the holon
momentum k+q=k’ first, and then following the same
procedure of integration for the §-function part of the WJ
fermion density of states as we outlined in obtaining the
c-direction resistivity, we arrive at, for ® =0,

5,(k, T)~4mx { | V(kpq)|*)N,Nw; T . (41a)

Thus, the ab-plane dc resistivity is linear in 7. The linear
temperature dependence of the resistivity can be under-
stood quite easily. The scattering between the holons and
the WJ fermions is similar to that between electrons in an
electron gas. The latter is known to cause a T2 depen-
dence in resistivity, providing that the electron gas has a
finite density of states at its Fermi surface. The linear
temperature dependence of the resistivity in our case fol-
lows immediately since the density of states of the WJ
fermions is sharply peaked at zero excitation energy as
represented by the & function in Eq. (11).
At T=0, we find =(k,w) to be linear in || for |w| <J:

|
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nF(Ep+q)]
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npg(E,—E;, ) tnplegq)

8k+q+Ep ﬁEp+q

nB(EP+q—Ep)+nF(8k+q)
0—ey1qtEprq—E,

iw—

|

nB(Ep+Ep+q )+np(8k+q)
io—tsqtEy T Ey g

nB( _EP_EP+q)+nF(Ek+q)
—E,—Epiq

- (40)
io—

Ek+q

3,(k,0)=~2mx {|V(kpq)|?)N,Ny;|o| .

The holons therefore exhibit marginal-Fermi-liquid
behavior. Overall, o,(w,7) can be described by the
Drude formula with marginal-Fermi-liquid behavior of
the holon lifetime (cf. Refs. 14 and 26). We notice that
the ratio of Eq. (41a) to Eq. (41b) is 2T /|w/|, independent
of all other parameters. In the doping region we are con-
sidering (sin’k, ) is approximately proportional to x, and
Ny is only weakly dependent on x. Equation (37) to-
gether with Eq. (41a) then predicts that the linear tem-
perature resistivity mainly depends on y, which we ex-
pect to be also weakly dependent on x is the region we
are considering.

The scattering of the holons by the other part of the
W1J fermion spectrum (i.e., E,70 and E ,70) can also
be estimated. For 7 <0.15J, this part of the contribution
to =, is proportional to T2, but at higher temperature,
the contribution is also linear.

We now turn to the discussion of o,(w). This part of
the conductivity corresponds to the current correlation
where the holons are dynamically coupled to the spin
fluctuations:

(41b)

mio)=——"5 3 [V(kpa)* [ eG4 (NGL(~1IF " (p,a,7) , 42)
(N/2) kpa
where
F(p,q,7)=G2(1)G% o(—7)—Re[G(T)G o (—1)] . (43)
This gives
mliw)==———— |V(kpq)|}[nple,) —nge I'iw;kpq) , (44)
2 Z(N/Z)za pq)|“[np(ey Fk+q] Pq
where
npg(E,—E, q)—ng(€iq—&)
I () = —. + j—
[C(iw;kpq)=[1—cos(0,+ 6, )1[np(E, q)—np(E,)] io+tes—tesqt Ey—Eprq
_ nB(Ep+q_Ep)_nB(Ek+q_'€k)
iote,—erq—EytE g
+[1+cos(0,+ 6,4 g)[np(—E;)—np(E, 4)]
nB(Ep+Ep+q)_nB(Ek+q—Ek) _ nB(__Ep_Ep+q)_nB(8k+q_Ek) (45)
ioteg =g qtE,+E g iotey =g E,—Epiq
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We have derived the following results for o, from the
above expression: (1) In the ®—0 limit, o, is proportion-
al to T, thus giving negligible contribution to the in-plane
resistivity at low temperature. (2) For large w, o, de-
creases as 1/w, thus giving rise to a long tail in the con-
ductivity. (3) The largest contribution to o, comes from
excitation of WJ fermions from filled states to unoccupied
states. The density of states of the WJ fermions in the
undoped square lattice has two Van Hove singularities,
one at E=—J(1+2A) for the filled states, and the other
at E=J(1+2A) for the unoccupied states [cf. Fig. 5(a)].
The excitation energy between these two singularities is
2J(1+2A)~3000 cm™ ', for J~1000 cm™'. Therefore,
0, has a mid-infrared peak. The peak position shifts to-
wards lower frequencies upon doping, since the effective
exchange parameter is reduced by doping approximately
as (1—2x)J. o, contributes the “excessive” oscillator
strength observed in the experiments.*®

We are not able to make an accurate numerical evalua-
tion of o, because of the six-dimensional integration im-
plied in the wave-vector summation. Since we are mainly
concerned with 0,(w) at o > J, we make the following ap-
proximations: (1) taking |V (kpq)|? to be a constant, and
(2) ImI'(w;kpq)=ImI'(w;kp0). These approximations
enable us to reduce the six-dimensional integral to a
four-dimensional integral. Figure 6 illustrates o,(w)
computed using these approximations. The parameters
used are J=1300 K, t=0.2 eV, |V(kpq)|*=4¢2, and
T=100 K. Together with o,(w), the total conductivity
o(w) =0 (w)+o,(w) is also illustrated in Fig. 6, where
0(®) is modeled by the Drude formula, o (o)
=(ne*r/m*)/(14+w*r*). The parameters used for o(®)
are n=10"/cm?, 1/7=2V©’+(2T)%, and m*
=2my.

It is interesting to compare the ab-plane resistivity
with the resistivity along the ¢ direction. The tunneling
Hamiltonian between two layers, as discussed in Sec.
IV C, can be thought of as that for electrons hopping in
the ¢ direction. One might naively expect that the con-
ductivity along the ¢ direction would exhibit qualitatively
similar behavior to that of the ab-plane conductivity.
Indeed, this would be true if there were no spin-charge
separation. A close examination reveals the origin of the
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FIG. 6. Conductivity calculated from Egs. (37) and (44).
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seemingly puzzling temperature dependence of the two
resistivities: For the ab plane, (S;"S;”)=—A, whereas,
for the ¢ direction, {S;7(1)S,7(2)) =0. The holons there-
fore can hop to their nearest neighbors in the ab plane
with a static spin configuration, whereas along the ¢
direction, the holons can hop to a nearest-neighbor layer
only by dynamically exciting the spin background. The
conductivity along the ¢ direction is rather similar to o,
of the ab-plane. The qualitatively different behavior of
the two resistivities is therefore the result of spin-charge
separation and the confinement of the WJ fermions in the
ab plane. The importance of the different temperature
dependence of the two resistivities has been stressed by
Anderson.?

E. Electronic Raman spectra

The electronic Raman intensity for, say, the xx com-
ponent, is proportional to [1—e  “/7]"ImR (w), where
R (w) is the correlation function of the electronic stress
tensor,

Riiw)=— [Tdre (T 1, (N7,(0)

T XX

where

— T — T
Txx_zt ECOSkakacka—t 2 ci+8x,aci,o'
ko i, o

This result is derived for the one-band Hubbard model.*!
Had one had a free-electron metal, the cosk, factor in 7,
would be replaced by 1, and R (w) would be strictly zero.
The presence of the electronic Raman background is
therefore a consequence of the hopping motion of the
electrons. In our representation, 7, is

—it
T*"zm > UR(kpq)ek+qel(a;+qbp—b;+qap) ,
kpq

(46)

where Upg(kpq)=sin(k, —p,)—sin(k, +p, +gq,). Apart

from the matrix element Uy, 7, is similar to the current

operator. R(w) therefore can be discussed in parallel

to the conductivity. We obtain R(w)=R (o)

+R,(w)+ R;(w), where
Rl(w)z%t2(47/)2New(cos2kx/22(k,w)> . 47)

The marginal-Fermi-liquid behavior of the holons mani-
fested in 2,(k,) implies a flat Raman spectrum down to
energies w~ T, as experimentally observed. R,(w) is the
correspondent part of o,(w). If the matrix element,
U} (kpq), is approximated by U%(kpq), we would obtain
R,(w)~wo,(®). R,(w) has the following limiting behav-
iors. For small @ and at low temperature, R,(w) is pro-
portional to w7, and for @ >>2J and at low temperature,
R,(w) is proportional to 7. R;(®) is contributed from
spinzexcitations only, and is relatively small (proportional
to x ).
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V. SUMMARY AND DISCUSSION

We have shown that the anomalous properties of the
normal-state copper oxide superconductors, which are
non-Fermi-liquid like, can be qualitatively derived from
the #-J model. There are two essential ingredients in-
volved in our calculations. (1) Each electron is con-
sidered as a composite of its charge degree of freedom
and its spin degree of freedom, and (2) the spin excita-
tions are represented as WJ fermions. The first has been
advocated by the Anderson school since the discovery of
the copper oxide superconductors,®!® and the second has
been discussed extensively by one of us for the undoped
two-dimensional Heisenberg antiferromagnet in the
disordered spin states.”>"2® We also notice that many of
our results are the realization of the phenomenology pro-
posed by Varma et al.'* This is because the holons
behave as a marginal Fermi liquid. There are, however, a
number of properties which cannot be explained by the
marginal-Fermi-liquid behavior of the holons alone. One
example is the resistivity along the ¢ direction. It is
therefore important to notice that both the holons and
the spin fluctuations are responsible for the unusual prop-
erties, and that all the physical properties must be de-
rived through the electron operators which are gauge in-
variant.

The theory presented in this paper is a first step to-
wards a more complete understanding of the normal-state
properties of the copper oxide superconductors. Further
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development and refinement of the theory will be our fu-
ture research focus. In particular, a rigorous justification
of our approximation, b,-TTbjT ~(—1)tIis*s i » requires
calculations of higher-order fluctuations in the phase
difference for the nearest-neighbor sites i and j. It would
be interesting to see if the approximation can be extended
to the sites /7 and j beyond nearest neighbors. We specu-
late, however, that the approximation is valid only if the
two sites, i and j, are within the spin correlation length.
If the two sites are separated beyond the spin correlation
length, we expect the spins at these sites to behave rather
independently. Clearly, the question of how the electrons
propagate beyond the spin correlation length needs to be
further studied. The &-function density of states of the
W1 fermions in Eq. (11) is a simplification of the true den-
sity of states. What is implied is a density of states of the
W1IJ fermions sharply peaked near the zero excitation en-
ergy. While in the static approximation of the doped
sites, the 8-function density of states of the WJ fermions
clearly arises, its modification by the holon motion re-
quires further study. Finally, the prediction of the Hall
coefficient from our theory will be presented in a forth-
coming paper.
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