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Hole spectrum and optical conductivity in high-T, superconductors
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The spectral function of a hole moving in antiferromagnetic background is evaluated in the frame-
work of the Emery model within the spin-wave approximation. It is shown that in the vicinity of quasi-
particle peaks the self-energy is not diagonal. The mixture of the singlet and triplet is found to depend
on the momentum k. The optical conductivity is estimated. The results of the calculations are in good
agreement with experiment and numerical simulations.

In order to understand properly the nature of a super-
conducting state, it is important to choose a microscopic
Hamiltonian that can describe low-energy excitations in
high-temperature superconductor s in an adequate
manner. Anderson' suggested that the physical proper-
ties of Cu02 planes can be described with a single-band
two-dimensional Hubbard Hamiltonian. However, exper-
iments give evidence in support of a different picture,
which is describable with the generalized Hubbard model
proposed by Emery. Upon doping La2Cu04 with two-
valent Sr or Ba ions, holes occurred, occupying O2 orbit-
als in the Cu02 planes. Zhang and Rice argued on the
formation of a rather localized singlet that consisted of a
02 hole and Cu d spin spread over the crystal, indepen-
dent of the high-energy triplet. Such a renormalization
procedure brings the effective Hamiltonian for Cu02
planes to be a single-band Hubbard Hamiltonian.

By an analogous procedure, Zhang showed that the
Emery Hamiltonian could be reduced to a single-band
Hubbard Hamiltonian, as Ep Ud~ and Ud Ep is a
finite value ( Ud is the Hubbard repulsion on the Cu site;
E is the spacing between atomic 0 and Cu levels). How-
ever, numerical calculations on finite clusters show that
in the limit Ud~ ~ both Hamiltonians ' have different
ground states. The authors assume that the reason for
this discrepancy is connected with the fact that Zhang
and Rice ' have not considered virtual fIuctuations of
CU3d states correctly. The analogous results were ob-
tained in Ref. 7, where the quasiparticle spectrum of the
Emery model was analyzed within the spin-wave approxi-
mation.

It is worth mentioning that in papers ' the authors
pointed out that a singlet is a rather localized state which
can be described in terms of the Wannier representation
without mixing with a high-energy triplet. However, cal-
culations ' were performed within the 1ocal approxima-
tion and did not take into account long-wavelength Auc-
tuations, but only short-wavelength renormalization. In
our opinion such long-wavelength excitations can change
the structure of the ground state efhciently and lead to a
strong mixing of a singlet and triplet, especially at
k=(0, 0).

The spectrum of a hole moving in an antiferromagnetic
(AF) ground state of the t Jmodel was stu-died in a num-

ber of papers using the exact diagonalization technique
on finite clusters' and within the spin-wave approxima-
tion. " ' The main peculiar feature of the spectrum is a
large incoherent background with a quasiparticle pole lo-
cated in the vicinity of the bottom of the spectrum. The
width of the coherent polaron band is 8'-J and the pole
strength is a function of the ratio J/t. "

The Schwinger-boson —slave-fermion approach to the
t-J model was discussed in Ref. 16 beyond the mean-field
approximation. It was shown that antiferromagnetic and
ferromagnetic correlations coexist for the small doping.
These fluctuations lead to a strong renormalization of the
fermion propagator as in the single-hole case. For finite
hole concentration additional sidebands appear in spec-
tral density coming from multiple scattering on spin exci-
tation.

In this connection a recent series of experiments on the
measurement of optical conductivity seems of great im-
portance. ' ' In the insulating state the o(co) shows no
absorption in the region co ( 1.5 —2 eV. For co )2 eV, the
o(co) has a large step that corresponds to a "charge-
transfer gap" in the excitation spectrum. When some
carriers are introduced into the CuOz plane by doping, a
Drude-like peak appears and its weight grows with the
carriers concentration. Two peaks in o(co) occur for co

lying inside the charge-transfer gap, at co=0.07 —0. 1 eV
and co=0. 8 —1 eV. The effective carrier concentration
N, tt, defined as the integration of o.(co) over the charge-
transfer gap, increases faster than one could expect from
the doped concentration. The qualitative interpretation
of the experiments within the t-J model was proposed in
Ref. 12. The conductivity calculated on finite clusters
within the single-band Hubbard model is in good agree-
ment with the experimental data.

In the present paper we have calculated the spectrum
of a hole moving in the AF background in the framework
of the Emery model within the spin-wave approximation.
We have shown that the spectral function consists of two
broad incoherent regions. In the lower part of each there
are two quasiparticle peaks arising due to a coherent
motion of a hole surrounded by magnons. The self-
energy turns out not to be diagonal and is strongly depen-
dent on the momentum k. It means that mixing of a
singlet and triplet is essential. The optical conductivity
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o(co) is estimated. Our results are in good agreement
with experiments. '

Following Refs. 3, 6, and 21, we adopt the Hamiltoni-
an, as a starting point,

H=H, +HJ=t +pi (1+2S; o)p. i +Jg St SI,
ll'i ll'

where S;=1/2d; od;, o are the Pauli matrices, and

p;, d; are the creation operators of 02~ and Cu3d states,
respectively.

Assuming that in the absence of holes the ground state
of the system in question is of antiferromagnetic order, it
is quite convenient to transform the Hamiltonian (1) by
taking the sum over only one sublattice of Cu spins. In
addition, we distribute the p; hole states over 0 sites us-

I

ing their linear combinations, which are transformed as
basic functions of irreducible representations of the group
D4. It can be performed by means of the matrix

1 —18=—
2 1 1

—&z o
o Vz

&z o
o Vz

However, unlike Ref. 23 we classify the initial p; orbitals
as dependent on their spins. For this purpose we con-
struct the new orbitals 4I„' (4IB') to correspond to the
linear combinations of p;& (p, &

) and centered on Cu sites
of the 3 (B) sublattice. In these notations the Hamil-
tonian takes the following form:

H, =2t g[%Iq' ( I+2S;)0 I~ +'Pj~+2xB(1 —2Sj+2x )O'I+2xB ]
jA

+t/2
jE A, yy', aa'

B~aB~,a, [0'j~„' (1+2Sf+2x, )0'j~+', , +'Pj~+'2xB(1 —2S„'+, )O'I+2x+, , B]'r ' 7' y

+2t g Ba~(4,"„'S,+ 0 I+'2x, B+%",+2xBSj+2x%",+', ~+H. C. ),
jE A, ay

'y r

where

(p)— (a) (P) (a)+jA X Bapp jt & +j+2xB X Bappj+2xt

(a)—
p)~ =pg+y~ p) —x~ p)—y~ p)+xa

7& 2x —2y, ~2=4m, ~, =2& +2y, ~4=0

The translations ~ are expressed in units of a, the distance
I

I

between Cu and 0 sites. The representation of the Ham-
iltonian in this form is rather convenient because the
summation is taken only over the 2 sublattice and the
+ A'~ operators obey the anticommutational relations. If
antiferromagnetic order of copper spins is accepted, then
Hamiltonian (2) has a symmetrical form. By expressing
the spin operators in terms of Schwinger bosons 6&

(Refs. 12 and 22) and evaluating the functional integral
within the saddle-point approximation, we obtain'

b t:b +2 t:0'b t'=b +2 t:V2S' (3)

H =tSz g tk 0

0

~kq
+2t+2Sz g 4'k+q

kq
k+q 0 kq

kkP +H. c. + g cvqPqPq, (4)

where

—
Ek 0

2
0 ~ ~k V 1 jk~

uqQ( 1+Ek+q)+( 1+Ek)+ vqrk+qrk

uqrk+qV (1+ek)(1+ Ek+q)+ vqrk+(1+ Ek+q)(1+ ek)

uqrkv ( 1+Ek+q)/( 1 +Ek)+vqrk+qv ( 1+Ek)( 1+Ek+q)

7 k+q7k

+1+Eke I +ek+q+ vq+( I+Ek+q)(1+ ek)

cok= JSz+I —yk, yk= 1/z g exp(ik 5), uk =
I 1/2[(1 —yk)

' +1]I
'

vk= —sgn(rk)I1/2[(1 —rk) '"—1]]'"
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13~& is the creation operator of a spin wave with the vector
k, 4I,=('Pk", 4k ' ), and 4I, ' is the hole creation opera-
tor in a singletlike (tripletlike) state. ' The singletlike
state corresponding to the lowest-energy state is not a
straight Zhang-Rice singlet. This state corresponds to a
state with the oxygen spin opposed to a copper one in the
Neel background.

It should be noted that the approximation (5) is good
for describing long-wavelength excitations in a quantum
AF, but it violates the hard-core constraint connected
with a finite S value which is essential for short-
wavelength excitation. " We used (5) without considera-
tion of short-wavelength corrections to the spectrum of
carriers in a quantum AF. According to Refs. 11 and 12
we can write the equation for the self-energy of a single
hole in the noncrossing approximation as

2( k, co ) = t z g A k G ( k —q, co —co ) A k
q

(5)

where G(k, co)=[co—
Ek

—R(k, co)+iO] is the Green's
function and X(k, co) is the self-energy. Vertex correc-
tions are neglected here. For J))t these corrections are
small. " Moreover, the equation for the self-energy
within the noncrossing approximation describes the hole
spectrum of the t-J model quite adequately. "' ' There-
fore, we think that the vertex corrections to (5) cannot
change the results qualitatively and Eq. (5) is adequate to
describe the hole spectrum of the Emery model.

Note that, for k=0, detAk =0, and one can easily see
that

1 1
R(k, co) =X

This leads to the appearance of two poles in the Green's
function at co =2X and cu =0 having self-vectors of
I/&2(1, + 1). Therefore, the coherent spectrum for the
k=O point of the Brillouin zone corresponds to a mixture
of a singletlike and a tripletlike state taken with equal
weights. Otherwise, for k = ( + m /2, + vr/2) and
k=(+~, 0) and all the points lying on the line between
them, the self-energy is a diagonal matrix. It means that
quasiparticle excitations correspond to a pure singletlike
or a tripletlike ones. ' ' The self-energy in the incoherent
part of the spectrum is not diagonal and the mixed states
are responsible for high-energy excitations. '

Equation (5) was solved numerically by an iteration
procedure. The integral on the right-hand side of the
equation was calculated with the Monte Carlo technique.
This method saves computer time for the whole pro-
cedure, while the accuracy of the calculations remain
rather satisfactory. To make the procedure stable a
damping constant cu~co+i6 is introduced. We chose
the number of points for co to be 200 and divided the irre-
ducible part of the Brillouin zone into 15 points. The
dumping constant was 0.01 ~ Usually we need 8—10 itera-
tions, and the complete time of calculation was estimated
to be 3—4 h of an IBM386-like computer per one J/t
value.

To check the validity of this method the analogous
self-consistent equation for the t-J model was solved and

1.00 : k=(o, o)
3.00

k=(~/z, ~/2}

0.00 I I I I I I I I I i—5.00 5.00
co/t

3.00

0.00
—5.00 5.00

t

k=(~,O)

—5.00 5.00t

the solution was compared with results published else-
where. "' Good agreement with previous solutions of
the equation and, moreover, with the exact diagonaliza-
tion on finite clusters was observed. In Fig. 1 our spec-
tral density function is shown (see also the results of Mar-
siglio et al. ").

Equation (5) was solved in the same way. The spectral
density 3 (k, co)=(1/~) Im[TrG(k, co)] is shown in Fig.
2. In the bottom of two wide incoherent branches, where
Imi(k, co)WO, two quasiparticle peaks appear
[Imi(k, co) =0]. Dispersion of the lowest peak E(k) can
be well approximated by the following expression:

0.50—
v=(o, o) i

1.50
k= (~/2, ~/2)

0. /.00
—8.00 7.00 —8.00 7.00

1.50
k=(~, O}

0 ~ 00 I I I I I I I I I I I I I I—8.00 7.00

Exchange J/t = 0.7
FIG. 2. Spectral density A (k, cu) of the Emery model

(J/t =0.7).

Exchang e J/t = 0, 1

FIG. 1. Spectral density A ( k, co) of the t -J model
( J/t =0.1).
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FIG. 3. c, ;„as a function of J/t. FIG. 5. Pole strength z (m/2, ~/2) as a function of J!t.

E(k) =c. ;„+ [cos(k„)+cos(k )]

where

(6)
ground depends on the momentum k.

To estimate optical conductivity we used the following
expression for c7(cv)

s;„=—6.25+1.3(J/t)0 4' .

c, ;„, the bandwidth Wand the pole strength z (m/2, m/2)
as functions of J/t are presented in Figs. 3, 4, and 5, re-
spectively. The bandwidth is proportional to J/t for
J/t (1. The pole strength is an increasing function of J
over the entire interval tested. Note that our results coin-
cide with the previous analogous calculations. ' ' As
can be seen from Fig. 2, for k=O two coherent peaks
arise in A (k, co ) corresponding to the mixed singlet-
triplet states. The lowest peak has a smaller pole
strength. The second one at co=0 is very large, and it is
very difficult to estimate the energy of the lowest peak.
The wave function at the lowest pole at k =0 is
1/&2(VI, t

—4'k~ ) ~0), and there is no coupling of the fer-
mion with the spin background. At k=(+m. /2, +-7r/2)
the singletlike excitation is at the lowest energy of the
system. Therefore, the Zhang-Rice singlet is not a good
approximation for the Emery model. The mixture of a
singletlike and a tripletlike excitation in the AF back-

k CO

X A (k, Q)A (k, A+co),

where n (co) is the Fermi function and C (k, Q, cv) is the ir-
reducible current vertex with two external hole lines.
Equation (8) is good for the description of the optical
conductivity in the low-density limit when holes are
noninteracting and their spectrum is a single-particle one.
For co=0 we can apply Ward identity to estimate current
vertex C (k, 0, cv ) = vI, m */m (see Ref. 12). The Drude
weight can be estimated as

o D(cv) =D5(co), D =e c)n(s(k))
c)E k

where vk=c)c(k)/c)k.
The weight's dependence on the Fermi energy (the car-

riers concentration) is shown in Fig. 6. We found out
that D grows rapidly at small doping of CuO2 planes with
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FIG. 4. Bandwidth Was a function of J/t. FIG. 6. Dependence of Drude weight D on Fermi energy.
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carriers and goes through the maximum for the carrier
concentration n =z /2, where z is the averaged over
Brillouin-zone pole strength. The further increasing of n

leads to the decreasing of D due to decreasing average ki-
netic energy of quasiparticles.

To estimate the optical conductivity for ~ &J we have
used the approximation, for o (co),

p, = —5.4
p, = —5.25
p, = —5. 1
p.= —4.8

cr(co) ——f dA p(Q)piO+co j[n (0)—n (0+co)j,1
(10)

where p(Q) =2k' (k, Q) is density of state.
This approximation is good for describing o. (co) in

disordered semiconductors. This approximation contains
all essential physical features of mid-infrared optical con-
ductivity due to the fact for co )Jmagnetic excitation can
be considered as a static impurity. Note that the current
vertex in (10) does not contain momentum dependence in
contrast with the approximation of Ref. 16. To estimate
cr(co) for finite co the authors' insert into (8) the current
vertex for co=0. This procedure is not perfectly correct
due to the appearance of frequency dependence in the
current vertex. This dependence is essential and follows
from the Ward identity for a finite co value.

The results of the calculation of o (co) with the aid of
(8) are plotted in Fig. 7. The peak in the infrared branch
of o (co) (co =J) grows fast with increasing carrier concen-
tration n. The second peak, corresponding to excitation
of the magnetic polaron to the incoherent part of the
spectrum, grows slowly. This fact is connected with the
small density of states in the incoherent part of the spec-
trum. The further increasing of n leads to the decrease of
the first peak due to the decreasing number of unoccu-
pied states in the coherent part of the spectrum. The
second peak grows with further increasing of n. The
third peak, corresponding to interband absorption, grows
in the whole region of concentrations. Note that in the
present spin-wave approximation absorption due to
charge fiuctuation (for large co) does not appear.

Such behavior of the optical conductivity is in qualita-
tive agreement with the experiments on high-T, super-
conductors. ' ' ' The first peak co=1000 K corresponds
to excitation of the magnetic polaron into the first excited

I I I I I I I I I
i

I I I I I I I I I
i

I I I I

0.00 4.00

FIG. 7. Optical conductivity o.(co) for different Fermi ener-
gies.
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p state. The second peak at m=0. 8 —1 eV appears due
to incoherent high-energy excitation of polarons. The
third peak appears in the branch of co) 1.5 —2 eV, which
corresponds to charge fluctuations and must be mixed
with absorption due to charge fluctuations.

In conclusion, we would like to summarize the results
of the calculation. We have solved the self-consistent
equation for self-energy of a hole moving in AF back-
ground in the framework of the Emery model within the
spin-wave approximation. We have shown that the hole
spectrum consist of two incoherent regions in the lowest
parts of which two quasiparticle bands appear corre-
sponding to mixed singlet-triplet states. It leads us to the
conclusion that the singlet-triplet basis is a rather poor
approximation for the Emery model. The optical con-
ductivity estimated within this approximation is in good
agreement with experiment' ' ' and numerical simula-
tions.
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