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We develop a microscopic model of layered superconductors, designed specifically for the high-T,
cuprates, which is valid at all temperatures belo~ the degeneracy temperature and for all relevant
length scales. The model is based on the original idea of Bulaevskii, and consists of a stack of two-
dimensional conducting planes coupled via interlayer diffusion of charge carriers. The microscopic
model presented here reduces to the phenomenological Ginzburg-Landau, Lawrence-Doniach, and
anisotropic London models in the appropriate limits. We derive the main equations of the interlayer
diffusion model, then use the model to examine the role of dimensionality and interlayer scattering
on the magnetic properties of layered superconductors.

I. INTRODUCTION

The discovery of high-temperature superconductors
has revived interest in the theory of layered supercon-
ductors. The high-T, CuO materials show strongly
anisotropic properties connected with their layered struc-
tures, in both normal and superconducting phases. ~ Most
theoretical investigations of layered superconductors are
based on the anisotropic Ginzburg-Landau model, 23

the Lawrence-Doniach model, or the anisotropic Lon-
don theory. s Although these models are very impor-
tant and useful, they have restricted ranges of validity.
They are valid for length scales large compared to the
zero-temperature coherence length (macroscopic length
scales), and in the cases of the Ginzburg-Landau and
Lawrence-Doniach models are restricted to temperatures
near T,.

Here we study a microscopic model of layered super-
conductors which is valid at all temperatures below the
degeneracy temperature and all relevant length scales
above atomic dimensions. Such models have been in-
vestigated by several authors. s ~s We follow closely the
original idea of Bulaevskii, 7 who modeled anisotropic su-
perconductors as a stack of two-dimensional (2D) con-
ducting planes (2D Fermi liquids) coupled via interlayer
diffusion of charge carriers. In our microscopic model
interplane diffusion originates from random (incoherent)
interplane scattering processes, which are predominantly
responsible for transport in the c direction and Joseph-
son coupling between planes. In-plane transport, on the
other hand, is of the usual Fermi liquid type, i.e. , domi-
nated by charged quasiparticles propagating (coherently)
with a two-dimensional, in-plane Fermi velocity vf. The
Fermi-liquid model requires a long mean free path in the
planes compared to the in-plane Fermi wavelength. The
jnterplane diffusion model should be contrasted with the

model of a strongly anisotropic Fermi liquid, in
which charge transport perpendicular to the planes is also
due to coherent quasiparticle propagation, albeit with a
strongly anisotropic Fermi velocity. Such a model re-
quires that the mean free path be larger than the Fermi
wavelength of quasiparticle excitations in all directions.

The term "Fermi liquid" is used here in a more general
sense than usual. In this paper a Fermi liquid is a sys-
tem whose low-temperature properties are described by a
Boltzmann-Landau transport equation for quasiparticles
or, more generally, by the quasiclassical transport equa-
tions for the normal and superconducting states. This
generalization of a Fermi liquid includes systems which
might violate traditional Fermi-liquid criteria. For ex-
ample, we do not require the inverse lifetime of a quasi-
particle excitation to be smaller than its frequency, e/5,
or that the momentum distribution have a finite jump
at the Fermi surface. Thus, our notion covers, in addi-
tion to traditional Fermi liquids, borderline systems such
as marginal Fermi liquids, Fermi liquids with very
strong electron-phonon interactions, or nearly mag-
netic Fermi liquids. zz so These systems differ mainly by
the form of the collision term and other self-energy terms
in the Boltzmann-Landau transport equation.

We develop the interlayer diffusion model in order to
calculate the magnetic properties of layered supercon-
ductors. In Sec. II we formulate the microscopic model
in terms of the Fermi-liquid theory of superconductivity,
and present the basic equations and microscopic param-
eters of the model. We examine the normal-state proper-
ties in Sec. III; specifically, we calculate the conductivity
tensor in terms of the in-plane and interplane scatter-
ing rates. Then we relate the parameters of the micro-
scopic model to the parameters of the phenomenological
Ginzburg-Landau, Lawrence-Doniach, and anisotropic
London models. These results are useful for determining
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the microscopic parameters. As a specific example, we
discuss the parameters of Y-Ba-Cu-O. In particular, we
examine the role of dimensionality and interplane scat-
tering on the anisotropic penetration depth and upper
critical field. In a companion paper to follow we investi-
gate vortex structure and energetics in layered supercon-
ductors at low temperatures.

II. MICROSCOPIC MODEL

We formulate the theory of Fermi-liquid supercon-
ductivity in terms of quasiclassical transport equations,
following Eilenberger, s Larkin and Ovchinnikov, s~ and
Eliashberg. This theory describes the thermodynamic
and dynamical properties of the normal Fermi liquid as
well as the superconducting state, and is sufficiently gen-
eral to cover the full temperature and magnetic field
range of interest. The theory is capable of describing the
dynamics of superconductors far from equilibrium, and
inhornogeneous states on length scales below the zero-
temperature coherence length. We follow closely the no-
tation of Ref. 34.

The basic elements of the quasiclassical theory are
transport equations for a 2 x 2 matrix propagator in
particle-hole space,

g(s, R;e, t) =
i

&a f

whose diagonal components are related to the distribu-
tion function for Bogoliubov quasiparticles, and whose
off-diagonal components are identified as the Cooper-pair
amplitudes. There is some redundancy in this descrip-
tion; the functions f and g are related to f and g by
fundamental identities. The central equations obeyed
by the propagator are the quasiclassical transport equa-
tions

e+ —vy . A) ~3 —ec'&1 —L& —o.i, g&c - S

+ xhvy Vji = 0 . (2)

These equations generalize the Boltzmann-I andau equa-
tions describing the normaL-state transport properties.
We have a transport equation for each conducting layer
specified by the discrete index t. The properties of a
layer are described by the Fermi velocity vy, the in-plane
vector potential Ai(R, t), the scalar potential Ci(R, , t),
the order parameter Ai(R, , t), and the scattering self-
energy Bi(R,; e, t). The electromagnetic coupling of quasi-
particles (of charge e) appears explicitly in Eq. (2), but
also implicitly through the gauge-invariant self-energy &~.

The Fermi velocity and in-plane vector potential are two-
dimensional vectors parallel to the planes. We assume
the simplest model, a circular Fermi surface with radius
ky and an isotropic in-plane Fermi velocity.

In order to describe nonequilibrium properties we
use Keldysh's formulation of nonequilibrium dynamics.
The nonequilibrium theory requires three types of prop-
agators (retarded gP, advanced jP, and Keldysh jP), to
describe the dynamics of the quasiparticle level spectrum,

as well as the space and time dependence of the occupa-
tion of these levels. We use a single symbol gi(s, R; e, t)
to denote these propagators which depend on the posi-
tion on the Fermi surface s, the spatial coordinate in the
plane R, the excitation energy e, and time t T.he nota-
tion in Eq. (2) denotes the folding product in the energy-
time domain and the Keldysh matrix algebra required to
describe nonequilibrium phenomena. For details of this
formalism see Refs. 34, 36, and 37.

The self-energy describes two scattering processes: (i)
in-plane quasiparticle scattering and (ii) interplane scat-
tering, which is an essential feature of this model. Since
we neglect coherent transport along the c axis (i.e. , the
Fermi velocity has no c component), interplane scattering
is the only mechanism for charge transport perpendicu-
lar to the planes. In the Born approximation the in-plane
scattering is described by the self-energy,

(ab) 5 ds
(R;e, t) = ji(s, R;e, t),

27l 7 p 27t

where 1/70 is the in-plane scattering rate. Similarly,
interplane scattering between nearest-neighbor layers is
given by

, ed

2vr~, ( hc j) exp~

ds „g —gg(s, R, ; e, t)
27K

( . edSexp
~

+i—AiyT3hc )

where A&'&(R. , t) is the "interplane vector potential, " de-
fined by

~'+ ~" dz—„A'(R, ~, t),
d

and d is the spacing between neighboring planes. The
specific form of the phase factors in Eq. (4) is required
by gauge invariance. To be specific, under a gauge trans-
formation the transport equation must be invariant. For
a gauge transformation generated by Ai(R, t) the propa-
gator transforms as

gi (s, R,; e, t) ~ exp(iA&~s) S gi(s, R,; e, t) exp( —iA[73),

and the potentials transform as

hc
A) ~ A)+ —V'A),

e
hc

A;„+ —(AA,, —Ai),ed

Ci —+ 4i ——BgAi .
e

One sees by inspection that the transport equation, with
the self-energy, oi ——o& + o&, defined in Eqs. (3) and
(4), is gauge invariant.

The order parameter in layer t is defined here as the off-
diagonal mean-field self-energy, which we assume obeys
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the weak-coupling BCS gap equation

ds ' dE
At(R, t) = V . f, (s, R;e, t) . (10)

2m g~ 4vri

ds
j~(R, t) = eNf V f (S)

270

Ge
, Tr ~sgt (s, R;e, t)

4+x

The dimensionless BCS interaction V and the cutoff hw,
are related to the physical transition temperature, and
can always be eliminated from any measurable quantity
in favor of T, .

In addition to the transport equation, the quasiclassi-
cal propagators obey the conditions

wh~re Nf = ky/2irhvyd is the single-spin density of states
per unit volume at the Fermi energy. The interplane
current is not given by the standard quasiclassical rela-
tion. However, it follows from the quasiclassical trans-
port equation and the self-consistency equations [(2)—
(10)] that nt and j~ obey the continuity equation

R,A R,A 2 ]~t ~t
"RN K+ KN "A

p

(11)
(12)

B,n&(R, t) + V' jt (R, t)

n, (R, t) =

+eNf

These normalization conditions play an important role in
selecting the physical solution to the transport equations.

The charge and in-plane current densities are given by
standard relations of quasiclassical theory, 3 special-
ized to two-dimensional Fermi liquids,

ek+ —2e NfCt(R, t)

G~e
Tr gP (s, H, ; e, t)

4vri

= [q,
' „(R,, t) —j,', , (R, t)]/d, (15)

where j&'
& &

ss the interlayer current density flowing from
layer l —1 to layer t, and similarly j&'t+& is the current
density flowing from layer l to t + 1. The microscopic
expressions for the interlayer current densities can be
obtained by integrating the Keldysh component of the
transport equation (2) over the Fermi surface and all en-
ergies, multiplying by ~3, and taking the trace of the
resulting equation. One obtains the continuity equation
(15), from which we read ofF the interlayer currents

1 end f
ds'

f ds
2'7l ri 277 27K

. ed

47t i
Tr Ts g~(s', R; e, t), exp —i—At t+i~shc '+ )

. ed
(gg(+i (s', R; e, t) C3 exp

~

+i „A;,+,—is ~
(16)

This formula covers both normal currents and supercurrents in equilibrium and nonequilibrium situations. It is

somewhat formal, but is more transparent in two special limits of interest. In the normal state the retarded and
advanced propagators take the simple form, g+ = piir~s, and one finds, from (16) and (13),

Z,',+, (R, t) = ~&Zt, &+i (R, t) —D& [n~+i (R, t) —nt (R, t)]/d, (17)

which shows that the interlayer current is driven by a charge difference on adjacent layers, nr —nt+q, and by an
electric field in the c direction, Et t+i = ——,8&A& t+i —(@~+i —C t)/d. Equation (17) describes interlayer difFusion in

the normal state with an interlayer diffusion constant D~ = d /~i, and an interlayer conductivity o.~ = 2e Nyd /7i.
The second special limit is a superconductor in equilibrium, in which case the interlayer supercurrent is given by

eNsd f ds f ds'
de tanh]

(2k~T p

ed R I AxRe exp 2i —t )+x t s, R, e &+z s R e
hc

—exp —2i& A& ~+~ &+~ s, R, e t s, R, e *. ed R t A

which is the typical expression for the Josephson current, expressed in terms of quasiclassical propagators It js
generalization of the interlayer Josephson current in the Lawrence-Doniach model that is valid at all temperatures

The equilibrium properties of inhomogeneous states, e.g. , the Abrikosov vortex state, are most efficiently calcu
lated with the Matsubara technique. In this formulation the quasiclassical propagators depend on the Matsubara
frequency, e„= (2n+ 1)vrkI3T, in addition to the Fermi surface and spatial coordinates. The Matsubara propagator
g& (s, R; e„) satisfies the equilibrium transport equation, s4
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~

~ ~M~ + —vf Al rs —6l —col, gl (8, R; c~) + 55vy ' Vgl (8, R; cgt, ) = 0,
Q

and normalization condition,

gl (8, R; Egg, ) = —7l 1

(19)

(2o)

This transport equation can be obtained as the stationarity condition of a free-energy functional, as originally derived
by Eilenberger and extended below to a stack of coupled two-dimensional Fermi liquids,

—= g'Ifi, fi&t, &, lt, &t, ,t'tt'I = ) (g'i + &i. ti + ) t it t) + &
l

where P~ is the free energy per unit layer associated with plane t,

(21)

Xt = tgyd d R
~ ~at(R)~ ln —+gttkgT) —— gt (B,R;t:„))2 2 T (Al (R) [2 1 ds (p)

T egg 7l 2' (22)

where

(B, R; & ) = at'fl —gttft —
g (&l't& fi + gft& fi +gtZ gt + it g/70)

1 1 ( . 2e l 1 ( . 2e—(vr —igl) 28„+ —hvf(s) —
~

V' —i—Al I fl —=
~

%+i Al~ fl—.
2 fl (, hc ) f, (, hc ) (23)

and the interaction energy of the planes is represented by

Vl A,
= Nfdk/T d B ) ~

flZi )f—f, + fir fl, +—glr gl, +7Th/r1
~

27r (2 2
(24)

with

h ds-fl,
7 Q7c 27l

(,) - h ds — ( . 2ed
fP fl =fl fA:e~pI+i ~

Al'l,
lr, 7l. 27r 0 KC ) (25)

ds
fy, ,

7Q7c 27K

ds ( . 2edfP'fl = f'l fk«pl —i „Al'A, i,
r1sr 2vr g hc ) (26)

ds
gl~ gk = gl gk )

7Q'7l 27K

(1) A' ds
glZ gk = gl

— gk.
~1~ 27

(27)

Finally, the magnetic field energy

dz d A (curlA) /8vr,

for the layered system, takes the form

&mag = ) d R([OyAl l+1 —(Al+1 —Al ) /dj + (Al+1 —Al ) /d —ozAl l+1 + (OzAl —OyA(*)
l

(28)

This form for the field energy is a consequence of our model in which the z and y coordinates in the plane are
continuous, whereas the z coordinate takes only the discrete values t d. The relation corresponding to B = curlA is

( A",+, —A," A, +, —A,
( it+i ddt, tyt z )=

l gtt tIt+1 d , d
g t, t+ g*dt *gtlldI )

The stationarity conditions of Eq. (21) with respect to the off-diagonal propagators fl and fl, the in-plane vector
potential Al, the interplane vector potential Alzl„and the order parameter Al give, respectively, the transport equation

(19), Ampere's equation,

(
, (il ~l ii, li1) =

~ ~yI3l— (30)
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with the in-plane and interplane supercurrents given by

ds
jt (R) = 4eNf kfsT ) vy(s) g)(s, R; e„),

n=O

. C&fG ~ dS d8 Ij,',+,(R) = i I(~T) [ f((s, R;e„)ft+g(s, R;e„)
T17r

n=O

. 2ed+ ftet(sRe„, )*f&(s'R;e„)," exp —t st(+t
~

—c c I,hc

and the self-consistency equation for the order parameter,

(32)

T, . fat(R) 1 ds
Bt(R) tc —' = 2xtctsT ) ~

—— f~( Rs; e„))T 271n=0
(33)

This completes the summary of the basic equations
of the interlayer diffusion model. The theory contains
a small set (six in this simplest version) of microscopic
material parameters: the density of states Nf for the
conducting layers, the Fermi velocity vf in the layer, the
transition temperature T„ the in-plane and interplane
scattering rates 1/~() and 1/wq, and the interlayer distance
d.

III. SPECIAL LIMITS

The interlayer diffusion model is designed to describe
layered superconducting metals at temperatures well be-
low the degeneracy temperature. The theory is formu-
lated in terms of nonlinear transport equations, which
in their general form are diFicult to solve. However, in
several limits the equations simplify considerably. In par-
ticular, the normal-state quasiclassical equations reduce
to Boltzmann-Landau transport equations for normal
Fermi liquids. And for the equilibrium supereonducting
state near T„ the full equations reduce to the Lawrence-
Doniach equations for layered superconductors. In many
cases, for extreme type-II superconductors, the current

I

I

and magnetic field are slowly varying on the scale of the
coherence length and interlayer separation. In this limit
we recover the anisotropic London theory, with penetra-
tion depths A~~ and A~, given in terms of the param-
eters of the microscopic theory. By relating the gen-
eral equations to these well-studied standard theories we
can take over results obtained from these theories and
connect them with new results in temperature and field
ranges which are not accessible to the standard theories.
We can also relate the parameters of the interlayer difFu-
sion model to those of the standard models. In this sec-
tion we derive the standard models from the general the-
ory and give estimates for the microscopic parameters of
Y-Ba-C u-O.

A. Normal state

In the normal state the matrix transport equations re-
duce to scalar equations for gt(s, R; e, t), the upper left
matrix element of g&~. This propagator is directly related
to the distribution function for quasiparticles in layer l, ,
and in the limit hw « Ef obeys the Boltzmann-I andau
transport equations

e
(B, +vs(s) V)g&(s R e t) + (eBtC'i ——vt(s) BsA&} B,gi( Re t) s= I~( Rc t)s, (34)

where I~(s, R,; e, t) is the collision integral for layer t, with

1 dSIi(s, R; e, t) = ——gi(s, R; e, t) — gi(s', R; e, t) )70 27'
1 Qs'

2 gt(s, R; e, t) — (gtsl(s, R; e, t) + gi —t(s, R; e, t)] )71 'Tr

1 64 Is
(otA( t+y(R, t t)OBgl~l(s, R; E, t) —BtA( ) ((R,, t)OBgl —1(s t R.; et t))c 27r (35)

This is the usual Born approximation for the collision
integral, except for the terms which contain the time
derivative of the vector potential. They are required for
gauge invariance, and describe the eEect of an electric
field perpendicular to the layers on the interlayer hop-
ping rate. The terms proportional to 1/~q are the only
source of interlayer currents in this model. In particular,

dsjt(R, t) = 2eNf vf(s)2'
ck

. g((s, R; e, t) .
4vrz

(36)

I

the current density perpendicular to the layers is given by
Eq. (16), while the current density in the plane is given
by Eq. (14), which in the normal state reduces to
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(37)

B. Lawrence-Doniach and Ginzburg-Landau models

Ginzburg-Landau theory describes the equilibrium
properties of the superconducting state near T, . The

The conductivity tensor is calculated from the linear
response to a time-dependent vector potential. This is a
straightforward calculation, and one finds

Nfe vf
((( ) =,

/

o~(a) = = 2Nfe D~,2Xfe d
(38)

71
where 1/w = 1/7'o + 2/wq is the total scattering rate from
in-plane and interplane scattering, and D~ = d /rq is
the interlayer dift'usion constant. Note that the in-plane
dc conductivity is reduced by scattering, whereas the in-
terplane conductivity increases with increasing interlayer
scattering. The Drude form for the in-plane conductiv-
ity and the frequency-independent interplane conductiv-
ity are consequences of elastic scattering. More general
models which take inelastic scattering into account could
be formulated, ' '2 ' ' ' but are outside the scope of
this article.

theory assumes that the order parameter is small,
4/k~T, (( 1, and in the case of an anisotropic metal,
that the order parameter varies smoothly on the scales
of the zero-temperature coherence lengths, (~~ along the
planes and (~ perpendicular to the planes. The second
condition can be quite stringent for extremely anisotropic
materials, e.g. , the CuO superconductors. In the case
of an exceedingly small perpendicular coherence length,
(~ ( d, the 3D Ginzburg-Landau theory breaks down,
except for a narrow region near T, where (~(T)
(~/gl —T/T, ) d. The Lawrence-Doniach model gen-
eralizes the Ginzburg-Landau theory to include varia;
tions of the order parameter on the scale of d; thus, it
stretches the temperature range of the Ginzburg-Landau
theory. The Lawrence-Doniach model also assumes weak
interlayer coupling.

The free energy of the Lawrence-Doniach model can be
obtained from the general free-energy functional of Sec. II
by expanding in the interlayer scattering rate 1/~q, the
order parameter A~(R), and the in-plane gradients vf V'.
The solution to the transport equation (19) is obtained by
expanding to order (1 —T/T~)a~2, with the assignments

(1 —T/T, )~~2 and V —i(2e/hc)At (1 —T/T, ) ~ .
We first neglect interlayer coupling, and End

srh /' 2e.
2I~ ls ~„(2le„l + h/~) ( hc

vrh f' .2e l hvf !' . 2e
vf(s)

I

V —
&
—« I

+
I
V —~—At

I

I+~I (2I&~l + h/~) ( hc ) 4le~lT 4 hc ) (39)

Interiayer coupling is now included perturbatively. We insert ft and ft into the free energy (21), and retain terms
through first order in 1/7.q and leading order in (T —T,),

P=P ~s+Nfd )
I=—oo

d R IA(l ln —+ vrk~T )2 2 T
TG 26'~

+vrk~T), I
V —~—„A( I &t

1 (hvf)2 & . 2e

2h . 2ed+ &i &i+q exp
l

~ Artix l I'
&1 hc '+ )

This is the Lawrence and Doniach free-energy functional, which can be written in the standard form,

(4o)

P=P,s+Nfd )
It =—oo

d & ~(T) &i + -l&i +
&~~ I

v —
&
—« I

&~2 4 2 (
2 hc )

.2ed
+d, &i —&i+iexp

I

—i ~~', t+~ I)

where the parameters are given in terms of the micro-
scopic parameters by the relations

I

where p and p1 are dimensionless scattering rates,

n(T) = T —T, 2 h,vf ) 7((3)
T, ' 2~k~T, ) 8

(42) and

p=
2vrkgyT, v. ' P1 =

2' k~TG7
(43)

7((3)
2 (27rk~T, )

vugh
2

(q ———pg d = Dg,8k' TG

8 )- 1

K(3) „,(2n+1)'(2n+1+ p)
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The Lawrence-Doniach free energy goes over to the
Ginzburg-Landau free energy for an anisotropic system in
the continuum limit, i.e. , in the limit of a smoothly vary-
ing order parameter perpendicular to the layers. One
obtains, from (41),

the usual BCS gap equation. Note that we also have ne-
glected corrections to the interplane self-energy of order
d/A~. For currents fiowing in the planes the screening
length is easily calculated by expanding g&M to linear or-
der in At,

dz d R n(T)]4/

( . 2e ') ' , . 2e
+( I

~ —i—Al& +(~ 0, —i —A' ~A
h, c ) ' hc )

2

(45) where

2
= (8vre Nfvt. /c ) 7rkisT

A(T)2
+~(T) (50)

In order to estimate the magnitudes of the microscopic
parameters we use parameters of the Lawrence-Doniach,
Ginzburg-Landau, and London models (discussed below)
obtained from comparisons with experiments.

C. London limit

Many of the magnetic properties of layered type-II su-

perconductors may be adequately analyzed in terms of
the anisotropic London model. This theory is not neces-
sarily restricted to the temperature region near T„but
requires that the magnetic Geld and supercurrent vary
on length scales that are large compared to the coher-
ence length. In this limit the order parameter assumes
its local equilibrium value, and the microscopic theory
reduces to the standard London equation for the coarse-
grained vector potential, A(R, z) = (A, A~), and phase,
y(R, , z),

1
Z(e„, 7.) = 1+—

2r Qg2 + g(T)2

determines the reduction in the screening current from
both in-plane and interplane scattering (1/& = I/7p +
2/&i ) . Note that strong interlayer scattering leads to
a signiBcant reduction of the in-plane supercurrent; for
~ki3T, (( I/7i the zero-temperature screening length is
larger by the factor I/girA(0)r/h than the correspond-
ing screening length in the clean limit.

Interlayer scattering provides a Josephson coupling be-
tween planes, and a corresponding interlayer Josephson
current proportional to the interlayer scattering rate,

4e&f d
&7,i+i(R) = ~kgb T

'T1

A(T) 2

X ) 2 2 sin[et i+i(R)]F2+6 T 2

V x W x A =
z ~

—Vy(K, z) —A(R, z))
1 (hc

A(( T (2e
5c+ 2
—V', y(R, , z) —A'(R, , z)

~

z .

(46)

The length scales A~~(T) and A~(T) determine the de-
cay lengths for screening currents in the Meissner and
vortex phases. These parameters are obtained from
the interlayer difFusion model by evaluating the current
[Eqs. (31)—(32)] with the local equilibrium solution to the
transport equation

(52)

where C~ ~+1 is the gauge-invariant phase difFerence be-
tween layers,

2ed
+i(R) = yt+i(R, ) —y~(R) — A;,+i(R) .

For slow variations from plane to plane, C~ i+1 &( 1, we
obtain the continuum limit form for the supercurrent per-
pendicular to the planes, j' oc 7',y —(2e/hc)A', and a
corresponding screening length given by

-M
g) = —7r

i~t „~3 —6)

(~t, )2+ /6), [2
(47)

E + 'ivf (s) —V'yt ——At
2 c

ih ds+ gi(s, R.; e„),
27r7 27r

(48)

h, ds
&t = &( + fi(s, R, ; e„),

27r7 27r
(49)

wher«&(K) is the mean-field order parameter given by
the self-consistent solution of Eq (33). In z. ero field the
homogeneous order parameter Ai(R, ) = 4(T) satisfies

A~ (T)'

which is just a Josephson penetration length.
We end this section with a summary of some known

results for the lower critical Beld. The London theory
gives a reasonable estimate of H, 1 in good type-II su-
perconductors because the line energy is dominated by
the kinetic energy of the supercurrents outside the vor-
tex core. However, the kinetic energy must be cutoff
at a length scale corresponding to the breakdown of lo-
cal equilibrium of the order parameter. For fIow in the
planes this scale is the coherence length, whereas for cur-
rents perpendicular to the planes the scale is typically
the interlayer spacing. Thus, the London theory results
for the lower critical Geld are,
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TABLE I. Experimental data. TABLE II. Microscopic model parameters.

Quantity
Tc
d

0 II (+~)
heep

g~ g~~

de.2/dr[.
dHII, /dV [ .
A

II (0)
A~/AII

Y-Ba-Cu-0 (6 = 0.1)
92 (K)'
11.7 (A)
0.20 (mJ/K cm )'
50 (pA cm) ~

1 5 (eV)
230'
—1.8 (T/K)'
—10 (T/K)
1.4 x 10 (A)'
7.7~

T, d Nf Vf &/~~ le. &/~01~.
(K) (A) 1/(eV cell-spin) (cm/sec) (meV) (meV)

92 117 39 1.1 x 10 0.5 14.2

The measured value of this parameter for YBa2Cu306 9
is listed in Table I„as well as other input data that we
use to determine the microscopic parameters.

Measurements of the Drude plasma frequency, com-
bined with the density of states, allow us to infer the
in-plane Fermi velocity from the formula

Reference 47.
Reference 1.

'Reference 49.
Reference 50.

'Reference 51.
References 51—53.

~Reference 54.
~„=4~&ye vf .2 2 2 (58)

(55)

The total scattering rate 1/~(T, ) is then obtained from
the measured in-plane dc conductivity,

Mp'r(T)

4' (59)

(56)

where the core contributions are of order 1 compared to
the logarithms. These core energies, which are outside
the scope of the London theory, are due to pair-breaking
effects from the combination of the vortex supercurrents
and scattering processes. The core energy contributions
to the lower critical Beld are discussed in a forthcoming
paper. 44

D. Application to Y-Ba-Cu-0

C,)/T:—p = sar k~Nf . (57)

The large anisotropy of the resistivity of CuO materi-
als suggests that the interlayer diffusion model may be
appropriate to high-temperature CuO superconductors.
Here we use the available experimental data on Y-Ba-Gu-
0 to compare with the interlayer diffusion model, and to
estimate the microscopic parameters. These parameters,
particularly those associated with scattering processes,
may vary from material to material. We know of no
report of a complete set of relevant measurements on a
single sample of crystalline Y-Ba-Cu-0; thus, the param-
eters obtained here are estimates with the uncertainty of
having been derived from measurements on different sam-
ples. Nevertheless, the interlayer diffusion model gives a
good description of the basic normal-state and supercon-
ducting properties of Y-Ba-Cu-O.

The normal-state electronic heat capacity, extrapo-
lated to zero temperature, determines the normal-state
density of states at the Fermi level,

T,dH, 2/dT(z—.= Ce/2+(ii,

&dH.2/d&17.—= C'o/2~6. (ii

(60)

are determined by the two principal coherence lengths
(Table III), which in turn are related to vf, T„and
the pair-breaking parameters p = h/2vrk~T, ~ and pq =
h/2+k~T, &~ by Eq. (43). Finally, measurements of the
in-plane penetration depth are in reasonable agreement
with the value of AII(0) calculated from Eq. (50). The
comparison of the experimental and calculated values for
the consistency checks is summarized in Table IV. There
is overall good agreement with the predictions of the in-
terlayer diffusion model, with discrepancies of at most
50%. Properties associated with the c-axis transport
show larger discrepancies than those associated with in-

In principle, the interplane scattering rate l. /Ty(Z', ) can
be inferred from the c-axis conductivity using Eq. (38).
However, magnetic torque measurements in the mixed
state, interpreted with anisotropic London theory, 5 give
precise values for the anisotropy of the London penetra-
tion depths, AII(T)/A~(T) We use t. his parameter to de-
termine the interlayer scattering rate from Eqs. (50) and
(54). The data summarized in Table I are used to deter-
mine the microscopic parameters as described above; the
results are given in Table II. Other experimental data can
be used as a consistency check of the model. In partic-
ular, the c-axis conductivity is calculated from Eq. (38)
and compares reasonably well with experimental values

(see Table IU). Also, the slopes of Hi&(T) and H+2(T)
near T„

TABLE III. Derived parameters.

D~ (T.)
1.0 x 10 cm /sec

~II(0)
14

AII(o)

1.6 x 103 A.

A~ (0)
8.8 x 103
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TABLE IV. Consistency checks.

Measured
Calculated

g~/g(( l~.
~ 230

300

Aii (0)
14 x 10s
16x10 A

dH. ,/dTI~.
-10 T/K
-15 T/K

dH. 2/dT[~.
-1.8 T/K
-2.0 T/K

plane transport. This is probably because the measured
c-axis transport properties contain the most uncertainty,
and are the most sensitive to differences in material qual-
ity. Our feeling is that the remaining discrepancies can be
accounted for either by uncertainties in the input data,
or by generalizations of the simplest version of the model
presented here; for example, anisotropy of the Fermi sur-
face and scattering rates, temperature-dependent life-
times, Fermi-liquid effects, and more complicated in-
terlayer scattering mechanisms could be incorporated.
Generalizations that include unconventional pairing (cf.
Ref. 46), as proposed for the CuO superconductors, 2s so

can easily be included.

IV. CONCLUSION

In this paper we have presented the interlayer diffusion
model, which is specifically designed for high-T, cuprate
superconductors. The model is based on the quasiclas-
sical theory of Fermi-liquid superconductivity. From so-
lutions to the quasiclassical transport equations for the
diffusively coupled layers we calculate the dc conductivity
tensor in the normal state, and some basic superconduct-
ing properties, such as the coherence lengths parallel and
perpendicular to the layers, the penetration depth tensor,
and the upper critical fields near T, . We also show that

the interlayer diffusion model reduces to the anisotropic
Ginzburg-Landau theory, the Lawrence-Doniach theory,
and the anisotropic London theory in the appropriate
limits. Our model is consistent with experimental data
on Y-Ba-Cu-O.

The theory is most powerful for calculating magnetic
properties of superconductors. It can be used, e.g. , to
calculate the structure and dynamics of the vortex. core
of a Aux line, as well as other properties of layered super-
conductors which are outside the reach of most other the-
ories. In a forthcoming paper we discuss the structure
and energetics of vortex. lines in layered superconductors.
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