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Doping states in a two-dimensional three-band Peierls-Hubbard model for the copper oxides are
investigated with inhomogeneous Hartree-Fock (HF) and random-phase approximations. The dop-

ing states are sensitive to small changes of interaction parameters because they easily change local

energy balance between different interactions around added holes. For the parameter values derived
from constrained-density-functional methods for the copper oxides, added holes form isolated small

ferromagnetic polarons. When the parameters are varied around these values, different types of
doping states are obtained: For stronger on-site repulsion at Cu sites, larger ferromagnetic polarons
are formed, which are qualitatively different from the small polarons; for stronger nearest-neighbor
Cu-0 repulsion, polarons are clumped or there occurs phase separation into Cu- and 0-hole-rich
regions; intersite electron-lattice coupling rapidly changes the small polarons by quenching a Cu
magnetic moment and locally distorting the lattice in an otherwise undistorted antiferromagnetic
background. This is regarded as a rapid crossover from a Zhang-Rice singlet to a covalent molecular

singlet, and occurs substantially below a critical strength for destruction of the stoichiometric anti-
ferromagnetic state. However intrasite electron-lattice coupling, in contrast to the intersite coupling,
does not dramatically affect the hole-doping states. Doping induces modes in magnetic, optical, and
vibronic response functions. Local infrared-active phonon modes are induced in infrared absorption
spectra for finite electron-lattice coupling. They are correlated with doping-induced particle-hole
excitations observed in optical absorption spectra and in magnetic excitation spectra. These doping-

induced particle-hole excitations are associated with the local HF eigenstates in the charge-transfer

gap. Each doping state has distinctive excitation spectra in the magnetic, optical, and vibronic
channels. In particular, the hole-doping states with small polarons have doping-induced, infrared

absorption peaks on the low-frequency side of the stoichiometric peak, while the electron-doping
states have them on the high-frequency side.

I. INTRODUCTION

A considerable amount of the modeling of high-
temperature superconductors has focused on the identi-
fication of hole-doping states (spin bags, polarons, exci-
tons) defined with respect to stoichiometric antiferromag-
netic (AF) two-dimensional (2D) Cu-0 ground states. i

Many discussions have emphasized the 2D one-band Hub-
bard model; others have included multiband aspects
and more occasionally additional interactions such as
electron lattice, extended orbitals, or 3D coupling.
The purpose of this paper is to demonstrate that the
nature of doping states and their interactions can indeed
be extremely sensitive to effects going beyond a pure 2D
one-band Hubbard model and that doping states can be
identified by their spectroscopic signatures. Recently, we
reported this feature in a Letter. Here we present results
for a variety of parameter values and a more detailed ex-
planation and discussion of the method. The electronic
part of the model is a standard one, 5 and its lattice part
includes only displacements of planar 0 atoms along the
Cu-0 bonds for simplicity.

Specifically, we report here the following for parame-
ter values in regimes relevant to the copper oxides: (i)
Ud (the electron-electron interaction on Cu sites) be-
yond a critical strength, with renormalized site-energy
difference between Cu and 0 sites kept fixed, induces
a transition from small ferromagnetic polarons, primar-
ily on a single Cu site and four surrounding 0 sites,
to intermediate-size ferromagnetic polarons, whose spin
densities are perpendicular to the AF background. (ii)
Hole doping in the presence of U„q (the electron-electron
interaction between neighboring Cu and 0 sites) beyond
a critical strength, with renormalized site-energy differ-
ence kept fixed, produces phase separation into un-

doped AF regions of Cu holes and doped regions of charge
transfer to 0 sites. Near to but smaller than the critical
strength, polarons are clumped. (iii) Coupling with the
planar 0-atom displacements through the hopping in-

tegral ("intersite" electron-lattice coupling A ) triggers
a highly nonlinear feedback mechanism. This feedback
rapidly changes the small polarons by quenching a Cu
magnetic moment and locally distorting the lattice in
an otherwise undistorted AF background, substantially
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below a critical strength for destruction of the stoichio-
metric AF state. (iv) Coupling with the planar 0-atom
displacements through the Cu-site energy ("intrasite"
electron-lattice coupling Ap) does not rapidly affect the
hole-doping states. The effect of intersite electron-lattice
coupling is so significant that it can overcome the eEect
of Ug locally; i.e. , for large Ug, the intermediate-size po-
larons are replaced by small polarons. In addition, it
enhances phase separation for large U„g.

Nunez Regueiro and Aligia have investigated similar
2D and 3D Peierls-Hubbard models at strong coupling
with perturbation theory in the hopping strength. They
have considered the same intrasite electron-lattice cou-
pling as our Ap coupling [see text below Eq. (3)] and also
modulation of the nearest-neighbor Cu-0 repulsion by an
0-atom displacement. The lattice effect was studied in a
regime where the stoichiometric state is a charge-density-
wave state. We found that hole-doping states are insen-
sitive to the intrasite electron-lattice coupling, which is
consistent with their work in a sense. On the other hand,
our study goes beyond their study in two respects: First
the self-consistent method we use is not perturbative, and
second we include intersite electron-lattice coupling (A ).
As we will see later, nonlinear (i.e. , nonperturbative) ef-
fects concerning the intersite electron-lattice coupling are
very important in the hole-doping states we found. As a
result, the hole-doping states in the AF background are
very sensitive to the intersite electron-lattice coupling.
This sensitivity does not depend on whether the nearest-
neighbor Cu-0 repulsion is large or small. For our re-
sult, finiteness of the on-site repulsion at Cu sites is im-
portant so that the local quenching of a Cu magnetic
moment occurs with local lattice distortion. Therefore
the slave-boson technique is inappropriate as far as it
assumes infinite strength for on-site repulsions or homo-
geneous renormalization of model parameters. Concern-
ing sensitivity of doping states to electron-lattice cou-
pling, Zhong and Schuttler have recently shown in the
nearly half-filled 2D one-band Holstein-Hubbard model
that the presence of AF spin correlations can cause polar-
onic carrier self-localization. This also occurs at mod-
erate electron-lattice coupling, not close to any struc-
tural instabilities. Such local relaxation around addi-
tional holes has also been incorporated with cb initio
local-density-functional methods.

Doping induces new modes in magnetic, optical, and
vibronic response functions. In the presence of electron-
lattice coupling, there appear doping-induced, local
infrared- (IR-) active phonon modes. These are seen
as doping-induced peaks in IR absorption spectra and
are correlated with doping-induced particle-hole excita-
tions observed in optical absorption spectra and in mag-
netic excitation spectra. These doping-induced particle-
hole excitations are associated with the local Hartree-
Fock (HF) eigenstates in the charge-transfer gap. For
the above doping states, optical and IR absorption spec-
tra and magnetic excitation spectra are quite distinct.
These spectroscopic and magnetic signatures should help
to identify the chemical doping states s and the pho-
toinduced doping states reported in the CuOq planes
of high-T, materials. We will see below that the hole-

doping states with small polarons have doping-induced
IR absorption peaks on the low-frequency side of the stoi-
chiometric peak, while the electron-doping states have
them on the high-frequency side. 9

The essential feature in all of the above observa-
tions is that doping into a highly commensurate ground
state in the presence of competing interactions and or-
der parameters (spin density wave, charge density wave,
charge transfer) typically results in polaronic local dis-
tortions which share the character of all the order pa-
rameters to some degree. This is a local "coexistence"
in the global environment of the undoped homogeneous
single-order-parameter phase. In addition, the multi-
band Peierls-Hubbard model with extended interactions
introduces not only global coexistence (e.g. , spin-Peierls)
possibilities, 7 but also the feature of localized or
somewhat extended doping states, depending on parame-
ter values. Indeed, in appropriate parameter regimes, dy-
namical exchange between localized and extended charge
or spin distributions can be anticipated (see Figs. I and
3 below). Of course, if an interaction is strong enough,
it dominates the global order parameter structure, but
doping regions can be strongly affected at much weaker
values. Thus, as in the present study, strong on-site Hub-
bard coupling may drive a global AF order, but electron-
lattice interactions can be dominant in the neighborhood
of added holes.

In view of the inhomogeneities anticipated in the above
discussions, we have used a HF technique for the elec-
tronic part, totally unrestricted in both spin and direct
space —for our problems, this is superior to tra-
ditional homogeneous HF approaches —and a classical
treatment for the lattice part. To these generally inhomo-
geneous HF configurations, we have added a similarly in-
homogeneous random-phase-approximation (RPA) anal-
ysis of linear fluctuations to calculate dynamic mag-
netic susceptibility, optical absorption, and IR absorp-
tion. This method has the advantage of flexibility (it al-
lows us easily to vary several interactions and parameters
in the 2D three-band extended Peierls-Hubbard model)
compared with computing-intensive methods such as
exact diagonalization or quantum Monte Carlo meth-
ods. At the same time, comparisons with exact finite-
system studies4 have demonstrated substantial qual-
itative success for our approach in the 2D three-band
Hubbard model~ and in a 1D two-band spinless fermion
model. 2 This success of an inhomogeneous HF plus RPA
approach is the result of a much superior basis set for
strongly localized polaronic states as compared to tradi-
tional homogeneous (HF plus) RPA methods which are
limited to a spatially extended plane-wave basis. The
inhomogeneous RPA basis automatically describes local
shape-oscillation modes well, and these dominate inter-
esting quasiparticle response properties. On the other
hand, the major failing is that symmetries (e.g. , spin ro-
tation or translation) are broken, whereas they are au-
tomatically preserved in the weak-coupling homogeneous
(HF plus) RPA regime. Thus the methods are comple-
mentary, but our inhomogeneous approach is most ap-
propriate to short-length and short-time scale issues at
strong coupling, where the broken symmetry is approxi-



47 DOPING STATES IN THE TWO-DIMENSIONAL THREE-BAND. . .

mately valid.
The outline of this paper is as follows. In Sec. II, the

model and the parameters used in this paper are pre-
sented. In Sec. III, mean-field states are presented for
a variety of parameter values. It is shown how small
changes of interaction parameters strongly modify the
character of doping states and the static interaction po-
tentials among them. In Sec. IV, RPA excitation spectra
in magnetic, optical, and vibronic channels are presented
for small-polaron states along with HF spectra for single-
hole excitations. It is also shown that the adiabatic ap-
proximation works excellently for the IR absorption spec-
tra. Then, in Sec. V, the IR absorption spectra are ob-
tained in the adiabatic approximation and presented for
hole- and electron-doping states. Relevance to experi-
mental data is discussed. Summary and conclusions are
presented in Sec. VI. All technical details are described
in the Appendixes.

II. MODEL AND PARAMETERS

t,, ((ukj) = t,, + ) yk, uk (2)

e, ((ukj) = e, + ) y,",uk
k

(3)

Holes repel each other with strength U, on site i and
strength U,~ between different sites i and j. Displace-
ments of atoms and their conjugate momenta are denoted
by u~ and pt, respectively. The quantity Mt stands for
the ionic mass at site l and Kkt for the spring constant
between the ions at sites k and /. The symbol (i g j)
under the summation symbol means that a pair (i, j) is
counted only once.

In this paper, we consider the nearest-neighbor Cu-0
(t~d) and 0-0 (—t„„)hoppings for t, , Cu-site (eg) and 0-
site (e„)energies for e, , with A = e„—~~, Cu-site (Uq) and
0-site (U„) repulsions for U, , and the nearest-neighbor
Cu-0 repulsion (U„g) for U,~. For the lattice part, we
study only the displacements of planar 0 atoms along
the Cu-0 bonds. (We take the Cu atoms to be fixed,

We consider a 2D three-band extended Peierls-
Hubbard model, including both electron-electron and
electron-phonon interactions:

H = ) t,, ((ukj)c, c, +) e, ((ukj)c, c,
~/2 'Li CT

+ g MiciycigciJ, ciT + g Ui&cia. c ~&cp~'ci

(igj),~,cr'

1 2+ ) . M Pi + ).—Kkl &knit

t k, l

where the operator ct creates a hole of spin o. at site i
in the Cu d~2 y2 or the 0 p~ „orbital. We assume the
parameters for the one-fermion operators, hopping inte-
grals t,z((ukj) between sites i and j and site-diagonal
energies e, ((uk j) at site i, depend linearly on lattice dis-
placements uj, with coefIicients g@ and g,",, respectively,

for simplicity. ) Furthermore, we assume that only diago-
nal components of the spring-constant matrix are finite,
Kki = 6k iK. For electron-lattice coupling, we assume
that the nearest-neighbor Cu-0 hopping is modified by
the 0-atom displacement uI„ linearly with coefficient o.,
t,z((uk j) = t„g —nuk, if the Cu-0 bond becomes longer
with positive uI„or t„d+o.ug if the bond becomes shorter.
The Cu-site energy is assumed to be modulated by the
displacements of the four surrounding 0 atoms, uk, lin-
early with coefficient P, e, ((ukj) = eg + Ppk(+uk),
where the sign takes "+" if the bond becomes longer
with positive uk or "—"if the bond becomes shorter.

Parameter values are used in regimes relevant to the
copper oxides. As a reference parameter set, we use
t„g = 1, t„„=0.5, 4 = 3, Ud ——8, U„= 3, and U„g = 1,
which are almost in proportion to the values t„d = 1.3
eV, t„„=0.65 eV, 4 = 3.6 eV, Ud = 10.5 eV, U„= 4
eV, and U„g = 1.2 eV derived from the constrained-
density-functional approach. Dimensionless electron-
lattice coupling strengths are defined by A = o. /(Kt„d)
and Ap = P2/(Kt„d). Hereafter we denote by the "refer-
ence parameter set" the electronic parameters as above
and A = Ap = 0. It is easily shown that, within the
present mean-field theory, two parameter sets differing
only by g,

" = sg', (n = sn', P = sP') and Kki = s Kk&
(thus A = A', Ap = A&, s a real number) give the same
HF configuration for charge and spin densities and the
lattice displacements related by (uk) = s (uk). When
we study lattice fluctuation (in the RPA), we use K = 32,
which gives a dispersionless bare 0 phonon frequency
of 104 meV (840 cm ) if this value is interpreted as
K = 32 x 1.3 eV/A. 2. This value is also consistent with
"local-density-approximation (I DA)+U" calculations
as we will show later (Sec. III F).

In addition, we use other parameter sets in which se-
lected parameter values are varied from the reference pa-
rameter set: (i) Ug = 10 is used in addition to Ud = 8
to study the effect of varying U~. (ii) U„~ is taken in the
range 1 & U„p & 3 to study the effect of varying U„~.
(iii) Either A~ or Aii is set to finite values to study the
effect of intersite and intrasite electron-lattice couplings.
To show that this effect can overcome the effect of Ud
locally, we use Up = 10 in addition to Ug = 8. To show
the lattice effect on the phase separation, we vary U„p
(1 & U„d, & 3). When Ug or U„~ is varied in the above
cases, 6 is also varied as will be explained in Sec. III B.

III. MEAN-FIELD STATES

Our analysis proceeds in two steps. First mean-field
states are obtained and next quantum fIuctuations are
added to them. For obtaining mean-Geld states, the lat-
tice displacements uj, are divided into a classical static
component (uk) and a quantum-mechanical fluctuating
component uI„

~k = (haik)+ haik

Self-consistency conditions for the electronic part (the
HF equation) and the lattice part are derived in Ap-
pendix A. The HF equation is
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).t (((&&)HO (2 )+e'(((" )))~ ('o)
i(W&)

U, (ct c,-) + ) U,~(ct, c~ ) Pp(io)

—U, (c,-c, )Pp(icr) — ) U,~(c~,c, )Pg(j o'')

i(A~), ~'

with self-consistently determined one-body densities,

Agocc
(6)

Solution of the HF equation gives the HF energy lev-
els ep and their wave functions P~(io). Self-consistency
conditions for the lattice displacements are

) y(ct c, )+) K (u) =0

are occupied by holes. Among the Ave, two appear deep
within the gap and three are near the valence band (the
lower Hubbard band in a hole description).

The highest occupied HF eigenstate corresponds to a
symmetric 0 state formed by the four 0 states and has
small weight on the Cu site. The second highest mainly
corresponds to the central Cu state with opposite spin
to the highest one. This state is thus regarded as a HF
analog of the Zhang-Rice singlet state, where the cen-
tral Cu orbital and the symmetric orbital made from the
four 0 orbitals constitute a singlet. Since a HF state
is a single Slater determinant, it cannot describe such a
Heitler-I ondon-like singlet. However, if quantum fluctu-
ations are fully taken into account, the above HF state
would be superposed with a similar state in which the
spin directions at the central Cu site and the four 0 sites
are reversed. The three remaining HF eigenstates near
the valence band are made from four Cu states around
the central Cu site.

I I ~ ~ I
I

~ ~ ~
I

~ ~ ~
I

I I I I ~ ~ I
I

I I

which holds in the adiabatic (Mi ~ oo) limit. The kinetic
part of the lattice is incorporated later (see Secs. IV and
V) with particle-hole excitations in the RPA analysis.

Mean-field states are obtained by solving the above
HF equation with self-consistency conditions for on-site
and nearest-neighbor charge and spin densities as well as
lattice displacements, without assumption on the form of
these quantities. Calculations were made for systems
of 6 x 6 Cu02 unit cells with periodic boundary condi-
tion. The stability of mean-field states is investigated
by adding small random numbers to the self-consistent
charge-spin densities and lattice displacements at every
site after a convergence. A similar HF study for a 2D
two-band Hubbard model (with t„g, A, Ug terms and no
electron-lattice coupling) has reported charged magnetic
domain walls for doping of ten holes in 9 x 10 and 10 x 10
systems.

A. Doping states in the LDA parameter set
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First we show the doping state in the reference param-
eter set (t„d, = 1, t„„=0.5, 4 = 3, Ug = 8, U„= 3,
U„~ = 1, and A = Ap = 0). Each added hole is local-
ized primarily on a single Cu site and four surrounding 0
sites (Fig. 1). The spin density at this Cu site is Hipped
so that a small ferromagnetic polaron is formed. The
spin densities at the four 0 sites are small and in the
opposite direction to the central Cu spin. Five HF eigen-
states appear inside the charge-transfer gap per added
hole. [In all the HF energy levels in the figures below,
the center of the charge-transfer gap in the stoichiomet-
ric case has been set to zero. Only the lowest third of the
HF energy levels (i.e. , near the charge-transfer gap) are
plotted in increasing order except in Fig. 2 where the dis-
persion relation in the stoichiometric AF state is shown. ]
The HF wave functions associated with the gap states
are spatially localized. Note that all of these gap states

0

G3

—2
~eoeoee~

~QQQOOO' ~
~oooto+&

0 'l 8 36 72

FIG. 1. (a) Spin and charge densities and (b) HF energy
levels around the gap for the one-hole-doped system with a
small ferromagnetic polaron. Parameters are tpd, —1 tpp
0.5, A = 3, Ug = 8, U„= 3, U„q ——1, and A = Ap ——0.
Spin and charge densities are represented by arrows and radii
of the circles, respectively. The arrows are normalized so as
to touch the circle if completely polarized. Big (small) circles
are for Cu (0) sites. Energy levels are relative to the gap
center in the stoichiometric case.
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B. Effect of varying parameters on the
stoichiornetric state

Before investigating the effect of changing various
model parameters on doping states, we study how the
stoichiometric state (one hole per Cu02 unit) changes
with diKerent parameter values. Around the reference
parameter set, the stoichiometric state accommodates
holes mainly at Cu sites. Because of the strong on-site re-
pulsion at Cu sites, Ug, double occupancy is suppressed
there and the spin density is aligned antiferromagneti-
cally. This causes period doubling and the Brillouin zone
is halved. Thus six bands are formed (Fig. 2), the lowest
of which is occupied by holes and the others are unoccu-
pied. The lowest band can be termed the lower Hubbard
band (LHB) in a hole description (or the upper Hub-
bard band in an electron description). Among the un-
occupied five bands, one lies beyond the others, due to
strong U~, and corresponds to the upper Hubbard band
(UHB). Both Hubbard bands mainly consist of Cu states,
whereas the remaining four are mainly constructed from
0 states so that they are termed 0 bands. When the
direct 0-0 hopping t„„ is absent, two of them form a
dispersionless nonbonding 0 band and they are distin-
guished from the other bonding 0 bands. The charge-
transfer gap denotes the energy difference between the
lowest unoccupied level (in the 0 band) and the highest
occupied level (in the lower Hubbard band).

Since hole-doping states are our main interest, we first
focus on the lowest unoccupied 0 band and study how
it changes with different parameter values. It will be
shown later that the momentum of the lowest unoccu-

Momentum

FIG. 2. Dispersion relation of HF energy levels in the stoi-
chiometric AF state. Parameters are t„g ——1, t» ——0.5,
A = 3, Ug ——8, U„= 3, and U„g ——1.

pied state is an important factor for determining doping
states. In the reference parameter set, the momentum
of the lowest unoccupied state is (a/2, x/2) in terms of
the original (nonmagnetic) Brillouin zone. The nearest-
neighbor Cu-0 hopping t„d is always set to unity. When
t„„ is increased, the lowest 0 band is widened, but the
momentum of the lowest unoccupied state is unchanged.
It is similar to the case when the site-energy difference
6 is decreased. When 4 is increased, the momentum
shifts from (x/2, n/2) to (0, 0) around 4 = 6 (with the
other parameters kept fixed at the values of the reference
parameter set). The other electronic parameters U~, U„,
and U„q, determining repulsion strengths, have little ef-
fect on the shape of the lowest 0 band.

When Ug or U„d is varied later, we will also change 4 to
keep the renormalized site-energy difference 6„„=4—
~znd+ ~z n„+2U„&(n& —2n„) nearly a constant value in
the stoichiometric AF state (n~ and n„are hole densities
at Cu and 0 sites, respectively, with ng+2n„= 1). As Ug
increases with U„~ unchanged, nd, approaches to 1 and n„
to 0, so that E„,„ is almost a constant value when 6 —~2

is kept fixed. Indeed for Ug = 8, 10, 12 with 6—~2
———1,4„„=1.2, 1.3, 1.3, mg„(staggered magnetization at Cu

site) = 0.74, 0.82, 0.88, and the (indirect) charge-transfer
gap = 3.2, 4.4, 5.6, respectively. When U~ is further
increased (Ug ) 13) with increasing 4, the momentum
of the lowest unoccupied state becomes (0, 0) due to the
large 4 as mentioned above. It will be shown later that
an intermediate-size (not small) ferromagnetic polaron
is obtained for these large Ug values. We note that, in
this very large Up and 4 regime, the shape of the lowest
0 band, including its width and the momentum of the
lowest unoccupied state, is almost the same as that of
a strong-coupling expansion around the classical Neel
state.

When U„~ is increased with Ud unchanged, nd, devi-
ates from 1 and n„ from 0, so that A„„deviates from its
strong-coupling value 6—~2+2U„~. Indeed for U~~ = 0,
1, 2 with 4 + 2U&d,'= 5& Are = 1.7, 1.2, —0.7. Instead
we change 6 with 4+ 2' = 3.5 so that, for U„g = 0, 1,
2, 6„„=0.7, 1.2, 1.7, mc„= 0.73, 0.74, 0.75, and the
charge-transfer gap = 2.6, 3.2, 3.8, respectively. We note
that, when U„~ is further increased with 6+ 2" ——3.5,
E„„becomes negative around U„g = 2.7 if a paramag-
netic state is assumed. (4„„is always positive in the AF
state. ) It will be shown later that phase separation into
Cu- and 0-hole-rich regions occur roughly for U„p larger
than this value. In summary, when Ud or U„d is varied,
we used 4 —~2+ 2" ———0.5 so as to have 1 L„„2.

C. Doping states with different U~ values

When U~ is large (Ud = 10, 4 = 4), the small ferro-
magnetic polaron in Sec. III A becomes metastable, and
a new state acquires lower total energy within the HF
approximation. In the latter state, each added hole is
extended to about four Cu sites and their surrounding 0
sites (Fig. 3). The spin densities at these Cu sites are
almost aligned in the same direction so that this con-
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figuration is termed an intermediate-size ferromagnetic
polaron. Note that the Cu spins inside the polaron are
perpendicular to the background AF Cu spins. The 0
sites inside the polaron have very small spin densities.
Around the polaron, the Cu spins have small ferromag-
netic components decaying slowly with distance. Seven
localized HF eigenstates appear inside the gap, of which
the two highest states lie near the 0 band and are unoc-
cupied, the next highest state also lies near the 0 band
but is occupied, and the other four lie near the lower
Hubbard band and are occupied. The two unoccupied
HF eigenstates mainly correspond to 0 states around
the polaron. The highest occupied HF eigenstate cor-
responds to a symmetric 0 state formed by the four 0
states bridging the four Cu sites and has small weight
on these Cu sites. The four remaining HF eigenstates
near the lower Hubbard band correspond to the four Cu
states. Rejecting a more extended texture than the small
polaron, all of these gap energy levels are located near the
band edges.

The eKect of Ug can be understood from the dispersion

~
I

~ l I I ~ I 5
I

~ I ~
I

I ~ ~
I

~ I I
I

~ ~ I

relation of HF energy levels in the undoped case. As U~
increases, the momentum of the lowest unoccupied state
changes from (ir/2, ir/2) to (0, 0) at 12 & Ud & 13. When
a hole is added to the undoped system, it first occupies
this state before relaxation. After doping, HF eigen-
states are relaxed, inhomogeneously distorting charge
and spin densities and lowering total energy. For the
larger Ug case, the highest occupied HF eigenstate is
relaxed from the state with momentum (0, 0), which
is compatible with the ferromagnetic component of the
intermediate-size polaron. Thus, after relaxation, the po-
laron would be more extended because the added hole
would be less affected by the more compatible back-
ground AF Cu spins. The actual transition from the
small to intermediate-size ferromagnetic polaron occurs
at 8 ( Ug ( 10. The intermediate-size polaron is unsta-
ble for the reference parameter set (Ug = 8), while the
small polaron becomes metastable for Ud = 10, where
tunneling (or dynamic oscillation) between the two po-
larons can be anticipated but is beyond our mean-field
level calculations.

We note that, in the 2D one-band Holstein-Hubbard
model, Zhong and Schuttler have shown a delocalized
phase at very small electron-lattice coupling and a po-
laronic phase at moderate coupling, and suggested local
tunneling between the delocalized and self-localized con-
figurations near the boundary of the two phases. 7
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FIG. 3. (a) Spin and charge densities and (b) HF en-

ergy levels around the gap for the one-hole-doped system with
an intermediate-size ferromagnetic polaron. Parameters are
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= Ap ——0. The symbols are as in Fig. 1.

D. Doping states with difFerent U„~ values

Here we add six holes to the 6 x 6 system to focus
on how the system is separated into Cu- and 0-hole-rich
regions as a function of U&g. For example, for U„g = 3
and 6 = 2 where the phase separation occurs, the two
regions are clearly seen, divided by a "boundary, " when
six holes are added; but only the boundary region is seen
in a Cu-hole-rich background when four holes are added.
(Thus we conclude that four added holes are not enough
to form an 0-hole-rich region in this case. )

As U„d increases, for U„d & 2.4 the six holes remain
isolated small ferromagnetic polarons as in Sec. III A; for
2.6 & U„& & 2.8 they clump to form a rectangular "clus-
ter boundary" dividing the two degenerate Cu AF phases
(Fig. 4); and finally for 2.9 & Uzg the cluster boundary
and the interior Cu AF phase are replaced by an 0-hole-
rich phase separated from the Cu-hole-rich background
phase (Fig. 5). More precisely, some portion of the ex-
terior Cu AF phase is also replaced by the 0-hole-rich
phase. This is because the number of added holes is
roughly proportional to the length of the cluster bound-
ary before the phase separation, while it is nearly propor-
tional to the area of the 0-hole-rich region in the phase-
separated state. This phase-separated state has been sug-
gested and discussed in exact-diagonalization studies at
strong coupling, and it is a real-space manifestation of
charge Huctuation softening tendencies with U„g found
in weak-coupling RPA approaches si The phase separa-
tion and clumping we obtained here are qualitatively con-
sistent with the results obtained in 1D and 2D spinless
fermion models. Note that the stoichiometric state re-
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mains the pure Cu AF state at least for U„g & 4. (For
U„q 5, this is no longer stable. )

In the cluster-boundary state (U„~ = 2.6, 4 = 2.2),
the added holes are on the boundary and in the inte-
rior Cu AF phase (Fig. 4). The Cu-hole densities are
slightly smaller in the interior phase than the exterior
phase. Substantial 0-hole densities are distributed in
the interior phase and on the boundary. Thus this state
can be regarded as a precursor of the phase separation,
although it is dificult to distinguish the cluster-boundary
state from the phase-separated state for small systems.
Twelve (twice the number of added holes) HF eigenstates
deep within the charge-transfer gap mainly correspond to
the boundary Cu states substantially mixed with nearby
0 states. There are other localized HF eigenstates near
the lower Hubbard band, which correspond to an interior
Cu state or exterior Cu states localized near the bound-
ary.

In the phase-separated state (U„d = 3, 6 = 2), the Cu
and 0 spin densities are aligned antiferromagnetically in

the respective Cu- and 0-hole-rich regions (Fig. 5). The
AF Cu spins and the AF 0 spins are nearly perpendicular
to each other, so that on the boundary both spin densities
are frustrated and deviated from the respective perfect
AF alignments. Intragap HF eigenstates appear, forming
a rather wide band of mainly 0 states in the 0-hole-rich
region. The width of this band is due to the direct hop-
ping between neighboring 0 sites (t») and small 0-site
repulsion (U„). There are other localized HF eigenstates
near the lowest unoccupied 0 band, which also corre-
spond to 0 states in the 0-hole-rich region. The states
in the lower Hubbard band correspond to Cu states in
the Cu-hole-rich region.

E. Lattice efFects an the stoichiometric state

Electron-lattice coupling modifies the above doping
states. Before investigating the doping states, we men-
tion how the stoichiometric state is changed with intersite
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FIG. 4. (a) Spin and charge densities and (b) HF energy
levels around the gap for the six-hole-doped system with a
rectangular cluster boundary. Parameters are t„z ——1, t» ——

0.5, A = 2.2, Uq = 8, U„= 3, U„d, ——2.6, and A = Ap ——0.
The symbols are as in Fig. 1.

FIG. 5. (a) Spin and charge densities and (b) HF energy
levels around the gap for the six-hole-doped system with phase
separation. Parameters are t„q ——1, t» ——0.5, A = 2, Ug = 8,
U„= 3, U„& = 3, and A = Ap = 0. The symbols are as in
Fig. 1.
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(A ) and intrasite (Ap) electron-lattice couplings. Note
that A and Ap represent the electron-lattice coupling
strengths through modifications of the nearest-neighbor
Cu-0 hopping and the Cu-site energy, respectively, by
planar 0-atom displacements. There is no lattice distor-
tion in the stoichiometric state until a critical strength
(A, or Aii, ) is reached, within the present mean-field
approach, so that the HF configuration is unchanged, in-
cluding charge and spin densities, HF energy levels and
wave functions, and the total energy.

For A ) A „the stoichiometric system becomes a
bond-order-wave (BOW) state, in which 0 atoms are
displaced periodically to form alternating bond-charge
densities, Q (c, cz ) (i and j are neighboring Cu and 0
sites). The 0-atom lattice configuration can be regarded
as "breathing" modes which are frozen quite asymmetri-
cally: Only one of the four 0 atoms around each Cu site
is significantly displaced. The bond-charge density is en-
hanced on the corresponding short bonds. Spin densities
vanish everywhere. The critical strength is A, 1.3 for
the otherwise reference parameter set; and A, 1.7 for
Ud = 10, 6 = 4, and otherwise the same as the reference
parameter set.

When we take small U~ values not directly related
to the copper oxides, several different phases are ob-
tained at stoichiometry. 8 For strong intersite electron-
lattice coupling (A = 2), we found, with increasing
Ud, a charge-density-wave (CDW) state with symmetric
breathing modes frozen, the BOW state, a mixed state
of spin-Peierls bonds and antiferromagnetic spins, a spin
Peierls state, and the AF state. This variety is caused by
competitions between magnetism and covalency of differ-
ent relative strengths. These phases and corresponding
doping states in a wider parameter space are reported
elsewhere. ~8

For Ap & Ap„ the system becomes a CDW state, where
0-atom breathing modes are frozen. Namely, around
each Cu site, the four surrounding 0 atoms are symmet-
rically displaced either from or toward it to have alternat-
ing Cu-hole densities. Spin densities vanish everywhere.
The critical strength is Ap, 1.0 for the otherwise refer-
ence parameter set; and Ap, 1.2 for U~ = 10, 6 = 4,
and otherwise the same as the reference parameter set.

The above CDW states are similar to the dispropor-
tionated state observed in the bismuthates, although the
latter are 3D materials and have small Ud.
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F. Lattice efFects on polaron states

Now we investigate how the intersite electron-lattice
coupling (A ) modifies the small polaron in the reference
parameter set. For A = 1.125, the four 0 atoms in
the small polaron are displaced toward the central Cu
site and suppress the spin densities at these five sites
(Fig. 6). Thus this configuration is termed a small non-
magnetic polaron. The local lattice distortion enhances
the hopping integral on the four Cu-0 bonds and makes
a local antibonding orbital, consisting of the central Cu
state and the symmetric 0 state formed by the four sur-
rounding 0 states, well split from the bonding orbital.
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FIG. 6. (a) Spin and charge densities, (b) 0-atom dis-
placements, and (c) HF energy levels around the gap for
the one-hole-doped system with a small nonmagnetic polaron.
Parameters are tpg = 1, tpp: 0 ~ 5 A: 3 Up: 8 Up: 3,
Up& = 1, A = 1.125, and Ap = 0. The symbols are as in
Fig. 1.
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FIG. 7. (a) Magnetic moment on the central Cu site and
ratio of the displacement of the surrounding 0 atoms to the
Cu-0 distance (1.89 A) and (b) gap energy levels, for the
small-polaron state as functions of A . Other energy levels
in the gap close to the bands (shaded areas) are not shown.
Parameters are t„d, = 1, t» ——0.5, A = 3, Ug = 8, U„= 3,
U„g = 1, Ap = 0, and K = 32t„g/A. .

(The antibonding orbital is lower than the bonding or-
bital in a hole description due to the reversed sign of the
hopping integral. ) This local antibonding orbital, lying
near the lower Hubbard band, is the highest occupied HF
eigenstate. Both spin states occupy this antibonding or-
bital to cancel spin densities there. There are three other
local HF eigenstates. These lie close to the lower Hub-
bard band and are formed from four Cu states around
the central Cu site.

This local quenching of a magnetic moment on the cen-
tral Cu site and the accompanying local lattice distortion
reinforce each other [Fig. 7(a)]. To appreciate this phe-
nomenon, suppose the magnetic moment on the central
Cu site points up before turning on the intersite electron-
lattice coupling. Once the magnetic moment is reduced,
it raises the corresponding Cu-site energy for the up spin,
which was originally in the lower Hubbard band, and it
lowers that for down spin, which was in the upper Hub-
bard band. The raised local Cu state [up spin, dashed
line in Fig. 7(b)] is more mixed with the surrounding 0
states so as to generate more weight on the four 0 sites.
The symmetric 0 state [down spin, solid line in Fig. 7(b)]
is more mixed with the central Cu state to produce more
weight on this Cu site. This local mixing further reduces
the magnetic moment on the central Cu site. Thus the
above mechanism indeed feeds back positively.

The intersite electron-lattice coupling (A ) enhances
this mechanism by locally distorting the 0 lattice,

strengthening the Cu-0 hopping integral, and increasing
the local mixing. Note that the position of an 0 atom
is determined by the difference of bond-charge densities
between the neighboring Cu-0 bonds, as is easily seen in
Eq. (7). The bond-charge densities on the central Cu-0
bonds are larger than those on the other Cu-0 bonds due
to the local mixing so that the four 0 atoms are forced to-
ward the central Cu site, lowering the total energy. This
in turn further increases the local mixing, enlarging the
difference of the bond-charge densities and further shift-
ing the 0 atoms. Thus it enhances the feedback mech-
anism. Finally the two gap states become nearly degen-
erate to form the local antibonding orbital, suppressing
the spin densities in the small polaron (Fig. 6). This can
be viewed as a rapid crossover from a Heitler-London-like
state corresponding to the Zhang-Rice singlet to a highly
covalent molecular state, although a Heitler-London-like
singlet is not precisely described by the HF approxima-
tion. Note that this rapid crossover occurs substantially
belour A~, due to the feedback mechanism. As A in-
creases in the covalent molecular regime, the antibonding
orbital is lowered by the increasing local covalency.

To deduce the strength of the intersite electron-lattice
coupling, we can compare the above result with the re-
cently introduced "LDA+U" method, ~s where the LDA
single-particle potential is augmented with an orbital-
and spin-dependent Hartree potential for the Hub-
bard (U) and exchange (J) interactions and applied to
La2Cu04 and Laq 75Sro g5Cu04 with a 2 x 2 supercell.
Anisimov et aL have found, for the stoichiometric case,
that a Cu magnetic moment, a charge-transfer gap, and
the breathing-mode phonon frequency compare favorably
with experiments. They have also found, for the doped
case, that (i) without allowing lattice relaxation, a small
ferromagnetic polaron exists with gap states similar to
those in Fig. 7(b); (ii) with the four in-pLane 0 atoms
around a certain Cu site displaced along the Cu-0 bonds,
the energy is at minimum for a 2%%uo contraction of the
Cu-0 bonds, the transfer integral for the short Cu-0
bonds is increased, the 0-like gap state is shifted further
into the gap, and the magnetic moment on the central
Cu site is reduced; and (iii) with two apical 0 atoms (not
considered in our model) above and below a certain Cu
site displaced along the bonds, a metastable anti-Jahn-
Teller polaron exists if the additional hole is constrained
to have the 3z —r symmetry. Their results for the cases
(i) and (ii) are compatible with ours.

In the case (i) above, the magnetic moments on the
central Cu site and the next-nearest Cu site (longest-
distance in the 2 x 2 supercell) are —0.55 and 0.72, re-
spectively, while our corresponding results for the refer-
ence parameter set are —0.57 and 0.74, respectively. In
the case (ii) above, they are —0.43 and 0.73, respectively,
while our results for A~ = 0.28 and the otherwise refer-
ence parameter set are —0.43 and 0.74, respectively. We
can thus obtain a value of A, which is compatible with
the LDA+U result, using the sensitivity of the small po-
laron to the intersite electron-lattice coupling. As shown
later, the magnetic moments are insensitive to change
of Ap so that it is hard to estimate a value of Ap ap-
propriate for the material. Note that the HF con6gura-
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tion, including the magnetic moments, does not change
if a and K are varied but A = o.~/(Kt„g) is kept fixed.
(See the previous section or the last part of Appendix I
for more detail. ) To obtain a 2% contraction of the
Cu-0 bonds, we need K = 32t„g/ji. 42 eV/A, which
gives n = (A~Kt„g) & = 3t„g/ji. 4 eU/A. . These param-
eter values give the in-plane stretching IR-active phonon
frequency 760 cm (when lattice fluctuation is incorpo-
rated with particle-hole excitations in the RPA analysis
below), which is comparable with the experimentally ob-
served value 706 cm

Next we study how the intrasite electron-lattice cou-
pling (Ap) modifies the small polaron in the reference
parameter set. In this case, the four 0 atoms in the
small polaron are displaced toward the central Cu site.
However, the local lattice distortion is much smaller than
the case of the same value for A and Ap = 0 [Fig. 8(a)].
It only lowers the Cu-site energy at the center of the
small polaron, but hardly afFects the Cu magnetic mo-
rnent. The gap states are almost unchanged [Fig 8(b.)).
In contrast to the intersite electron-lattice coupling (A ),
the doping state is insensitive to Ap until it approaches
very close to the critical strength Ap, . This is because
the system can gain energy only by increasing the hole
density and consequently the double occupancy at the
central Cu site by the four 0 atoms approaching this Cu
site. Thus this coupling directly competes against the
strong on-site repulsion Vg at Cu sites. It contrasts with
A, which can gain energy by increasing local covalency.
Note that for Rnite A the position of an 0 atom was

determined from the difFerence of bond-charge densities
between the neighboring Cu-0 bonds; for Gnite Ap it is
determined by the difference of hole densities between
the neighboring Cu sites, as is easily seen in Eq. (7). The
hole density on the central Cu site is slightly larger than
that on the four neighboring Cu sites so that the four
0 atoms are forced slightly toward the central Cu site.
This should further increase the difFerence of the hole
densities and further shift the 0 atoms. But this hap-
pens only slightly, being inhibited by the strong on-site
repulsion Ug at Cu sites.

Finally, we look at how the electron-lattice couplings
modify the intermediate-size polaron for U~ = 10, 4 =
4, and the otherwise reference parameter set. The
intermediate-size polaron is accompanied by slight lattice
distortion on the boundary between the polaronic region
and the AF background. As A increases, it is stable for
0 & A 0.4, metastable for 0.4 A 0.5, and unstable
for 0.5~A (Fig. 9). For A ~0.4, the small polaron be-
cornes stable, which is also accompanied by local lattice
distortion as already described. As A~ increases further,
the rapid crossover from the Zhang-Rice regime to the co-
valent molecular regime occurs as reported in Figs. 1(a)
and 1(b) of Ref. 9 for the (U~, 6)=(10,4) case, which is
similar to Figs. 7(a) and 7(b) for the (Ug, 6)=(8,3) case.

There is a difference between the (Ud, 6)=(10,4) case
[Figs. 1(a) and l(b) of Ref. 9] and the (Ug, A)=(8 3) case
[Figs. 7(a) and 7(b)] for A ~A~, . For the (U~, A)=(10,4)
case, when the nearly degenerate, local antibonding HF
eigenstates approach the lower Hubbard band, they lose
degeneracy between the up- and down-spin states. The
down-spin local antibonding state [correspanding to the
solid line in Fig. 7(b)], which was nearly the symmetric
0 state before turning on A, is now nearly the central
Cu state, so that it is compatible with other states in
the lower Hubbard band. (Note that a down spin an the
central Cu site in the stoichiometric AF state has been
Hipped into the up spin to form a small ferromagnetic
polaron. ) Meanwhile the up-spin local antibonding state
[corresponding to the dashed line in Fig. 7(b)] is incom-
patible with the band due to the spin flipping, so that it
is repelled from the band. For the (Ug, 6)=(8,3) case,
however, this lifting of the degeneracy between the up-
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FIG. 8. (a) Magnetic moment on the central Cu site and
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Cu-0 distance (1.89 A) and (h) gap energy levels, for the
small-polaron state as functions of Ap. The symbols and the
parameters are as in I'ig. 7 except for finite Ap and A = 0.

I"IG. 9. Creation energy t q ——E' + —E' —p for the
small- and intermediate-size-polaron states as a function of

. E' +' is the total energy with i added holes and p is the
gap center in the stoichiometric case. Parameters are t„d, = 1,
tp„——0.5, D = 4, Ud, = 10, Vp ——3, Upg = 1, Ap = 0, and
K = 32t„g/A .
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and down-spin local antibonding HF eigenstates seems
to be hidden by the smaller charge-transfer gap and the
smaller value for A, .

The above transition from the intermediate-size po-
laron to the small polaron is another indication of the fact
that the effect of the intersite electron-lattice coupling A

can overcome the effect of strong U& locally. Meanwhile,
the effect of Ap is again very small. The intermediate-
size polaron is largely insensitive to Ap, which hardly
changes its relative stability against the small eolaron
(Fig. 10). By increasing (U~, 4) from (8,3) to (10,4), the
critical strengths A, and Ap, and the value of A for
the crossover are rescaled to larger values nearly by the
ratio of 10/8, showing a scaling property of these critical
strengths with Ud, /t„d due to the competition between
these electron-lattice couplings and the on-site repulsion.
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G. Lattice e8'ects on phase separation

Both the intersite (A ) and intrasite (Ap) electron-
lattice couplings tend to destabilize the cluster-boundary
state (Fig. 4), found in the U„~ region between the
isolated-small-polaron state and the phase-separated
state. As a result, the electron-lattice couplings lower
the critical strength of U„g for the separation into Cu-
and 0-hole-rich phases (U„g 2.9 for A = Ap = 0;
Upd, 2s7 for A =0.5, Ap ——0; Upd, —25 for A =0,
Ap = 0.8).

For A = 0.5, Ap ——0, and otherwise the same param-
eters as in Fig. 5, the 0 atoms are strongly displaced on
the boundary between the Cu- and 0-hole-rich regions
(Fig. 11). They locally enhance the covalency on the
Cu-0 bonds to reduce the spin densities. Consequently,
the spin frustration on the boundary (Fig. 5) is sup-
pressed. The AF alignments in the Cu- and 0-hole-
rich regions are less affected by each other and deviate
less. Thus the intersite electron-lattice coupling A ef-
fectively isolates the 0-hole-rich phase from the Cu-hole-
rich phase. It increases the energy difference between
the lowest unoccupied and highest occupied HF eigen-
states so as to gain energy. The HF single-hole spectrum
is otherwise similar to the case without electron-lattice
coupling.

For A = 0, Ap = 0.8, and otherwise the same param-
eters as in Fig. 5, a similar reduction of the spin frus-

s I ~ s s I ~ ~ s I s ~ ~ I s s ~ I ~ s ~ I s s ~

~~ace+~
~ooeo+ ~yO

~0

0=

~gO

2=
~QO~os+~ou~

&0

Ot
~0

~~0
~0

yO

FIG. 11. (a) Spin and charge densities, (b) 0-atom dis-
placements, and (c) HF energy levels around the gap for the
six-hole-doped system with phase separation. Note that lat-
tice distortions on the boundary. Parameters are t„p ——1,
t» ——0.5, A = 2, Ug = 8, U„= 3, U„g = 3, A = 0.5, and
Ap ——0. The symbols are as in Fig. 1.
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tration occurs on the boundary. Here it is due to the
local enhancement of the Cu-site double occupancy on
the boundary. Therefore the reduction of the spin frus-
tration is much smaller than that for A~ = 0.5, Ap = 0,
for the same reason as for the small and intermediate-size
polarons. Again we see that the intersite electron-lattice
coupling (A ) is much more influential than the intrasite
electron-lattice coupling (Ap) in the presence of strong
on site -repulsion (Ud) at Cu sites
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H. Parameter dependence of static interaction
potential between small polarons

To determine an efI'ective static interaction potential
between the small polarons, we calculated the total en-
ergies of two-hole-doped systems in which two small po-
larons are located with various possible relative distances.
In the reference parameter set, the two small polarons
are repulsive and the potential decays exponentially with
the relative distance (Fig. 12). In the present periodic
6 x 6 system, the longest distance is 3v 2 in units of the
Cu-Cu lattice spacing. The total energies in Figs. 12—15
are relative quantities from which the total energy for
the longest-distance case has already been subtracted.
When the two polarons are located diagonally with dis-
tance 3~2, they occupy Cu sites in the same sublattice
of the AF configuration so as to fIip or suppress two Cu
spins with the same direction. Actually the total energy
becomes the lowest when the two polarons occupy Cu
sites in difI'erent sublattices and they are as far from the
other as possible (with distance v13). But the energy
difI'erence from the longest-distance case is on the order
of 10 t„g. When the two small polarons are located
on the nearest-neighbor Cu sites, the system is unsta-
ble (though a self-consistent HF solution is obtained).
We plot this case in Fig. 12 for clearer demonstration of
the exponential behavior. We do not plot the data in
Figs. 13—15 when the HF states are unstable.

As A increases, the horizontally placed small polarons
(with distances 1 and 2) repel more strongly, while the
repulsion between the (nearly) diagonally placed small

FIG, 13. Total energy for the two-hole-doped systems
with several interpolaron distances, relative to the longest-
distance case, as a function of A . The other parameters are
the same as in Fig. 12.

polarons (with distances ~2 and ~5) shows a maxi-
mum around A 0.3 (Fig. 13). The two small po-
larons located on the nearest-neighbor Cu sites become
metastable when A~ exceeds a sufBcient value. Finally
the small polarons at the next-nearest-neighbor Cu sites
achieve lower energy than the longest-distance case, in-
dicating a clumping tendency for A~ 1.0, i.e. , A A, .
The behavior of the static interaction potential is com-
plicated due to two competing effects: (i) When po-
larons are on the same sublattice, they can share a local
breathing-mode lattice distortion (local CDW); and (ii)
when they are on the different sublattices, they Hip (or
suppress) spins of the opposite directions so that the z
component of the total spin remains zero. For the po-
larons at the nearest- or next-nearest-neighbor Cu sites,
the former can reduce repulsion in the d» channel near
the CDW instability (by sharing a charge bag); mean-
while, the latter can reduce repulsion in the d~2 y& chan-
nel in the SDW background (by sharing a spin bag ).
As far as the mean-field, static results are concerned, the
former seems more efFective than the latter for small po-
larons in close proximity. This reduction of repulsion, i.e. ,
rele, tive attraction due to sharing a bag in the strong re-
pulsive background, might be relevant to a pairing mech-
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FIG. 12. Total energy for the two-hole-doped systems as a
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logarithmic scale. Parameters are t„d = 1, t„„=0.5, A = 3,
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FIG. 14. Total energy for the two-hole-doped systems
with several interpolaron distances, relative to the longest-
distance case, as a function of Ap. The other parameters are
the same as in Fig. 12.
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IV. RPA EXCITATION SPECTRA

The difFerent doping states described above have indi-
vidual spectroscopic signatures in optical and IR absorp-
tion, which we now discuss.

For this purpose we consider quantum fIuctuations
around the mean-field states, by linearizing the equations
of motion of particle-hole excitations and phonons. De-
tails are described in Appendix B. Excitation energies
E —Ep and their eigenfunctions are obtained by solving
the RPA equation

M („), ——E„—Ep („),

where the matrix M is given in Appendix B and depends
on the HF energy levels, their wave functions, the bare
phonon frequencies, their eigenfunctions, and the param-
eter values in the interaction part of the model Hamil-
tonian. Any Green's function which is two body with

anism. Here dynamics is of course not taken into account:
Bloch-wave-like motion of polarons and possible attrac-
tion due to a retardation effect are beyond the scope of
the present mean-field theory.

As Ap increases, the repulsion between the small po-
larons increases slightly, but they are insensitive to Ap
until it is very close to Ap, (Fig. 14). This is consis-
tent with the insensitivity of hole-doping states to Ap
discussed above.

As U„~ increases with 4+ 2" ——3.5, the repulsion be-
tween the small polarons slightly increases and shows a
maximum around Uzg 2 (Fig. 15). For larger U&g val-
ues, the small polarons at short distances do not achieve
lower energy than the longest-distance case as in the case
of increasing A . Rather, they become unstable. This
happens at U„g values where hole clumping or phase sep-
aration occurs (Sec. III D), thus indicating instability of
isolated small polarons toward these clumped states. In-
deed, at U„d values where phase separation occurs, the
small polarons become unstable accompanied by spin
frustration (deviation of spin densities from the collinear
configuration) and lowering of energy.

respect to electrons or one body with respect to phonons
(termed "two-body" Green's function) is easily obtained
after solution of the RPA equation.

It was shown by Thouless that the linearized equation
of motion (the RPA equation) for the particle-hole ex-
citations (in other words, the infinitesimal part of the
time-dependent HF equation) is the same as is obtained
by the Bethe-Salpeter equation for the particle-hole pairs
with the lowest interaction vertex, in which both direct
and exchange terms are taken into account. It is easily
extended to the present model for electrons and phonons.
For later convenience, the diagrammatic derivation is
presented in Appendix C.

We obtained all the eigenvalues and their eigenvec-
tors in Eq. (8) by solving Hermitian eigenvalue problems
twice, as shown in Appendix D. We note that a compar-
ison of this inhomogeneous HF plus RPA method and
exact-diagonalization study4 for the 2D three-band Hub-
bard model shows that overall structures in optical and
magnetic excitation spectra of the latter method are well
reproduced by the former one. Our approach has also
been used for a 1D two-band spinless fermion model~4
and again reproduced features of exact optical excitation
spectra quite well.

Here various RPA excitation spectra are studied for
the undoped and one-hole doped systems. Note that
both optical and IR absorption spectra are obtained on
the same footing. Single-hole excitation spectra are also
calculated within the HF approximation since they are
useful for interpreting the RPA excitation spectra. To
investigate all linear excitations, we use a small system
of 2 x 2 Cu02 unit cells and t„„=0 only in this sec-
tion. (The one-hole-doped systems thus correspond to
25% doping. ) If we take the reference parameter set and
turn on the intersite electron-lattice coupling (A ), the
one-hole-doped system varies from a uniform ferromag-
netic state for A = 0, 0.125, to the small-polaron state
for A = 0.500, 1.125 (before destruction of the stoichio-
metric AF state). To mimic the 6 x 6 system, we replace
t» ——0.5 by t» ——0, for which a similarly rapid crossover
from the Zhang-Rice regime to the covalent molecular
regime is observed to occur for similar A values in the
AF background.

As for the HF results in the previous section, the RPA
excitation spectra are insensitive to the intrasite electron-
lattice coupling (Ap) until it is very close to the critical
strength Ap, for destruction of the AF background. So we
show here the A~ dependence of the RPA particle-hole-
phonon excitation spectra together with the HF single-
hole excitation spectra, for t„„=0, A P 0, and the
otherwise reference parameter set.

A. Unhoped case

For the undoped systems, the single-hole excitations
[Fig. 16(a)j are clearly distinguished into the upper Hub-
bard band (UHB), the upper part of the bonding oxygen
band (UBO), the nonbonding oxygen band (NBO) (recall
that t» ——0 here), the lower part of the bonding oxy-
gen band (LBO), and the lower Hubbard band (LHB).
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Here we use the hole description for these bands, too.
Note that the previous studies used the electron de-
scription for the bands, so that UHB (LHB) and UBO
(LBO) correspond to LHB (UHB) and LBO (UBO) in
this paper. The charge-transfer gap refers to the gap be-
tween the LHB and the LBO. The HF single-hole excita-
tion spectrum is unchanged for A (A, in the undoped
case.

The RPA particle-hole excitation spectra change little
with diferent A values if they are smaller than A~, .
Only renormalized (RPA) phonon frequencies decrease
with increasing A . Note that phonons are mixed with
particle-hole excitations to lower their frequencies, but
the weight of particle-hole excitations are much. smaller
than that of phonons in these renormalized phonons.

The spectral weight for AF magnetic excitations at Cu
sites,

Sc„(Q) = Q,~c„(—I)'~~sr, and 8, = g, c~ cr c,
with er standing for Pauli matrices, the superscript J for
the transverse components, and N„~~ for the number of
Cu02 units. Each peak is broadened with a Lorentzian
of width 10 . The peak at w = 0 is due to the Goldstone
modes, which are related to restoration of the spin rota-
tion symmetry broken in the HF solution. The spectral
weight at w = 0 is set to zero for technical convenience
using the retarded Green's function. In the thermody-
namic limit (and zero temperature), when the AF spin
configuration on Cu sites has long-range order, spin-wave
excitations are expected with dispersion extending from
zero to finite energy. However, for a finite system with a
nondegenerate (singlet) ground state, a finite spin gap is
generally expected in the exact spectra, which may dis-
appear in the thermodynamic limit. Many particle-hole
pairs (corresponding to pairs of unoccupied and occupied
HF eigenstates) contribute to the Goldstone modes, re-
Hecting their collective nature. The peaks at a = 4.6
and ~ = 6.0 are due to modes, to which a few particle-
hole pairs principally contribute, so that their energies
are in the range of (noninteracting) HF particle-hole pair
excitation energies. These particle-hole pairs correspond
to HF eigenstates in the LHB and in the LBO (LHB —&

LBO transitions).
The real, regular part (i.e. , excluding w = 0) of the

conductivity,

n+0

is shown in Figs. 16(c) and 16(d), where j is given in
Eqs. (E7), (E8), and (E9) and the superscript

I

denotes
the components on the Cu02 plane. For a detailed dis-
cussion on the interaction of the system with radiation
and resultant conductivity, see Appendix E. Figure 16(c)
shows overall structure broadened with a Lorentzian of
width 10, while Fig. 16(d) shows enlarged phonon-
frequency-range structure broadened with a Lorentzian
of width 10 . The main optical absorption peak at
a = 4.5 is due to charge-transfer modes. The particle-
hole pairs which contribute to them correspond to LHB
~ NBO transitions. The main IR absorption peak at
w = 0.075 is due to renormalized phonons with symme-
try of x or y, which are mixed with particle-hole pairs
corresponding to LHB + NBO transitions. These IR-
active phonon modes and the charge-transfer modes are
thus related to each other by the electron-lattice cou-
pling, which lowers the renormalized phonon frequencies.
The correlation between the IR-active phonon modes and
the charge-transfer modes wHl become much clearer in
the one-hole-doped case discussed below.

0.00 0.02 0.04 0.06 0.08 0.10 B. Dne-hole-doped case

FIG. 16. (a) Spectral weight for single-hole excitations,
(b) spectral weight for AF magnetic excitations at Cu sites,
(c) optical absorption spectra, and (d) IR absorption spectra,
for the undoped 2 x 2 system. Parameters are tpd, :1 happ: 0,

3 Uz —8) Up 3 Up& —1 ) A~ —0 5 Ap —0 and
K = 32t~d/A

When one hole is added to the stoichiometric system,
it produces a small polaron accompanied by the two
localized HF eigenstates inside the charge-transfer gap
[Fig. 17(a)j. They correspond to those shown in Fig. 7(b).
The higher one (lh) corresponds to the symmetric 0
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state formed by the four 0 orbitals around the central
Cu site and has small weight on the Cu site. [Note that
the 0 density of states (DOS) in Fig. 17(a) was averaged
over the two 0 positions. ] The lower one (Lt) corre-
sponds to the central Cu state, has small weight on the
surrounding 0 sites, and has opposite spin to the Lh, .
The bonding counterparts of the Lg and the I I, , Lbh, ,
and I b~, are also seen between the UHB and the UBO.
(The Lgh and the LM are less distinctive than the Lh
and the LI, , as concerns their contribution to the RPA
spectra, and so we do not distinguish them from the
UHB and the UBO, respectively, for the later analysis
of the RPA spectra. ) As A increases, the two local-
ized HF eigenstates become nearly degenerate and their
associated wave functions have substantial weight both
on the central Cu site and on the surrounding 0 sites
[Fig. 18(a)]. Lh and L~ are indistinguishable in their
energies and are termed L. They have similar wave func-
tions but different spins. As A~ increases further, the
energies of the localized HF eigenstates are lowered with
increasing local covalency. Note that they correspond to
the antibonding combination of the central Cu state and
the symmetric 0 state (Sec. III F). In Fig. 19(a), the two
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FIG. 17. (a) Spectral weight for single-hole excitations,
(b) spectral weight for AF magnetic excitations at Cu sites,
(c) optical absorption spectra, and (d) IR absorption spectra,
for the one-hole-doped 2 x 2 system with a small polaron
(Zhang-Rice regime). Parameters are t„d = 1, t„„=0, A =
3, Ug = 8, U„= 3, U„d, = 1, A = 0.125, Ap = 0, and
sc = 82t„d/A'.

localized HF eigenstates are located just above the LHB.
A new peak (Lt,) which appears above the UHB corre-
sponds to those other localized HF eigenstates which con-
sist of the bonding combination of the central Cu state
and the symmetric 0 state.

The spectral weight for AF magnetic excitations at Cu
sites [Fig. 17(b)] shows new peaks at u = 0.9, 2.8, and
3.7 which are related to the appearance of the localized
HF eigenstates. The particle-hole pairs which mainly
contribute to the mode at u = 0.9 correspond to Lh
—+ I BO transitions, those at ~ = 2.8 to Lh ~ UBO,
and those at cu = 3.7 to Lt —+ UBO. Accordingly, the
peaks observed in the undoped case (one at w = 0 due
to the Goldstone mode and the others at cu = 4.4 and
5.4 ( u ( 5.9 due to modes which are mainly associ-
ated with LHB ~ LBO transitions) are bleached. When
A is increased and the two localized HF eigenstates are
nearly degenerate, the spectral weight [Fig. 18(b)] shows
doping-induced peaks at u = 2.1, 2.5, and 3.7. Their
corresponding modes are mainly associated with L —+

LBO, I —+ UBO, and L ~ UBO transitions, respectively.
When A is further increased and the two localized HF
eigenstates are located just above the LHB, the spec-
tral weight [Fig. 19(b)] shows a doping-induced peak at
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w = 6.9, which has higher energy than the stoichiometric
LHB —+ LBO peaks. There is no doping-induced struc-
ture on their low-energy side in this magnetic channel,
as in Figs. 17(b) and 18(b). In fact, the corresponding
modes are mainly associated with L —+ Lb transitions.

The real, regular part of the conductivity also shows
new peaks induced by doping. In the optical absorption
spectrum [Fig. 17(c)], new peaks are induced at ~ = 2.0
and ~ = 2.8 which are again related to the appearance
of the localized HF eigenstates. The particle-hole pairs
which mainly contribute to the mode at cu = 2.0 corre-
spond to Lh ~ NBO transitions and those at a = 2.8 to
L~ —+ NBO. Accordingly, the peak observed in the un-
doped case, which is associated with LHB —+ NBO tran-
sitions, is split and bleached. A similar spectrum is ob-
served when the two localized HF eigenstates are nearly
degenerate [Fig. 18(c)]. However, when they are located
just above the LHB [Fig. 19(c)], a doping-induced peak
appears at ~ = 4.8, which is higher than the stoichiomet-
ric LHB ~ NBO peak. But a doping-induced peak does
not appear on its low-energy side as in Figs. 17(c) and
18(c). The corresponding modes are mainly associated
with L ~ NBO transitions.
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FIG. 19. (a) Spectral weight for single-hole excitations,
(b) spectral weight for AF magnetic excitations at Cu sites,
(c) optical absorption spectra, and (d) IR absorption spectra,
for the one-hole-doped 2 x 2 system with a small polaron
(covalent molecular regime) Parameter. s are t„q = 1, t„„=0,
D = 3, Vd, = 8, U„= 3, U„d, ——1, A = 1,125, Ap ——0, and
K = 32t„d,/A.

In the IR absorption spectrum [Fig. 17(d)], there are
two peaks at u = 0.085 and u = 0.087, while the stoi-
chiometric peak is only at u = 0.088 (not shown). Two
phonons contribute to the mode at u = 0.085. One cor-
responds to the antisymmetric oscillation of the right and
left 0 atoms neighboring the central Cu site of the small
polaron. The other corresponds to the antisymmetric os-
cillation of the up and down 0 atoms neighboring the
central Cu site. Thus the two 0 atoms on the horizon-
tal Cu-0-Cu bonds inside the polaron move in the same
direction in the former case, as do those on the vertical
Cu-0-Cu bonds in the latter case. These phonons are
mixed with particle-hole pairs corresponding to Lh —+

NBO and II —+ NBO transitions more strongly than
those corresponding to LHB ~ NBO transitions. In
other words, the local phonons are more strongly mixed
with local particle-hole excitations than extended ones.
Two phonons contribute to the mode at u = 0.087:
namely, with the 0 atoms on the horizontal Cu-0-Cu
bonds outside the polaron moving in the same direction
and those on the outer vertical Cu-0-Cu bonds moving
in the same direction. They are mixed with particle-
hole pairs corresponding to LHB ~ NBO transitions
more strongly than those corresponding to Lh ~ NBO
and LI, ~ NBO transitions. When A~ is increased and
the two localized HF eigenstates are nearly degenerate
[Fig. 18(d)], the frequencies of the local IR-active phonon
modes (u = 0.065) are well split, downward from that of
the extended ones (u = 0.073). Here local phonons are
mixed more strongly with local particle-hole excitations
and extended phonons with extended particle-hole ex-
citations. This particular mixing is more distinct than
the case of Fig. 17(d) where the phonon frequency differ-
ence is small. When A~ is further increased and the two
localized HF eigenstates are located just above the LHB
[Fig. 19(d)], the frequency difference between the local-IR
active phonon modes (w = 0.036) and the extended ones
(u = 0.036) becomes very small. Accordingly, the par-
ticular mixing of phonons and particle-hole excitations
becomes much less distinct. Note that the difference be-
tween the IR-active phonon modes and the IR-inactive
ones is large here. That is, both local and extended IR-
active phonon modes are nearly equally softened by the
electron-lattice coupling.

Finally, the following observation should be added.
Earlier, Rice and Wang have used a simple electron-
phonon model, which includes a single Cu orbital, four
surrounding 0 orbitals, and the same intersite electron-
lattice coupling as our A coupling, to study a combined
excitonic and "charged phonon" mechanism. They cal-
culated absorption spectra due to the electronic and vi-
bronic excitations on the same footing, with the use of
an RPA formula (as obtained along the lines of Ap-
pendixes F, G, and I without the adiabatic assumption).
The parameters were chosen by Gtting to experimen-
tal data —their model is for the absorption spectra.
The mechanism of how the phonon modes achieve their
IR activity is the same as ours as far as the phonon-
assisted, electronic contribution is concerned. (See Ap-
pendixes E and I for another possibility of phonon con-
tribution, which would be negligible for organic conduc-
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tors but should be taken into account for ionic materi-
als: Our calculation includes both contributions. ) In our
study, magnetic excitation spectra are also obtained on
the same footing, and therefore parameters can be de-
duced from additional experiments.

C. Validity of adiabatic approximation

We also calculated the IR absorption spectra, using
the adiabatic approximation. Details are discussed in the
next section. Our purpose here is to demonstrate how it
works in the phonon-frequency range within the RPA.

The resultant IR absorption spectra are plotted with
dotted lines in Figs. 16(d), 17(d), 18(d), and 19(d). They
are on the solid lines obtained without the use of the
adiabatic approximation. This clearly shows that the
adiabatic approximation works excellently for the present
IR absorption spectra.

V. ADIABATIC EXCITATION SPECTRA

For response functions in the phonon-frequency range,
the adiabatic approximation can be used to distin-
guish phonon excitations from particle-hole excitations
in charge-transfer-energy or higher-energy ranges. As
long as the charge-transfer energy and any other particle-
hole excitation energies are much higher than the phonon
frequencies (adiabatic condition), this approximation is
good. This has been numerically checked in the previous
section by comparing the RPA excitation spectra and
the adiabatic excitation spectra in the phonon-frequency
range.

The low-energy excitations can then be regarded as
phonons dressed by particle-hole polarization through
electron-phonon interaction. The dressed holes inter-
act with each other through electron-electron interac-
tion. When the spin rotation symmetry is broken, there
is another type of low-energy excitations, i.e. , spin waves,
whose energy reaches to zero (Goldstone mode). In the
RPA scheme, phonons can interact with charge excita-
tions while spin waves are transverse spin excitations.
Thus the presence of spin waves does not jeopardize the
adiabatic approximation.

The value of the HF-orbital representation (Ap-
pendixes B and C) is lost since electronic excitations are
not of interest here. Instead, the real-space representa-
tion becomes useful since it needs a much smaLLer basis.
The RPA equation in the latter representation is derived
in Appendix F.

When the above adiabatic condition holds, the
electron-electron, the phonon-phonon, and the other
components of the "two-body" Green's function can be
treated differently. It is convenient to define an electron-
ically renormalized electron Green's function II@(w) and
write each component of the "two-body" Green's func-
tion in terms of it, as described in Appendix G.

On the time scale characteristic of lattice vibrations,
the holes instantaneously move toward the lowest-energy
state at each (time-dependent) lattice configuration.
On the time scale of electronic motion, the lattice is

frozen. Thus we can neglect the frequency dependence of
the electronically renormalized electron Green's function
II@(a) by setting w = 0. Eigenfrequencies w and their
eigenfunctions p„(k) of the renormalized phonons are ob-
tained by diagonalizing the renormalized spring-constant
matrix (divided by the ionic mass),

(9)

where

K""= K + Kp@II@(u) = 0)KEp

with the bare spring-constant matrix K appearing in
the Hamiltonian, Eq. (1), and the phonon-electron and
electron-phonon components of the kernel, K~~ and
K@~, defined in Eq. (F8) and depending only on the
parameter values in the interaction part of the model
Hamiltonian. This is derived in Appendix H.

For IR absorption spectra, we need to consider how
the model system interacts with radiation. Details are
described in Appendix E. The dipole moment is assumed
to be defined by

with r, standing for the equilibrium positions of atoms,
u, for the lattice displacements, Z, for the charge not
explicitly included in the model, and (Z, + g ct c, )
for the ionic charge. We take Z, = +1 for the Cu sites
and Z, = —2 for the 0 sites. The paramagnetic current
is given by

(12)

where e,z
——r~ —r, , and p, denotes the conjugate mo-

mentum to u, . Note that u, and p, are the same as the
corresponding quantities without the vector notation in
Eq. (1) —the vector notation is used here to distinguish
the polarization dependence of the absorption or scat-
tering of photons. Conductivity is calculated through
the (paramagnetic) current-current correlation function,
as explained in Appendix I. Calculations were made for
systems of 6 x 6 Cu02 unit cells again. One-hole-doped
systems correspond to 2.8' doping. Therefore relative
strengths of doping-induced absorptions are much weaker
than those in Sec. IV.

A. Hole-doped case

For the states with a small polaron, the IR absorption
spectrum changes with the intersite electron-lattice cou-
pling (A ), as shown in Fig. 20. The other parameters are
the same as the reference parameter set. Here we used
K = 32t„q/A 42 eV/A . This gives, in the absence
of electron-lattice coupling, dispersionless phonons with



12 076 K. YONEMITSU, A. R. BISHOP, AND J. LORENZANA 47

0.3
C0
~~ 0.2—
0

0.1—

(a) h. =0.125
1 hole

0.0
0.40

o 030-
0.20—

M

U
0. 1 0—

(b) X =0.500
1 hole

~ ~

~ ~

0.00
0.40

0.30—
CL

0.20—
N

U
0. 1 0—

~ ~

(c) A. =1.125
1 hole

0.00
0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100

FIG. 20. IR absorption spectra for the one-hole-doped
systems with a small polaron. (a) A = 0.125, (b) A = 0.500,
and (c) A = 1.125. The other parameters are as in Fig. 7.

frequency 0.0914 840 cm and a single peak in the IR
spectrum due to two extended modes, which oscillate 0
atoms uniformly in the respective x and y directions. (In
terms of Appendix I, this is purely due to the phonon con-
tribution because of the absence of electron-lattice cou-
pling. For details, see Appendix E.) Note that, as the
coupling increases, phonons are softened and their fre-
quencies decrease, including the IR-active phonon modes.
The 6 peaks have been broadened with Lorentzians of
width 10

For A = 0.125, the peak (cu = 0.088) is mainly due
to extended modes which oscillate 0 atoms almost uni-
formly in the x or y direction but weakly around the small
polaron [Fig. 20(a)]. There are local IR-active phonon
modes (cu = 0.086) corresponding to the antisymmetric
oscillations of pairs of 0 atoms in the small polaron, as
in Fig. 17(d). That is, the two 0 atoms on the horizon-
tal Cu-0-Cu bonds inside the polaron move in the same
direction in one mode, as do those on the vertical Cu-
0-Cu bonds in the other mode. There is another type
of IR-active phonon modes (also at w = 0.088) which
are extended in the direction of oscillation and localized
in the other direction so that we term them semilocal
modes. But both the local and semilocal modes are in-
distinguishable in the IR absorption spectra, hidden by
the broadening for the extended modes.

For A = 0.500, a doping-induced peak due to the local
IR-active phonon modes (w = 0.071) is well split from
the main peak due to the extended ones (cu = 0.076)
and clearly visible [Fig. 20(b)]. The semilocal modes
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FIG. 21. IR absorption spectra for the one-hole-doped
system with an intermediate-size ferromagnetic polaron.
A = 0.125. The other parameters are as in Fig. 9.

(u = 0.075) are still indistinguishable in the spectrum
from the extended modes. This spectrum is qualitatively
consistent with the experimentally observed bleaching
of phonon modes and intensity shift to lower frequen-
cies following photoexcitation. Also observed in the same
experiments is a bleaching of the interband electronic
absorption and the corresponding activation of an elec-
tronic absorption in the gap, which we can qualitatively
associate with the appearance of gap states [Fig. 7(b)].

For A = 1.125, both peaks due to the local modes
(u = 0.045) and the semilocal modes (cu = 0.047) are
split from the peak corning from the extended modes
(ur = 0.049) [Fig. 20(c)]. Here the oscillator strength
of the semilocal modes is largest and those of the local
and extended modes are seen as shoulders on the low-
and high-frequency sides, respectively. Furthermore, ex-
tended modes which do not uniformly oscillate 0 atoms
develop IR activity at w = 0.055 and a = 0.060. When
A is close to, but smaller than A „even the stoichiornet-
ric phonons have a nonsmooth dispersion relation, which
is reminiscent of a transition by breaking of analyticity. ss

For the state with an intermediate-size polaron (Ug =
10, 6 = 4, A = 0.125, and the otherwise reference pa-
rameter set), the IR absorption spectrum (Fig. 21) is
quite different from those for the small-polaron states.
The weaker peak (u = 0.088) is due to extended modes
which oscillate 0 atoms almost uniformly in the x or y di-
rection but weakly around the intermediate-size polaron.
The stronger peak (cu = 0.077) is due to local modes
which oscillate mainly the four 0 atoms bridging the four
Cu sites in the polaron (Fig. 3). The amplitudes of the
associated eigenfunctions decay with distance from the
polaron. In a previous report a spectrum for the same
state is shown, in which the peak due to the extended
modes is much weaker. This is due to the fact that the
second term of Eq. (12) was omitted there. There is
in fact some uncertainty in de6ning the current opera-
tor because the model Hamiltonian does not completely
describe how the ionic charge follows the motion of the
corresponding atom. For details, see Appendix E. In
terms of Appendix I, the oscillator strengths of the ex-
tended modes are mainly due to the phonon contribu-
tion, while those of the local modes are mainly due to
the phonon-assisted electronic contribution. Indeed, the
strong IR activity of the local modes is caused by their
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mixing with soft particle-hole excitations which are re-
lated to the highest occupied HF eigenstate. Note that
this gap state is located near the 0 band and has sub-
stantial weight at Cu sites as well as 0 sites inside the
intermediate-size polaron: A charge-transfer process does
not require energy comparable with the stoichiometric
charge-transfer gap.

B. Electron-doped case

We also studied "electron"-doping states. For the ref-
erence parameter set (as in Fig. 1), the electron-doping
state contains a small polaron (Fig. 22). A hole is taken
away mainly from a single Cu site and partly from the
four Cu sites neighboring this central Cu site. The spin
density at the central Cu site is small and flipped (to
point up). Two HF eigenstates appear deep within the
charge-transfer gap per removed hole. Note that both
gap states are unoccupied by holes. The lower gap state,
which is the lowest unoccupied HF eigenstate, corre-
sponds to the central Cu state with spin up and has small
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FIG. 22. (a) Spin and charge densities and (b) HF energy
levels around the gap for the one-"electron"-doped system
with a small polaron. Parameters are t„d, = 1, t» ——0.5,
A = 3, Ud = 8, U„= 3, U„g = 1, and A = Ap = 0. The
symbols are as in Fig. 1.

weight on the four neighboring Cu sites. The higher gap
state, lying near the center of the gap, corresponds to
the central Cu state with spin down and has substantial
weight on the four surrounding 0 sites. Thus the two
gap states roughly correspond to those in the hole-doping
case. (Note that there is no inherent electron-hole sym-
metry in our multiband model. ) Because the hole density
is small at the central Cu site, the central Cu states for
both spins have low energy, of which the higher-energy
state can mix more with the surrounding 0 states.

We now consider how the intersite electron-lattice
coupling (A ) modifies this electron-doping state. For
A = 1.125 and the otherwise reference parameter set
(as in Fig. 6), the electron-doping state contains again a
small polaron (Fig. 23). The four 0 atoms are displaced
from the central Cu state, enhancing the hopping inte-
gral between the four 0 sites and the surrounding four
Cu sites, but reducing that between the four 0 sites and
the central Cu site, and thus transferring hole density
from the central Cu site to the four neighboring Cu sites.
A hole is taken away almost exclusively from the cen-
traj. Cu site and the hole density is almost zero at this
site. We can regard the effect of the intersite electron-
lattice coupling (A ) as reducing the magnetic moment
on the central Cu site through local lattice distortion in
both hole- and electron-doping cases. Three HF eigen-
states appear inside the charge-transfer gap per removed
hole, all of which are unoccupied. Two of them, lying
near the center of the gap, correspond mainly to the up-
and down-spin central Cu states, due to weakened hop-
ping integrals between the central Cu site and the four
surrounding 0 sites. The up-spin central Cu state has
more weight at the central Cu site than the down-spin
one because it is incompatible with the lower Hubbard
band. The down-spin central Cu state has small weight
on the four surrounding 0 sites. A difference from the
hole-doping state is that the two nearly degenerate cen-
tral Cu states lie near the center of the gap, not near the
lower Hubbard band. The other gap state lies near the 0
band and corresponds to a down-spin symmetric 0 state
formed by the four 0 states and has small weight on the
central Cu site.

For the above electron-doping states with a small po-
laron, the IR absorption spectrum changes with the in-
tersite electron-lattice coupling (A ), as shown in Fig. 24.

For A = 0.125, the IR peak (a = 0.088) is mainly due
to extended modes which oscillate 0 atoms almost uni-
formly in the x or y direction but weakly around the small
polaron [Fig. 24(a)]. There are local IR-active phonon
modes (~ = 0.090) corresponding to the antisymmet-
ric oscillations of pairs of 0 atoms in the small polaron.
There are also semilocal IR-active phonon modes (also
at u = 0.088) which are extended in the direction of os-
cillation and localized in the other direction. But both
the local and semilocal modes are indistinguishable in the
IR absorption spectra, hidden by the broadening for the
extended modes.

For A = 0.500, a doping-induced structure due to the
local IR-active phonon modes (w = 0.084) are well split
from the main peak due to the extended ones (~ = 0.076)
and are seen as a hump [Fig. 24(b)]. The semilocal modes
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FIG. 24. IR absorption spectra for the one-"electron"-
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in Fig. 7.
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(a) Spin and charge densities, (b) 0-atom dis-
placements, and (c) HF energy levels around the gap for the
one- "electron"-doped system with a small polaron. Parame-
ters are t„q = 1, t» ——0.5, A = 3, Ud, = 8, U„ = 3, U„g = 1,
A = 1.125, and Ap ——0. The symbols are as in Fig. 1.

(also close to w = 0.076) are still indistinguishable in
the spectrum from the extended modes. The oscilla-
tor strengths of the local and semilocal modes are much
weaker than the corresponding hole-doping case.

For A = 1.125, a doping-induced structure due to the
local IR-active phonon modes (w = 0.071) are well split
from the main peak due to the extended ones (u = 0.049)
and are seen as a very small hump [Fig. 24(c)j. The
semilocal modes (w = 0.051) are seen as a shoulder on
the high-frequency side of the main peak. The oscilla-
tor strengths of the local and semilocal modes are much
weaker than the hole-doping case here, too. Again, ex-
tended modes which do not uniformly oscillate 0 atoms
develop IR activity at ~ = 0.059 and ~ = 0.065.

The IR spectra for the electron-doping states are dif-
ferent from those for the hole-doping states in the fol-
lowing ways: (i) The local and semilocal modes have
higher frequencies than the extended modes, and (ii)
their oscillator strengths are very small. For the electron-
doping case, both the phonon contribution and the
phonon-assisted, electronic contribution to their oscilla-
tor strengths are smaller than those for the hole-doping
case. Roughly speaking, both the central Cu site and
the four surrounding 0 sites have little hole density in
the electron-doping case, so that the local 0-atom vi-
bration has less chance to couple with local particle-hole
excitations than the hole-doping case. Consequently, lo-
cal phonons are less softened through local particle-hole
polarization and contribute less to absorption spectra.
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Another reason for the difference is that, for the electron-
doping case, the phonon contribution and the phonon-
assisted, electronic contribution interfere destructively.
However, for the hole-doping case, they interfere con-
structively.

Finally we note, in the electron-doping case, that (i) an
intermediate-size polaron does not exist even for large Ug
and 6; this is because the highest occupied HF eigenstate
for the stoichiometric case has momentum (x, 0), not (0,
0) as for the lowest unoccupied HF eigenstate relevant
for the hole-doping state with large Ug and 6; and (ii)
the intrasite electron-lattice coupling (Ap) modifies the
small-polaron state by displacing the four 0 atoms from
the central Cu site and transferring hole density from the
central Cu site to the four neighboring Cu sites, as the
intersite electron-lattice coupling (A~) does. (The local
lattice distortion is much larger than the hole-doping case
because the difFerence of hole densities between the cen-
tral Cu site and the four neighboring Cu sites is large. )

VI. CONCLUSIONS

We have used a convenient inhomogeneous HF plus
RPA approach to study hole-doping states and associ-
ated electronic and phonon response functions in the
2D three-band extended Peierls-Hubbard model. There

are tendencies toward various broken-symmetry ground
states —the AF, spin-Peierls, BOW, and CDW phases—with relative strengths depending upon the parameter
values of this model. At stoichiornetry, one of them —the
AF phase for the copper oxides —dominates. We And
that deviations from stoichiometry, i.e. , doping, enhance
these underlying competitions Local/y. Thus hole-doping
states may be localized (at a mean-field level) or some-
what extended, and may have a substantially difFerent
broken-symmetry character than that of the background
in which they reside. As described above, we have found
sensitivity to Uq and U„d, in this regard, including phase
separation and/or clumping.

Strikingly, intersite electron-lattice coupling (A ) can
quench a Cu magnetic moment and create local lattice
distortion in a completely AF background. This occurs
in a substantial precursor regime relative to the criti-
cal coupling A, for destruction of the stoichiometric AF
state. Thus Hubbard interactions may be strong and A~
relatively weak —the efFects of the electron-lattice cou-
pling are entirely concentrated around the added holes
and are not to be measured relative to the global mag-
netic coupling. However, it induces local phonon modes
as well as local particle-hole excitations related to the
gap states, so that it should be observed in IR and opti-
cal absorption spectra as bleaching of the stoichiomet-
ric peaks and an inducing of new peaks. The possi-
ble implications for attractive hole interactions or su-
perconductivity remain to be explored. However, our
results are clearly directly relevant to the photodoping
of holes into the Cu02 planes of the copper oxides such
as La2 ~Sr~Cu04, YBa2Cu307 p, Bi2Sr2Ca„qCu„Oy,
T12BagCa„gCu„Oy and so on. In these materials there
is clear evidence for an AF correlation at stoichiometry,
but doping induces IR evidence for local lattice distor-

tions, and also for phase separation. Our results demon-
strate how such hole-doping effects can indeed be in-
duced in a strong AF background. For the electron-
doped Nd2Cu04 „system also, there is evidence for a
bound charge coupled to the nearby spin and lattice
excitations. ~5

Furthermore, we have given specific optical and IR ab-
sorption signatures for such polaron doping states. A de-
tailed correlation of these predictions with experimental
data will not only demonstrate the presence of electron-
lattice coupling in the copper oxides but also determine
its strength. Specifically, as shown in Figs 20. and 21,
the different doping states show distinctive spectroscopic
signatures, which could be used to identify the chemi-
cal doping or photodoping states in the copper oxides.
Our results have shown that simple lattice dynamics
fitting to experimental data is insufFicient —the dop-
ing states must be determined self-consistently, including
electron-electron and electron-lattice couplings, to under-
stand the correlation of electronic and phonon signatures.
In the real materials, there are of course several phonon
branches, including ones with acoustic character, and a
variety of electron-lattice couplings. More experimen-
tal data, particularly regarding relevant phonon degrees
of freedom, are therefore required to exploit fully our
method. For example, electron-lattice coupling in the di-
rection perpendicular to the Cu02 planes has been shown
to be very active in the copper oxides. s4
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APPENDIX A: SELF-CONSISTENCY
CONDITIONS FOH THE MEAN-FIELD STATE

1 2 w 1+ ) M 'Ii) + ) ~kl&k&l
t

2M) k) 2 (Al)

For the electronic part, we use the HF approximation
which is unrestricted in both spin and direct space. To
this end, we introduce a canonical transformation

cia = cA A &~ r (A2)

Following Eq. (4), the Hamiltonian, Eq. (1), is rewrit-
ten as

H= ):~. ((( ))),'. -+)."((( )B,'. *-
igj,cr 2) 0'

-k-+ g ~i2tLkC Cj~
i,j,k, o.

+ g UiCit. CilC2lC2T + g UijC2~C ~ICj~'C2~
(igj),o,o''
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and assume the HF state is specified by the occupancy
of the HF orbitals, A. Here the index A is for both spin
and direct space to allow those HF configurations whose
spin densities are not collinear. The normal ordering is
defined with respect to the occupancy,

c~~c„=6p„8(F —A) + N(c~~c„) (AS)

where 8(F—A) takes unity if the orbital A is occupied and
zero otherwise. Using the normal ordering of two-body
operators,

cqict c c = (bp 6„,—6g b'„)8(F —A)8(F —p, )

+6g 8(F —A)N(etc ) + b'„8(F —p)N(c~&c )

6), 8(—F —A)N(ci c ) —b„8(F—p)N(c~qc, )

+N(ci~c~ic c ) (A4)

we rewrite the Hamiltonian [Eq. (1)] into

H =H, +H, +H, +H„+H;„, ,

H. = ).&k ).g~~+) ~ki(«)
k (Aeocc rl

~. =) N(c&c, ) (~l&(((~k))) l~)

+ ).((» I
v

I
~~)

vgocc

-(»
I
v

I ~~))

2 ~ 1
Hp = ) Pi + ) ~kl&k«

2M, 2

(A7)

where the constant term H„ the term linear in uk, H„
the one-body electronic part H„ the phonon part H„,
and the interaction part H;„t are given by

1
H. = ).(& IT((( k)k) I &)+).-~ i( k)(")

Agocc k, t

+- ) ) ((&s I

v
I

&s) —(&v I
v

I v&))
Agocc p Cocc

II;~t; = ) gp~6ikN(cpcp)
A, p, , k

+—) (Ap I
v

I
v~)N(ctkci c c )

Ap, p7

(A10)

The matrix elements of the one- and two-body terms of
Eq. (A1) are given by

(& IT(((u ))) l~) = ).t*'((( )))&*(i )& (~~)+) e'(((~ )))&*(i )& (~ ) (A11)
i+j,o i o'

(&c I

v &&& = —) .U'[4'~(& T)4„'(& l) —4'~(& l)4'„*(& t')][4'~(~ t') 4-(& 1) —4-(& l) 0~(& T)]

+~ ) &v [&~(i~)4,*(i~') —&~(~~')4,*(i~)][@-(~~)4-U~') —0-U~') 0-(i~)]
(igj),o,o'

(A12)

with the latter being symmetrized, (Ap I

V
I

v7.)
—(~& I

V ~~) = —(&s V
I
~~) = (&~

I

V
I

&~)* The
matrix elements of the electron-phonon term are given

by

) t (((ii )B»U )+e (((u )))4' ('&)
j(wi}

+I V, (c, c,-) ~ ) U i(c~ , ci ')»'(i.o)

g~, = ) .g,",4»(~~)0, (i~),
ii3i o'

(A1S)

for which g~k„—g„"~ holds,
The electronic part H, is diagonalized as

H, = ) epN(c~~c), ) (A14)

(A15)

with self-consistently determined one-body densities,

when the HF wave functions satisfy the HF equation
(c,'.c.-) = ).&*(i )»(i~')

Agocc
(A16)
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The term linear in 6k, H„ is set to zero, ) y,
" (ci c~ ) + ) KA,,i(u() = 0 (A18)

H, =O

when the classical component of the lattice displace-
ments, (u~), satisfies the self-consistency conditions

With the above self-consistency conditions for the elec-
tronic and lattice parts, Eqs. (A15) and (A18), the con-
stant term (HF total energy) H, can be written in two
equivalent ways,

H, = ) t, ~(((uz)))(c, c~ ) + ) e,.(((ua)))(c; c, ) + ) U, ((c'T 'T)( i~l 'l) ( i~T 'l)( Il '

+ ) U'~((c',.c'-)(c,'. c& ) —(c,'.c - )(c,'. c'-))+) -~ ~(u )(«)
(igj),o,o' k, t

) eg —) U~((ci~TciT)(ci~lcil) —(c~Tcil )(c~lciT)) ) Ui&((ci~ci~)(c ~ic&~~) —(c~~c&~l)(c ~i'~))
Agocc (i+j),o,o'

(A19)

which can be used to check the self-consistency.
The phonon part H„ is diagonalized as

H„= ) 0 ((i(„+-) (A20)

APPENDIX B: RPA EQUATION FOR
THE LINEAR FLUCTUATIONS AROUND

THE MEAN-FIELD STATE

with the transformation into the bare phonon operators
Here we call unoccupied and occupied HF eigenstates

particle and hole states, respectively, and distinguish
them:35

(A21)
cp = pg8(A —F) + h,iq8(I' —A)

(A22)

where the eigenfrequencies A~ and their eigenfunctions
I' (k) of the bare phonons are obtained by

where 8(F—A) takes unity if the orbital A is occupied and
zero otherwise. The word hole should not be confused
with the previous "hole": Particle states here correspond
to holes in the text and hole states to electrons as in
"electron" doping. Creation and annihilation operators
for a pair of particle and hole states,

(B2)

Finally, we rewrite the interaction part H;„q into

H;„t, ——) g~„(( + (i)N(ci c„)
A~@)v

+—) (Ap i
V

i
vv)N(ci„ci c c )

AP v7

with

(A23)

(A24)

are regarded as boson operators, approximating their
commutation relations by their expectation values in the
HF states.

In terms of these operators and the bare phonon opera-
tors in Eq. (A20), the RPA consists in finding an operator

(B3)

such that its commutator with the Hamiltonian [Eq. (1)]
approximately satisfies the relation

)-g"" '2M n (A25) [H, (i] (E„—Ep)(i (B4)

for which gA„——g„"& holds.
This is obtained by linearizing the equation of motion,
e.g. , with the use of
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[N(ct cptcpc~), (ii„] = [(pt ht hppp+ ptph~h p~ —pt h~~hpp~ —@phd h pp+ h hpIipp~), @~~hi]

= bppb~p(pt hi + h p~) + 6p~b„(pphq + hppp) —6'p~6„p(pi h~ + h pp) —6i,y6'„(@phd + hpp~),t

(B5)

(„), = &n —&0 („). (B6)

where the vector denotes the coefficients in Eq. (B3),

i (nl*)
q(~)' ~i ~~p

&&'"'*)
( (n)* )

~(n) * &o.P

where the indices a, P, p, and 6 denote HF eigenstates
(not electron-lattice couplings). Straightforward algebra
leads to the RPA equation

We can view the RPA equation, Eq. (B6), as the
canonical transformation to diagonalize the effective bo-
son Hamiltonian

1
HqB =H, +) —0

V

+) [(0+K~)i. (iig
l,a

+ 2(Ka)i-; (i (i+ —,'(Ka)i; ( Cil

(t = Ap, , v; a = nP, p; A )F ) p; n ) F ) P) . (B14)

The matrix M is given by

0+ K~ K~
K~ 0+ K~)

( .o)F&P) . (B7)

(B8)

Here the first term is the total energy within the HF
approximation for the electronic part and the classical
approximation for the lattice part, as given in Eq. (A19).
The second term represents the zero-point oscillation en-

ergy of the bare phonons. The diagonalization leads to

where the submatrices are given below. The matrix A is
given by

Bgy, ~ p Agy, p 6g 6yp(FQ 6p) 0
0 6 ~A

(B9)

where ep denotes the HF energy level [Eq. (A15)] in
Eq. (A14) and A the bare phonon frequency [Eq. (A23)]
in Eq. (A20). The matrices K~ and Kii are given by

1
Eqn = — ) (E„—Ep) —tr(A + K~)

n;E ~E'P
(B16)

HqB = H, + ) —0 + EqB + ) (E„—Ep)(i(„
n;R )Rp

(B15)

where the correction to the HF total energy plus the bare
phonon zero-point oscillation energy is given by

KA KA
Ay;O. p Ap;p , Ayo. p gAy,

z~ z~
Ag np KAg p +Apnp gAp

K. p K. gp 0)

(B10)

(B11)

Note that this is the same with the diagrammatically de-
rived RPA correction except the second-order term with
respect to electron-electron interaction is counted twice
in the above expression.

The coefficients in Eq. (B3) denote matrix elements of
the "bare" boson operators,

with

vq p
——2(AP I

V
I pa), uq„p ——2(Aa

I

V pP),
(B12)

(
q(n)* t @(m, ,) ~

(„), ( )„——b„sgn(E„—Ep) (B13)

where (Ap I
V

I
vw) denotes the electron-electron inter-

action vertex [Eq. (A12)] and g&„ the electron-phonon
interaction vertex [Eq. (A25)] in Eq. (A24).

An alternative diagrammatic derivation is presented
in Appendix C. The HF excitation spectra and the bare
phonon spectra are obtained by setting K~ ——K~ = 0.
With the relations v&„——v pp„and u& &

——u*&&
it is easily shown that t e matrix KA is Hermitian, R~
symmetric, and M Hermitian. The approximate bo-
son commutation relations follow from the normalization
condition

0I,",' = (& I Cg„ I o) q(~) (n
I

qt 0)

(B17)

~~"„'=(~ &~~ o) ~("i =(nl(- o)

between the RPA ground and excited states,

o) = o,
I ~) =4

I o) . (B18)

Any "two-body" Green's function is given, within the
RPA, by substituting Eq. (B17) into its Lehmann repre-
sentation. (Note that the Green's functions considered
here are two body with respect to electron operators and
one body with respect to phonon operators. ) This allows
the RPA Green's functions to satisfy energy-weighted
sum rules as long as the frequency integrations of the
frequency-weighted Green's functions are evaluated in
the RPA and the expectation values of the double com-
mutator in the HF approximation.
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APPENDIX C: DIAGRAMMATIC DERIVATION
OF THE RPA EQUATION

Two-body Green's functions are defined by

11(t)»; p = —&(0
I T&»(t)(.'p I o)

11(t)„„,, = —i(0
~
T(»(t)qt

~
o),

rl(t), „.—.p
= —t(0

~
T(»(t)(.p ~

o),
II(t)g„.,—= —i(0

~ T(»(t)(~ ~
0), etc. ,

(Cl)

where the time-dependent operators are in the Heisen-
berg representation, and T denotes the time ordering.
Their Fourier transforms are defined by

ew& 'MMMM = nnne +~

II (clJ)» ~ rr p dt e'"'II(t)),~, p, etc. (C2)
r; rr ~ r +

Here the static part [the term proportional to ti(~)] is
not considered. The zeroth-order Green's functions are
easily derived,

FIG. 25. Bethe-Salpeter equation for particle-hole ex-
citations (a pair of solid lines) and phonons (wavy line).
Electron-electron interaction vertex contains direct and ex-
change terms.

1
IIP(cu), ~ = 6„~

(d —0„+2g
forward to derive the kernel in the form

(C7)

whose matrix elements are given in Eqs. (B10) and (Bl1).
Thus Eq. (B6) is rederived by setting

0
(~)otherwiee = 0

where g denotes an infinitesimal positive number. It will
turn out immediately that the HF-orbital representation
here is convenient since the inverse of II (u) is diago-
nal and linear in w allowing numerically straightforward
diagonalization to obtain all linear excitation modes.

We consider the Bethe-Salpeter equation for both
particle-hole excitations and phonons with the interac-
tion vertex whose order is lowest in H;„t, as shown in
Fig. 25. This can be written in a matrix form as

(y(n) *
[II(E„—Ep)] '

~ („). ——0

APPENDIX D: SOLUTION
OF A GENERALIZED EIGENVALUE PROBLEM

In solving Eq. (B6) of the type

Mv„= ~„o3v„ (D1)

where o3 is one of the Pauli matrices, we first diagonalize
the Hermitian matrix M to get

where the components of the matrix II(cu), M =TeT~ (D2)

where T is a unitary matrix and e is a diagonal one. Then
Eq. (Dl) is reduced to another Hermitian problem,

(C5)

are the Fourier transforms of Eq. (Cl). From Eq. (C3),
the inverse of IIP(w) takes the form

(C6)

where the matrix 0 is given in Eq. (B9). It is straight-

(e ~T o.sTe ~ )(e~T v„) = (e~Ttv„)

When the HF state is stable, no element in e is negative.
For zero-frequency modes (~„=e„=0), we added a very
small positive number (10 P) to c„ in order to avoid nu-
merical instability. Thus the zero-frequency modes have
very small frequencies (u„~10 s) and are treated in the
same way as the other modes.
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APPENDIX E: INTERACTION WITH
RADIATION

Generally speaking, the model Harniltonian [Eq. (1)]
does not completely specify how the system interacts
with photons [see (i) and (ii) below]. To see this, we
first assume that the dipole moment is defined by .-1 (+) I Z+) ci c, (E5)

and the first term gives the paramagnetic current. The
stress tensor 7 in the second term is given by

'r: ) (6ij + Uj Ui) (tij + uj ui)tij ((up))c ~~cj&

where r, stands for the equilibrium positions of atoms,
u, for the lattice displacements, Z, for the charge not
explicitly included in the model, and (Z, +Q ct c, ) for
the ionic charge. We take Z, = +1 for the Cu sites and
Z, = —2 for the 0 sites. Note that the vector notation
u, is used for the lattice displacements.

(i) Inclusion of u, in P means that the ionic charge
follows rigidly and instantaneously the motion of the cor-
responding atom. If the ionic charge is assumed not to
follow the atomic motion, the dipole moment should be
defined by P = P, r, (Z, + P ct c, ). In reality, the
charge-density distribution around the atom would be
distorted during the atomic motion and the center of the
ionic charge would be different from the atomic position:
The core charge would follow the atomic motion almost
fully and with slight distortion, while the charge associ-
ated with the atomic orbital in the model would follow
it partially and with large distortion.

(ii) Realistic values for Z, would not be integers since
the ionic charge is partially distributed into interstitial
positions and other atomic positions.

Here we use Eq. (El) for definition of the dipole mo-
ment. The paramagnetic current is derived through its
time derivative

+) Z+) (c, c, )
. p, (

M, t

' ' '
)

(E6)

In most cases, (uj) —(u, ) is much smaller than e,j. Then
the current operator can be further approximated as

4 ~

J = Je&+/ah

where the electronic and phonon parts are given by

J41 = 1 ) sij tij (((uk) ))ci~cj a

(E7)

(E8)

where I is a tensor such that A I A = A2. We add a
comment concerning (i) after Eq. (El).

(i') If the dipole moment is defined by P
Q,. r, (Z, + P ci c, ), then the paramagnetic current
is j = i P, e,jt,~((ug))c, cj . This is equivalent to
a gauge transformation c, ~ exp( —i ;j"A-dl)c,
(note the upper bound of the integration in the expo-
nent) and p, —+ p, , leading to the stress tensor 7

' t' (( )),.
In view of the quasiboson picture of the RPA, the cur-

rent operator, Eq. (E2), is linearized as

j = i ) .(s' + (u ) —( '))&* (((u )))c,'.c-

j = i,[H, P] = i ) (tij + uj iu)tij (( ku))c ~c~j~

+) ' Z+) c c,
. p, (

Mi q

j,h=) '
Z, +) (c,'. c, ) ~

p, (
)

(E9)

(E2)

where e,z
——r~ —r, , and p; denotes the conjugate mo-

mentum to u, .
The same paramagnetic current can be defined through

a gauge transformation

ri+ui
c, ~exp~ i Adl c, ——

C

(E3)
e(p;~p; —— Z, +) c, c, ~Ac )

where e denotes charge of the carrier. The Hamiltonian
is expanded as

e. 1 (e&'
H(A) —H(0) = —-j.A+ — — A 7 A+

c 2 (cj
(E4)

The above separation is convenient because the electronic
and phonon parts scale differently [see Eq. (I20)]. For
later convenience, we introduce

Pph ) ui Zi + ) (cg~cir)
)

which satisfies jph = i[H, Pph].

(E10)

APPENDIX F: RPA EQUATION
IN REAL SPACE

The real-space representation is sometimes more con-
venient since its basis is much smaller than the HF-orbital
basis at the expense of more complicated frequency de-
pendence. For later application to the IR absorption
spectra, "two-body" Green's functions are given in a real-
space representation:
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II(t). . .
= —i(0

~

Tct, , (t)c; (t)ct c
~
0)

11(t), ,' . = —i(0
~

Tct, , (t)c, (t)u
~

0)

APPENDIX G: ELECTRON
AND PHONON GREEN'S FUNCTIONS

II(t)... , = —i(0
~

Tu, (t)ct c,
~
0)

II(t), , = —i(0
~

Tu, (t)u,
~

0)

(F1) For later convenience in the adiabatic approach, the
electron-electron, the phonon-phonon, and the other
components of the "two-body" Green's function are
treated separately. Equation (F4) can be written as

The notation is similar to Eq. (Cl). Their Fourier trans-
forms are defined as in Eq. (C2). The zeroth-order
Green's functions are obtained from Eq. (C3) through
the transformations Eqs. (A2) and (A21). For example,
the bare phonon part is given by

[Il(~)]
—

(

[ z (~)1
0

0
(+PP (~)] ' )

0 Kzp1
qKpz 0 (G1)

[rl'(~)];.,' = S„M,~' —K;, , (F2)
where the electronically renormalized electron Green's
function IIz(w) is given by

with the help of Eq. (A23). The interaction part H~„q is
written in the real-space representation as

[11 (~)]-' = [IIO (~)]-'-K (G2)

which is diagrammatically represented in Fig. 26. In the
numerical computation, we usedHint = ) gz&'ukN(c~~cja) + ) UiN(c~Tc~gciici])'

2,j,k, O 2

+ ) U,jN(ct ci,cj c, ) . (F3
(2gj),O, Cr'

II (~) = Ilo

+IIozz(~)Kzz[1 —IIozz(~)Kzz] 'IIzz(cu)
(G3)

11(~)]-' = [Il'(~)]-' —K, (F4)

Taking the same diagram (Fig. 25) with the same ker-
nel (with the difFerent representation) as in Appendix C,
the Bethe-Salpeter equation is written as

to avoid the singularity of [Ilozz(~)] at ~ = 0.
With the use of IIz(w), the phonon-phonon component

takes a simple form

where the components of the matrix II(ur) are

I
IIzz(ld) IIzp(ld) )~

,

(Il( )...'. ...,... II( )...'. j&,
II(cu). . .' II(cu), ,

The zeroth-order part is denoted for later use by

o IIozz (~) 0
11»(~)

(F5)

(F6)

[IIpp(~)] ' = [Iipp(~)] ' —KpzIIz(~)Kzp
(G4)

which is diagrammatically represented in Fig. 27. The
other components are also written, with the use of IIz(w)
and IIpp(~), as

11zz( ) = Ilz(~) + nz( )KzprIpp( )KpzrIz(~),
(G5)

Now the kernel takes the form

KEE KEP

where

Ilzp(u)) = IIz(cu)KzpIIpp(~)

(F7) Il (~) = II (~)K II (~),

(G6)

(G7)

Kzzioi'a'';j 7j'7' = ~ii'j j'(~ocr'7~' crier'wr') Ui

+(b,, 6 .6,,'b...
~ij ~cr7. ci'j ' ~cr'7' ) Uij

—3~EPicri'cT';j = ~oo'922~ )

+PE2;373 7- = ~7-7- 93j~

(F8)

Equation (G5) is diagrammatically represented in
Fig. 28.

with b,jk~ ——1 if i = j = A' = L and b,jk~ = 0 otherwise.
It is straightforward to derive Eq. (F4) directly from

Eq. (C4) also. Note that the basis for Eq. (C4) is larger
than that for Eq. (F4). Equation (C4) is convenient since
the inverse of IIo(w) in that representation is diagonal
and linear in u.

FIG. 26, Diagram for the electronically renormalized elec-
tron Green's function.
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nallvv +

FIG. 27. Diagram for the {one-body) phonon Green's
function.

APPENDIX H: ADIABATIC APPROXIMATION

where ((A; B))~ denotes the Fourier transform of the
Green's function, —i(0

~
TA(t)B

~
0)/N„ll, with N«ll

being the number of Cu02 units and A(t) in the Heisen-
berg representation. Single and double primes denote
real and imaginary parts, respectively.

Conductivity can be derived also through the dipole-
moment —dipole-moment correlation function

o'(u) ) 0) = ~H"(~)

When the adiabatic condition holds, the phonon-
phonon component of the "two-body" Green's function
(recall this is the one-body phonon Green's function) is
well given by setting w = 0 in IIE(u) in Eq. (G4):

with the polarizability

H(~) = —((P; P)) (I4)

[IIPP (~)] —[HPP(~)]
= [11'P(~)]-' —K EIIE(~ = 0)KEP .

(Hl)

With use of Eq. (F2) for [Ilopp(w)], this takes the form

(H2)

where the renormalized spring-constant matrix K"" is
defined by

K""= K+ KPEIIE(u) = 0)KEp

Note that the matrix K"" is real symmetric. Thus the
adiabatic phonon Green's function is written as

(H4)

where the eigenfrequencies u and their eigenfunctions
p„(k) of the renormalized phonons are obtained by

Equations (Il) and (I3) are equivalent, as is easily shown
with the use of j = i[H, P] and the Lehmann representa-
tion. Purthermore we can use

(I5)

The above relations also hold separately for the elec-
tronic and phonon parts of the current, so that we have

o'(~ & o) = ——((j.l +j,h; j.l +j,h))"

((JelI Jel))~ ((JelI Pph))~

+((P .))' — ((P P ))" (I6)

in which the last expression is convenient when the adia-
batic approximation is used, and the middle one is useful
otherwise.

Now we derive a formula for the conductivity in the
phonon-frequency range within the adiabatic approxima-
tion, by treating terms in the last expression of Eq. (I6)
separately. Using

).~M
Kl'i"

M & (t) = ~.'& (&) jel g ~2' a'Cia. C~~' )

2, CT)g) CJ

(I7)

'e' t' (f(u )))
the electronic contribution is written as

APPENDIX I: CONDUCTIVITY

1
((j,l,'j,l)) = JtIIEE(u)) J

cell
o'(~ ) 0) = ——A"(cu)

(d
(Il)

where Jt IIEE (w) J stands for

through the current-current correlation function

Conductivity is obtained from linear response theory
by

~(~) = ((J J)) (I2) 2CT2 0' g7 g 7

Jinni'o'HEE(&)imari'&r';j

rj '7 'Jjrj 'r'

This is divided into a purely electronic part ((j,l', j,l))~
and a phonon-assisted part ((j,l, j,l))+ where

((j,l, j,l)) = JtIIE(~)J
cell

(I10)

((j,l, j,l)) = J IIE(~)KEPIIpp(~)KpEIIE(~) J
~ce»

FIG. 28. Diagram for the two-body electron Green's func-
tion. with the help of Eq. (G5).
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