PHYSICAL REVIEW B

VOLUME 47, NUMBER 18

1 MAY 1993-11

Particle in a random magnetic field on a plane
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We study the properties of a two-dimensional spinless particle moving in a random magnetic field.
This problem arises in the context of a modern theory of strongly correlated systems as well as in
the theory of vortex-lines dynamics in high-T, materials. The problem is investigated with a variety
of methods including direct perturbation theory, quasiclassical approximation, the method of an
optimal fluctuation, and Monte Carlo simulations. We obtain a shape of the density of states near
the unrenormalized lower boundary of the spectrum, a particle mobility, and its diamagnetic orbital

susceptibility.

I. INTRODUCTION

A recent development of the theory of strongly cor-
related systems! which was, in turn, stimulated by the
discovery of the high-temperature superconductivity put
forward a remarkable problem of noninteracting spinless
particles in a spatially random static magnetic field. This
field is assumed to be coupled with an orbital current and
has no Zeeman interaction. This problem arises in the
context of the gauge-field description of the doped Mott
insulator, which was supposed to be a representative ex-
ample of a strongly correlated system.?™®

As defined, the gauge field describes fluctuations of
spin chirality which is the only low-energy spin excitation
mode in a spin disordered state. Within the framework of
the gauge theory it turns out that normal state properties
are governed by a current-current interaction which is
mediated by a transverse gauge field.*®

In the strong-coupling regime this interaction appears
to be dominating over a fictitious Coulomb-like one in
two dimensions (2D) as well as in three dimensions (3D).
Its importance was first stated in the case of an ordi-
nary electromagnetic interaction in a 3D metal in Ref. 7.
It was conjectured that eventually the current-current
interaction could lead to a breakdown of a Fermi-liquid
picture and a formation of an essentially non-Fermi-liquid
state.

Moreover, at finite temperatures the most singular con-
tributions in all orders of perturbation theory come from
elastic processes of scattering via the gauge field with zero
energy transfer. Restricting himself onto these contribu-
tions only one deals with an above-mentioned problem
of a particle in a random background magnetic field. It
was found that being calculated within this approxima-
tion a normal state resistivity,® ! magnetoresistance,!!
and the Hall conductance!? as functions of temperature,
external magnetic field, and doping are in a relatively
good agreement with the experimental results on quasi-
two-dimensional high-T,, materials.

Another case where the same problem appears to be
relevant is a problem of a vortex line fluid phase in a su-

4

perconductor. By virtue of the duality transformation?3
this phase was mapped onto a quantum ground state of
2D charged bosons which have no Bose condensate even
at zero temperature.'1®> Here an auxiliary gauge field is
coupled to a supercurrent.

Regardless of its physical motivation the random mag-
netic field problem is of great interest itself as a quite non-
trivial counterpart of the problem with a random scalar
potential. Although the latter was extensively investi-
gated for decades, the former essentially was not con-
sidered at all. Obviously the reasons for no interest in
this problem are the smallness of an ordinary electro-
magnetic current interaction as compared with a static
Coulomb and Zeeman interactions. It was a novel prob-
lem of high correlation induced by strong spin interaction
which attracted an interest to orbital particle dynamics
in a random magnetic field.

Recent attempts in this direction!® yielded a first-order
calculation of a density of states and diamagnetic sus-
ceptibility. As an alternative an exact numerical diago-
nalization on finite lattices was performed.'®17 Another
approach based on a real-space path-integral represen-
tation for the one-particle Green function was developed
by Wheatley for both cases of short-range and long-range
correlated random field.!8720

In the framework of the original Hubbard or some re-
lated models numerous attempts to study a dynamics of
a one hole in different spin backgrounds were undertaken
previously.?! The comparison of these available results
with those in the random magnetic field problem has
to be made to conclude about the very applicability of
the quasistatic field approximation. Various treatments
of the Hubbard model lead to the conclusion of a dras-
tic suppression of one-particle density of states near the
edges of the free particle spectrum.?2 In the simplest ap-
proximation there is a band narrowing while a more ad-
vanced analysis shows an existence of band tails extend-
ing up to the boundaries of the unperturbed spectrum.?
Until now the nature of states in tails of the spectrum re-
mains uncertain, in particular still there exist a tedious
question about a particle mobility in these states.
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II. PERTURBATION THEORY IN RANDOM
MAGNETIC FIELD

In analogy with the case of a static random poten-
tial one could try to apply a perturbation theory to get
insight into the problem. In the former case the per-
turbation approach was quite informative. On the basis
of this approach it was first conjectured by Abrahams et
al.?% that in the 2D case where the corrections to the con-
ductance are logarithmically divergent all states are lo-
calized and there is no mobility threshold. This investiga-
tion also showed an existence of diffusion and Cooperon
collective modes resulting from a particle number con-
servation and a time-reversal symmetry, respectively.?®
It was also observed that a diffusion mode is responsible
for logarithmically divergent contributions in perturba-
tive calculations. Subsequently it served as a starting
point for a formulation of effective descriptions by means
of various nonlinear o models.?® Starting with a formu-
lation of the random magnetic field problem we suppose
its simplest white-noise correlation properties

(B(0)B(r)) = I'é(r). (1)

In the case of a lattice system an equivalent relation
can be assumed for a correlation function of a flux ®p
through an elementary plaquette P:

(®p®p) =Ta?spp:, (2)

where a is a lattice constant. The Hamiltonian of a single
particle moving in a random field (1) has the form

1 . 2
H= 2m[V\II al|®, (3)

where a(r) is a 2D random vector potential corresponding
to the random magnetic field B(r) (modulo gauge trans-
formations). Because of the energy conservation one can
use a representation for Green functions in terms of a
time-independent fermion field ¥(r,7). To average over
different field configurations a replica method?? or a su-
persymmetrical approach?® can be applied. Alternatively
one could deal with a time-dependent fermion field in a
direct analogy with an old good “cross” technique in the
impurity scattering problem.2%

In our case a complete investigation of the whole per-
turbation theory is essentially more difficult because of
the presence of interaction terms linear and quadratic
in A. An account of both is necessary to preserve the
gauge invariance. One can readily see that the pertur-
bative expansions for the Green functions in the random
field coincide with those of a scalar 2D quantum electro-
dynamics

, 1.
L = |0,® - ia,®|” — M*| B + 5 (ewduar)®  (4)

in absence of any matter polarization. The latter condi-
tion means that one should not consider any matter field
loops and the vector field propagator has no renormaliza-
tion. To observe this correspondence one has to identify
a fixed energy of the particle ¢ with mass squared of
a charged 2D scalar field (M? = 2me). A straightfor-
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ward perturbative expansion of any gauge noninvariant
Green function exhibits logarithmic divergencies at large
momenta. Formally these divergencies originate from a
singular behavior of the vector field propagator which
preserves in all gauges. For instance, in the transverse
Coulomb gauge (8,a, = 0) the propagator has a form

(ap(k)ay(—k)) = k™20 (6,0 — kuku /K?).

As an example in the lowest order we find logarithmic
contributions into a real part of a self-energy (Fig. 1) and
as well as a three-vertex (Fig. 2)

T 2me+ p? A2
8mm 2me — p? max{2me, p?}

ReX(e,p) =

(5)

and

I'(w, P1,P2)

' 2me+p? A? ()
8mm (2me — p2?)? max{2me, p2} / ’

where A is a short wavelength cut-off. On a lattice it is
of order of an inverse lattice constant A ~ a~!. Because
of a renormalizability property of a 2D scalar electrody-
namics all logarithmic divergencies can be absorbed into
a renormalization of the coupling I', the mass M, and
wave function of the charged scalar field ®(r). A consis-
tent renormalization procedure could be formulated on
the basis of Ward identities which are similar to those of
an impurity scattering problem and originate from the
particle number conservation.2?:3° In particular, we ex-
pect an appearance of a counterpart of a diffusion pole
in a four-point correlation function.

However, on the contrary to the impurity scattering
problem, one-particle properties are strongly influenced
by the random magnetic field. Consequently one cannot
make any definite conclusion about transport properties
before an investigation of the energy spectrum. We plan
to perform a more detailed analysis of the renormaliza-
tion problems in a future publication.

On the other hand a calculation of gauge-invariant
quantities shows that these are free of divergencies. It
could be expected because physically these divergencies
are manifestations of an ambiguity in the choice of a vec-
tor potential a(r) at a given distribution of a magnetic
field B(r). A density of states provides one of those
examples. The first-order corrections to the density of
states p(g) were found by Ioffe and Kalmeyer!® in the
form 6p(g) oc e~1. Thus the naive result assumes an in-
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FIG. 1. Lowest-order self-energy corrections.



47 PARTICLE IN A RANDOM MAGNETIC FIELD ON A PLANE
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FIG. 2. Trajectories accounted in the quasiclassical ap-
proximation.

crease of the density of states near the band edge. It
seems to be natural, however, that at smaller energies
random field leads to an essential suppression of the den-
sity of states because a particle motion becomes more
and more difficult as its energy decreases.

The only energy parameter distinguishing between a
regime where one could believe the results of the pertur-
bation theory and an essentially nonperturbative regime
is I'/m. At the same time we suppose that a lower
bound of the spectrum does not change, because even
at ¢ << I'/m there always exist configurations of the
random field with arbitrary large regions where the field
is arbitrary small. Although these realizations of the ran-
dom field can have an extremely small probability these
result in an existence of a tail of the density of states
which extends up to € = 0. In Sec. IV we shall confirm
this picture by means of a direct calculation of the tail
of the density of states at ¢ << I'/m. Notice that in
the context of the original Hubbard model it is the same
problem of the tail of a density of states of holes in a
disordered spin background which was first discussed by
Brinkman and Rice.?3

In the remainder of this section we shall demonstrate
that an effective suppression of the density of states at
€ < % can be seen already in the framework of an im-
proved perturbation theory. First we shall repeat the
lowest-order calculation of the imaginary part of ¥ per-
il
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formed in Ref. 16. The first diagram on the Fig. 1 yields
ImX(e, p)

r d2p’ 2,12 : 29
= | GrE Tt ImG(e, p'),
m (2m)? (p2 4 p'? — 2pp’ cos §)2
(7
where 6 is a polar angle between the 2D momenta p
and p’. Substituting the free-particle Green function
2
Go(e,p) = [e — £ +i0]72 to (7) one obtains
' =z
Im¥® = — 8
mE(e,p) = ———, (8)

— mi 2
where = mln{é%, s
Using this lowest- order result and summing over all re-

ducible diagrams with (8) inserted, one finds the density
of states in the form

1
Im/(2ﬂ_)2€_P_+2__. 9)

m l—x

pe) =

Estimating the integral in two opposite limits one can
see that at € >> I'/m the density of states approaches a
free-particle value m from above in agreement with the
lowest-order calculation performed in Ref. 16. On the
contrary, at ¢ << I'/m the formula (9) shows that the
density of states vanishes as

o0~ T (4 (10)

em

Although such behavior is in agreement with our general
discussion, we remind the reader that strictly speaking
the approximation used can be justified only at € > I'/m.
As another result of the naive perturbation theory we
shall estimate a particle mobility. It can be performed
within an ordinary relaxation-time approximation as

u(e) =

e Ter (€)
m1l4+e2r2’

(11)

The transport time 7¢, can be found in the form analo-
gous to the case of a random potential?®:3°

r d?p d%p’ p2p'?sin? 6(1 — cos )
A / )
Zrpem? | @2 @nr OO P A P cos )2

Tie' (€) = (12)

[
where AGy(e,p) = Gr(e,p) —
Green functions G4 = G%
scattering rate

Ga(e,p). Using the bare

while at small € the expression (11) yields
in (12) we obtain a finite

uie) = L. (15)

T l(e) = (13) Notice that at € ~ I'/m the mobility has a maximum.

p (E) This energy dependence seems to be qualitatively correct

Then we obtain that in the limit € >> I'/m the mobility because it is a randor‘n field Which is o.nly responsible for

u(e) vanishes as e~2: a momentum relaxation at high energies (and so u «x I)
while at small energies p vanishes together with p.

ule) = el (14) Relations (14) and (15) can be compared with the re-

m2e?’ sults p < € and pu o< T~! obtained in the model with a
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spatially homogeneous random field which does not de-
pend on coordinates.?? At finite temperatures this model
corresponds to the case when a correlation length of the
random field exceeds a particle thermal length. Obvi-
ously such an assumption becomes invalid as T tends
to zero. An alternative method which we shall describe
in the next section is based on the approximation of the
original model by the Caldeira-Leggett one.!®1° The con-
sideration based on this model predicts a shift of the
lower bound of the spectrum g ~ %ln(Az/I‘), a di-
vergent density of states p o< 1/¢, and a finite renormal-
ization of the effective mass of a particle. At € > ¢
the results obtained in the framework of the Caldeira-
Leggett model qualitatively coincide with the results of
our perturbation theory but this model certainly fails to
describe the low-energy part of the spectrum.

Although our perturbative analysis does not enable us
to conclude that not all states in the spectrum are ex-
tended and there is a mobility threshold at ¢ ~ I'/m,
we suppose that the states near the lower bound of the
spectrum € = 0 are localized. These states look very
similar to those lying deeply in the localization regime
in the random potential problem. In Sec. IV we shall
undertake an attempt to study this part of the spec-
trum by means of the nonperturbative optimal fluctu-
ation method and present additional arguments in favor
of this conjecture. However the question about an exis-
tence of localized states certainly remains to be under-
stood better.

III. PATH INTEGRAL IN REAL SPACE
AND QUASICLASSICAL GREEN FUNCTION

An alternative formulation of the random magnetic
field problem can be achieved by using the path-integral
representation in a real space and imaginary time. Such
an approach was developed by Wheatley et al.1® 20 This
consideration starts from the following expression for the
partition sum for a particle moving in a random field:

Zz/Da(r)Dr(T)exp[_/oﬁdT_}_ (3%)2
+z‘/dra(r)

P

where 8 = 1/T and the integral is taken over periodic
particle’s trajectories with r(0) = r(3). After integrating
the random vector potential out one obtains an effective
action for the particle in the form

S-—/ﬁd-l— 25 2+F%dr%d'l (lr —1'|A)
= A 'er o r'In(jr —r'|A) .

(17)

This expression has no ambiguities because the integrals
are taken over closed trajectories (§ dr = 0) and the par-
tition sum is obviously gauge invariant. Because of that
the argument of the logarithm can be multiplied by any
number A.
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It was proposed by Wheatley and Hong!8 to treat the
second term in the action (17) self-consistently assuming
some sort of a powerlike diffusion law:

((x(r) = r(0)%) ~ 7.

As a result the effective action (17) becomes Gaussian:
1 2
S = / d'r~— (—)
+F/ dT/ dr 'ﬂd—rl T — [ (18)

and enables a relatively simple analysis.

In this section we shall discuss another approxima-
tion for the gauge-mvarlant Green function G(r,0,7) =
(¥(r,7)¥1(0,0) exp(i fo adr)), the integral in the expo-
nent being taken over a stralght line connecting points r
and 0. It is a sort of the eikonal approximation which is
applicable at high energies of a particle or, correspond-
ingly, at short times. In fact the condition to be satisfied
has a form

§ >> T2, (19)

Although the requirement (19) seems to be quite obvious
we shall comment on its origin below.

In the eikonal approximation we shall account only
those paths in the path integral (16) which can be pro-
jected onto a radius vector connecting the initial and the
end points without folding. In other words, if we choose
the vector r along the z axis then the selected trajec-
tories can be described as single-valued functions y(z)
(see Fig. 2). For all these paths the action (17) can be

rewritten in the form
dzx
Cly| ==
+ Tyl dT} ;

REONO)

where the interaction term manifests itself as an area
inside the contour formed by the trajectory y(z) and a
segment of the z axis. Of course, even in this approx-
imation, which intuitively seems to be correct for fast
particles, the problem does not become Gaussian. How-
ever, considering (20) as an effective action for the 2D
quantum mechanics, one obtains the following equation
for the effective Green function:

9 1 oo, Dl
( 8T+2mv +-2—%V

:z:) G'(z;y,y;7)

=6(x)8(y —y)é(r). (21)

Then after the Fourier transformation of (21) with re-
spect to z and 7 one arrives at the 1D equation

. k*+Tkly| 1 d2 , , ,
T A,
(22)

At arbitrary values of y and y’ the 1D Green function
can be easily found by means of the Wronskian method



47 PARTICLE IN A RANDOM MAGNETIC FIELD ON A PLANE

as a sum over bilinear products of the Airy functions.
Actually we need its value only for y = y’ = 0 which is
given by

(FII:)|1/3 (721/3(6) = Ji/3(€))

(23)

where ¢ = 22%/2 and z = (2ime — k2)(Tk)?/3. After some
simple algebra we obtain an approximate expression for
the 2D Fourier transform of the Green function G:

G(k,e) = G'(k;0,0;¢) =

G(k, €) = mi m!/? 1
,€) = min , .
(Tk)1/3(ie — X2)1/27 (4 — K

(24)

We observe that in the case of a random field particle’s
propagation ceases to be coherent and the Green func-
tion acquires cut singularities and branching points in
the complex € plane. This circumstance has to be under-
stood in view of the assumptions that in a finite density
system a random field leads to the breakdown of Fermi
or Bose coherence.

To get the Green function in the coordinate represen-
tation one has to perform an inverse Fourier transfor-
mation with respect to k and . The result depends
on the relation between R and 7. At R%/371/3 <<
I'=2/3 a free-particle result can be restored G(R,T) ~
7Y exp(—mR?/47), while at R%/371/3 >> 1~2/3;

1/3

m
G(R,7) = T1/3,4/3

®(5/6,1, —mR?/47), (25)

where ®(a, 3, z) is a degenerate hypergeometric function.
J
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Using its asymptotics at R?/mT >> 1 we obtain
1/6

m
G(R,7) ~ T1/3R1/3,7/6 exp(—

mR?/4T). (26)
The latter condition should be satisfied simultaneously
with (19). As a result we get a simple condition R >>
I'~/2 imposed onto R, which restricts an applicability
of the formula (26) by large R. Now we comment on
the origin of the condition (19). It means that an action
on the classical trajectory So ~ R?/mt is much larger
than the contribution caused by the random field 65 ~
R2/3'rl/31"2/3m“1/3.

We see that the random field indeed leads to the sup-
pression of a probability of particle’s propagation with
respect to the free case. The character of the propaga-
tion resembles a motion in some “viscous media” with a
momentum-dependent dephasing time 7 ~ W.Ss

IV. OPTIMAL FLUCTUATION METHOD AND
DENSITY OF STATES TAIL

As we mentioned above the low-energy region of
the spectrum (¢ << I'/m) certainly cannot be de-
scribed firmly within the lowest-order perturbation the-
ory. Moreover, one could expect that in analogy to the
random potential problem the density of states becomes
exponentially small near the bottom of the spectrum. It
implies that the integral over ¥(r) can be treated by
means of some sort of the saddle-point approximation
called conventionally as an “optimal fluctuation” method
(see, e.g., Refs. 31-33). To proceed with such a method
we write down the partition sum as an integral over ¥(r)
and a(r) fields:

Z = </D\1:(r)mﬁ(r) exp [-5% / V¥ —i(a+ A)T|%dr? — % /dzr(ewaua,,)z] >a(r) . (27)

We also added a probe homogeneous external magnetic
field B with vector potential A to be able to calcu-
late a diamagnetic susceptibility x(8). Notice that
here ¥(r) has a meaning of a single-particle wave func-
tion. It naturally occurs from the total field operator
in the one-particle sector characterized by a finite norm
J ¥t (r)¥(r)d?r < co. Due to this condition there are no
polarization corrections, so one can avoid using a replica
trick or a supersymmetry even at calculating off-diagonal
Green functions. However, our principal goal is a calcu-

lation of a diagonal Green function or a density of states
J

S{U(r)} = %/w\m?dr? +/d2rd2r’ (ﬁj(r) + %v

where we have introduced the “current” density j(r) =
L (g (r)t[VE(r)] — [V¥(r)]"¥(r)} and the operator

2im
1, AYIE\7|
(—fv+ m) ey, (29)

K(r,r')y = <r

I
p(e) related directly with the partition sum

Z(6,B) = / de exp(—pe) ple)

After averaging over a random field a(r) in (27) we obtain
an integral

2(8,B) = / DU (r) DV (r) exp|—S{L(r)}]

with the action

) K (B + S ") — $Toln()] + § (),

7
(28)

[
which is the inverse kernel of the quadratic form over a(r)
in the exponent in (27), Ko is the same operator with-
out ¥ coming in (28) from the normalization integral, Tr
stands for a trace operation.

We intend to find a normalizable configuration ¥(r)
which is a saddle point of the effective nonlinear theory
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(28). In what follows we shall restrict ourselves onto
real wave functions ¥(r) = ®(r/R)/R describing zero-
current states (j(r) = 0). One can check that states with
nonzero angular momentum are not favored because of an
essential cost of the action. Within the subspace of real
normalizable functions the size of the state R appears to
be the only relevant collective coordinate with respect to
which a minimization has to be done. We first perform
this procedure without an external field (B = 0), when
the second term is absent from the action (28).

Recalling about a momentum cut-off a~! on a lattice
we observe that the operator K(r,r’) is almost diagonal
in a coordinate space if the condition

I'Ba?
mR?

is satisfied. Then assuming that it does take place we
estimate the trace of this operator in the form

Tr(ln(K/Ko))
tp?
(e )

(2ﬂ_ /d2r <r
/_(_ﬁl_;T)l_) ”

Estimating the total action as a function of the collective
coordinate R we obtain the following expression:

c18 | caR? I'Ba?
mR2+ > m(mR? , (32)

where ¢; and ¢y are numerical constants of order of unity.
The extremal value of R is given by

1/4
Ropt = [clﬂ“2 In~1 (Pzﬂ“2>] . (33)

CcCom m

>>1 (30)

S(R) =

One can easily see that in agreement with our conjecture
the condition (30) is satisfied at I'28a?/m >> 1. From
(32) and (33) we obtain a low-temperature behavior of
the partition sum as given by the exponentially decaying
asymptotics

2(6) ~ exp{— B (%)]/} L6

where ¢ = cjca. The low-energy behavior of the density
of states can be found as an inverse Laplace transform

Y+io0 dﬂ
pe) = [ o exp(8)2(6) (35)
y—1i00

The integration contour in the complex g plane is drawn
to the right from all singularities of Z(3). Now we esti-
mate the integral (35) by using the asymptotics (34) and
obtain the following form of the tail of a density of states
at e << I'/m

p(e) ~m [m;25:2 In (%)] et . (36)
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Several remarks are in order. First, the physical mean-
ing of the result (36) can be clarified by a simple and
general estimations going back to Lifshitz consideration
of band tails due to repulsive impurities.31:33 The den-
sity of states p(e) is essentially the probability to find
a configuration of external field (random potential in
the impurities problem or random fluxes in our case) in
which the energy is €. The low energy (close to bot-
tom of the band) can be reached if the random field
is removed from some region of the system. This de-
pletion region must be large enough to avoid a kinetic
energy increase due to dimensional quantization. The
optimal size is obviously R ~ (em)~1/2. Then the ad-
missible flux ¢ per each of (R/a)? plaquettes can be es-
timated as ¢ ~ ema? (the equal fluxes of this scale cor-
respond to a uniform magnetic field B = ¢a~2 and pro-
duce the diamagnetic energy shift B/2m ~ ¢). On each
plaquette the probability to find a proper flux is ~ em/T,
and on all (R/a)? independent plaquettes it is corre-
spondingly ~ (em/T)®/ 2?  As a consequence we ob-
tai . . (R/a)? 1/ema?

ain the estimation p(g) x (em/T") ~ (em/T")
which essentially coincides with our former result (36).
One could see that the arguments for this estimation are
rather general. For example, one obtains qualitatively
similar results in the toy model of the random scalar po-
tential U(r) = ¢(r)? being the square of a variable ¢
distributed with a Gaussian probability exp[—¢?/T'a?].
In contrast to an ordinary Gaussian random potential
problem, this model obviously has a spectrum bounded
from below with the exponentially low density of states
o(e) o (»s/I‘)l/E"“’2 at e << I'/m.

Notice that the form of the tail demonstrates an ex-
plicit dependence on the short-wavelength cut-off A =
a~!. At A — oo the tail disappears. We. find this cir-
cumstance to be in agreement with our assumption that
the states responsible for the formation of the Lifshitz
tail are localized in space. It should be mentioned that
in a continuous theory a finite short-wavelength cut-off A
has to be introduced to render an averaged squared local
magnetic field (B2(r)) finite.

We also note that a complete optimization procedure
assumes a search of solutions of the nonlinear Schrodinger
equation resulting from a variation of the action of the
effective theory (25) over ¥(r). We performed this pro-
cedure to check if the assumption about the unique space
scale R of the trial function is really valid. We found the
low-energy solution (i.e., at I28a?m=! >> 1) to be close
to the Bessel function Jy[r/Ro(8)]/Ro(B) with an expo-
nential tail starting near its first zero. Such a solution
obviously corresponds to a localized state.

Another of our purpose is an estimation of the orbital
diamagnetic susceptibility. Here we have to keep in the
action (28) the second term containing the weak external
field B, and we obtain the quadratic contribution to the
extremal action

B2%a2 b

65(8,B) = —¢ ﬂ%T‘rlln(K)]- (37

Substituting expression (32) we have
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1/2
ss6.8) =25 [Lw(F25)] 7, 9

a?m m
what leads us to the susceptibility

o a
x(B) =— 3B°|,_, o8 InZ(8, B)

ca? P2ﬂa2 1/2

o [ﬁI‘2m In ( Z )] : (39)
The leading low-temperature behavior x(3) « T'/2 has
to be contrasted with those x(8) ~ Ta?/T resulting
from the model of a homogeneous random field?® and
x(B8) ~ 1/T'm from the Caldeira-Leggett model.!® We
find the vanishing behavior of x(83) to be natural because
for an external field B much smaller than the amplitude
of the random one there exists an optimal configuration
of random fluxes canceling this field out with the prob-
ability only slightly dependent B. That leads to an ab-
sence of a diamagnetic response at zero temperature. In

the next section we shall discuss the results of Monte
Carlo simulations which illustrate this statement.

V. NUMERICAL SIMULATION

We take a square lattice with the period a and site co-
ordinates designated as R = {z,y}. The applied world-
line Monte Carlo procedure will be only sketched here
with the proper description to be given elsewhere.3* We
consider the partition sum Z = Tr(exp[—GH]). The den-
sity matrix under the trace sign corresponds to an imag-
inary time evolution operator from 0 to inverse tempera-
ture 8. This interval is divided into a very large number
N of small time intervals A7 = 8/N to define the world
line of the particle R(7) on a square lattice. The parti-
tion sum is then given by a path summation

Z =Y W{R(r)} (40)

R(7)

over world lines with coinciding terminal points R(0) =
R(B). At each step A7 the particle is assumed to either
stay at the site or move to one of its closest neighbor.
In the statistic weight of the world line W{R(7)} each
move of the particle by one lattice site costs the fac-
tor Ar. These factors can be collected into the weight
Wo{R(7)}, corresponding to a free particle on a lattice.
There remains the phase factor exp[i¢p{R(7)}] due to the
magnetic flux taken by the world line.

In our problem we have the uniform magnetic field
B and the random magnetic field described by fluxes
through a plaquette ¢r distributed in a Gaussian way
w(¢r) o< exp[—¢% /4T) independently on each other. For
the closed world line the resulting phase factor, averaged
over samples of the random flux distribution, is expressed
as

(exp[i¢p{R(7)}]) = exp[iBS — T'S]

through its conventional S and ampere S area evaluated
for each world line as
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S{R(1)} = y(r)dx(r),

S{R(m)} = Y ly(r) — y(r)lda(r)de(r")é(r, 7'),
77!
where dz(7) = [z(T — A7) —z(7)] and 6(7,7") = 6([z(T +
AT) + x(7)] — [x(7 + A7) + z(7)].
Here we are interested in the energy E(3) and the
static magnetic susceptibility x(8) at zero magnetic field,
which are expressed as a Monte Carlo summation:

dZ

BB =-z45 = =T (n{R(7)}), (41)
d? dz
X(B) =~ 753 oo 248
= —T(n{R(7)}S*{R(7)})
+T (n{R(T)}(S*{R(T)}), (42)

where n{R(7)} denotes the number of hole moves on
the world line R(7) and (V) means the thermodynamical

(a)

energy

susceptibility

0

0 0.05 0.1 0.15 0.2 0.25
temperature

FIG. 3. Quantum Monte Carlo results for the (a) energy
and (b) susceptibility as a function of the temperature for
' = n?In(2)/4, n = 0,1,...,9 from (a) bottom to top and
(b) from top to bottom. Dashed lines show the results for
the infinite-U Hubbard model, whose high-temperature ex-
pansion corresponds to n = 8.
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average of the value V{R(7)}:

Sk VAR(T)}Wo{R(r)} exp|-TS{R(r)}]
> rery WolR(T)} exp[-TS{R(n)}]

(43)
The principal thing is to organize the Monte Carlo pro-
cess generating different world lines of the particle with
the probability proportional to the free-particle weight
Wo{R(7)}. Then this factor disappears from Eq. (43).
The results of our simulations are presented in Figs. 3(a)
and 3(b) for different amplitudes of fluctuation I'. One
sees that both energy and susceptibility go down at low
temperature. We are not able to check precisely the
square-root asymptotics for x(3), but we can state that
some tendency to this law starts in the same region of
T where the energy deviates from the close-to-linear law

and starts to drop to the real bottom of the spectrum.

(V)=

VI. CONCLUSION

In this paper we undertook an attempt to get insight
into an exciting problem of single-particle dynamics in
a 2D spatially random magnetic field. In contrast to
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the problem of a random scalar potential the random
magnetic field has a significant effect already onto one-
particle spectrum. It leads to a drastic suppression of
the density of states near an unshifted lower bound of
the spectrum, the density of states in the Lifshitz-like
tail being exponentially small. Even in the quasiclassi-
cal regime the particle’s propagation resembles a motion
in some “viscous media” and can be characterized by a
momentum-dependent dephasing time. As another con-
sequence of the spectrum transformation we obtain that
an orbital diamagnetic susceptibility vanishes at zero
temperature as T1/2. We also show that within a self-
consistent perturbative calculation the particle’s mobility
u(w) goes to zero at w — 0. On the basis of these ob-
servations one could suppose that the states below some
threshold ¢y ~ % are localized. However, the real nature
of the states in the band tail remains to be clarified. A
primary question is about a possible coexistence of ex-
tended and localized states in the spectrum.
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