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Pinning and depinning of two quantized vortices in superHuid He
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Three-dimensional dynamics of two interactive quantized vortices trapped by a pinning site is
studied. This paper discusses their pinning and depinning mechanisms, and the efI'ect of an applied
superBow field. The equations of motion and the method of numerical calculation follow Schwarz.
Assume that there is a vortex near a pinning site that has already captured another. Then we have
generally two cases; vorticity of the new vortex is antiparallel or parallel to that of the original one.
These two cases are shown to go through different processes. An antiparallel vortex is attracted into
the pinning site to reconnect with the original vortex. The resulting vortices leave there because of
their self-induced motion, none being left behind, On the other hand, a parallel vortex can reach the
pinning site only when the initial position and the applied field satisfy some condition, because the
interaction between two vortices tends to prevent the new vortex from approaching. Two parallel
vortices once trapped by the pinning site relax to a stationary configuration because of mutual
friction. The critical depinning superAow velocity for two parallel vortices is smaller than that for
only one. The obtained results are compared with some experimental works.

I. INTRODUCTION

Superfluid He (Helium II) behaves like an irrota-
tional ideal Huid, whose characteristic phenomena can
be explained well by the Landau two-fluid model. How-
ever, superflow becomes dissipative (superfluid turbu-
lence) above some critical velocity. The transition to the
dissipative How is generally thought to be closely con-
nected with the quantized vortex characterized by quan-
tization of its circulation and the very thin core radius
of the order of atomic size. Because of the latter prop-
erty, quantized vortices are easily pinned even by a local
protrusion of a few angstrorns, so that vortex pinning is
expected to occur always in usual superflow.

These pinning and depinning processes of vortices have
played an important role in various interesting phenom-
ena in superfluid He. Hegde and Glaberson performed
a series of experiments in order to study the eKect of sur-
face roughening on the onset of vortex motion in ther-
mal counterflow in a rotating channel. Rough surfaced
channels exhibit a larger observed critical velocity than
smooth ones, which suggests that static pinning is impor-
tant. Adams et al. investigated experimentally the spin-
up problem and observed the recovery of the solid-body
rotation of the liquid. ~ The transient phenomenon was
found to depend on surface roughening of the disk cell.
The problem of remnant vortices is also important. This
is related to a mystery of how vortices sustaining turbu-
lence are initially generated. Experiments by Awschalom
and Schwarz show that a superfluid at rest contains a
substantial number of residual pinned vortices generated
upon cooling through the A transition.

The issue of vortex. pinning may also be concerned with
the recent experiments on phase slippage. Investigat-
ing superflow oscillating through a small orifice, Avenel
and Varoquaux found that a discrete amount of energy

is suddenly dissipated whenever the How velocity exceeds
a critical value. 5 Amar et t2,l. studied phase slippage in
an apparatus of a simpler topology to that of Avenel
and Varoquaux, and pointed out that the phenomena
depend a great deal on the orifice geometry. 6 One of
the important problems is whether such a phenomenon
can be understood within a hydrodynamical context or
only by some new quantum-mechanical mechanism, such
as the quantum-mechanical nucleation of quantized vor-
tices. Davis et al." and Ihas et al. found the transition
from thermal to quantum nucleation of vortices below a
crossover temperature of 200 and 147 mK, respectively.

Schwarz has developed successfully a numerical anal-
ysis of three-dimensional dynamics of quantized vortices
and gave an excellent picture of the self-sustaining vortex
tangle state for superfluid turbulence. He also made a
numerical calculation of vortex pinning. The important
feature of the calculation was using no phenomenological
parameters. The calculated critical depinning superflow
and normal How velocity of a vortex trapped by a pin-
ning site agreed well with his analytical criterion, which
will be described in Sec. III. About the above phase
slippage, Schwarz showed numerically that microscopic
surface roughness can lead to a dissipative vortex motion
and vortex regeneration, and the dependence of the
critical velocity on temperature results from a thermal
Huctuation of pinned vortices. It was also shown that
under superHow the above remnant pinned vortices act
as a continuous source of vortices to sustain the vortex
tangle in turbulence. 3

The above works are concerned with pinning of one
vortex. No usual surfaces are specular for a vortex with
such a thin core. If vortices are dense on the surface, two
vortices may happen to be trapped together by a pinning
site. Then, since the interaction between two vortices
works, the dynamics can be much different from that of
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only one trapped on a pinning site. Previously we inves-
tigated numerically the interactive motion of two close
vortices, which was shown to depend a great deal on the
relative direction of their vorticities. About antiparal-
lel vortices approach each other making small cusps on
their nearest parts to reconnect eventually, while about
parallel ones do a rotational motion around each other
to dodge. These results can also be applicable to two
vortices captured by a pinning site.

Thus this paper describes the dynamics of two interac-
tive vortices trapped on a pinning site. The equations of
motion of vortices and the method of numerical calcula-
tion are briefly described in Sec. II. Section III refers to
depinning of one vortex trapped by a pinning site. Our
first problem is whether one vortex can be attracted by
a pinning site that has already captured another; it is
discussed in Sec. IV. Since the answer is positive, the
second problem is the interactive motion of two vortices
on a pinning site and the efFect of an applied flow field,
which is described in Sec. V. Section VI summarizes
the complicated story of two vortices on a pinning site.
Throughout this work we have two cases; two vortices
are parallel or antiparallel. These two cases are shown to
go through difFerent processes.

When boundaries are specular plane surfaces, v, ~ is just
the field by an image vortex made by reflecting the fila-
ment into the plane and reversing its direction of vortic-
ity. When there is a hemispherical pinning site on a flat
surface, another field v, ~ must be added to v, g so that
the above boundary condition is satisfied. The analytical
velocity potential arising from the line element ds~ is

r. bsing ~. b2 " P„(cos8)
dc'b, out = s~ (4)

when the element is outside the sphere, and

sing . si " P„(cos8)
4' r r n+1

entiation with respect to the arc length (. The second
term represents the nonlocal Beld obtained by carrying
out the integral of Eq. (I) along the rest of the filament
and any other filaments that may be present.

If boundaries are present, a velocity field v, & is added
to v, ~ . This boundary-induced field satisfies 7' v, i, = 0,
7' x v, i, = 0 subject to the boundary condition:

(v, i, +v, ) i=0.

II. MOTION OF A VORTEX AND
NUMERICAL CALCULATION

v, „(r,t) =
4m

(si —r) x dsi
)

sy —r

This section describes briefly the basic equations of
motion and the method of numerical calculation. A vor-
tex filament is defined by a thin core passing through the
fluid and has a definite direction which shows the vor-
ticity. Except for the core region, the superflow velocity
field has a classically well-defined meaning and can be de-
scribed by ideal fluid dynamics. The velocity produced at
a point r by a vortex filament is given by the Biot-Savart
expression:

when it is inside the sphere. Here, P„are the associ-
ated Legendre polynomials, b is the sphere radius, and
the used spherical coordinate system is shown in Fig. I.
Summing dc over the entire vortice yields the total po-
tential due to the pinning site. Then we have to change
the spherical coordinate system from one line element to
another. Some other applied field v, , if present, must
be added, which results in the total velocity so of the
vortex filament without dissipation:

/'2(t t )'~ &
so —— s' x s" ln

+ K (si —s) x dsi + v, b(s) + v, (s).
4~ ~

where e is the quantized value of circulation. The fila-
ment is represented by the parametric form s = s($, t),
sq refers to a point on the filament and the integration
is taken along the filament. Since the inertia of the core
is neglected, an element on the filament always moves
with the superflow velocity at the point in the absence
of dissipation. Attempting to calculate the velocity at a
point r = s on the Blament makes the integral diverge as
si ~ s. To avoid it, we follow Schwarz's method;s the
propagation velocity s of the vortex filament at point s
is divided into two components:

4vr ( e'~4ap ) 4~
(Si —S) X dSi

3

The first term indicates the local-induced field arising
from a curved line element acting on itself, where l+ and
l are the lengths of the two adjacent line elements that
hold the point s between, and the prime denotes difFer- FIG. 1. Coordinate system used for calculating v, ,„.
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Mutual friction that is characteristic in He II must be
taken into account. Then the velocity of a point s on a
vortex filament is given by

s = so + a.s' x (v„—so) —a.'s' x [s' x (v„—so)], (7)

where a and o, ' are the temperature-dependent friction
coefficients, and so is calculated from Eq. (6). We take
o. = O. l and n' = 0 for simplicity throughout this work.

All calculations in this work have been done for a su-
perfluid confined between two smooth plates spaced a
distance D apart, one of which contains a pinning site.
We used the particular values D = 10 s cm and b = 10
cm. Although the dependence of obtained results on the
values of D and 6 is important, the main purpose of this
paper is to reveal the essence of motion before everything.

This work is confined to a pure superflow. An inves-
tigation of the effect of normal fIow, whose importance
to vortex dynamics is pointed out, ' will be reported
elsewhere.

We follow Schwarz in the methods of numerical
calculations. A vortex filament is represented by a single
string of points. The vortice configuration of the moment
determines the velocity field in the fIuid, thus moving the
points on vortex filaments by Eqs. (6) and (7). Both lo-
cal and nonlocal terms are represented by means of line
elements connecting two adjacent points. As discussed in
Ref. 9, the explicit forward integration of the local term
can. be numerically unstable. To prevent this difficulty,
a modified hopscotch algorithm is adopted. As the vor-
tex configuration develops and, particularly, two vortices
approach each other, the length of a line element can in-
crease or decrease. Then it is necessary to add or remove
points properly so that the local resolution does not lose.

III. CRITICAL DEPINNING VELOCITY
OF ONE VORTEX

Previous to the depinning problem of two vortices, this
section describes that of one vorte~; this is neccesary for
the following sections. The motion of a vortex attracted
into a pinning site was studied in detail by Schwarz. The
characteristic case he studies is a straight vortex extend-
ing between two smooth planes, one of which contains
the pinning site. The boundary field tries to move the
line around the sphere. The closer a line element is to the
sphere, the stronger the field acting on it becomes, which
distorts the vortex. The resulting self-induced field and
mutual friction cause the vortex to spiral into the sphere.
When the vortex gets close enough, a cusp is pulled out.
Then Schwarz follows the plausible, but a little artifi-
cial, procedure; as the vorte~ approaches the pinning
site infinitely closely, there occurs a kind of reconnection
that pulls up the closest end point of the vortex onto the
sphere surface. Afterwards the vortex climbs up on the
sphere spiraling in, thus standing up eventually on the
top. We have confirmed numerically this process except
for the reconnection.

An applied superfIow field modifies the above motion.
Since the applied field intends to wash away the vortex,
it can be captured by the pinning site only when it passes
by the site within a critical distance that depends on the

sphere size and the amplitude of the field. Furthermore,
the trapped vortex is also infIuenced by the applied field.
The eventual equilibrium configuration of the vortex is
determined by the balance between the applied field and
the self-induced one resulting from the distortion; the
vortex stands up against the applied field by bending
like a bow. The curvature of the vortex increases with
the applied field. Finally the vortex cannot get such a
stationary configuration for large applied fields, thus be-
coming depinned from the site. Considering this mecha-
nism, Glaberson and Donnelly gave a critical depinning
velocity

4D
s P1Il D i/42' e ao

where D is a characteristic dimension across the
channel. is The dependence of D on the critical velocity
is consistent with experimental results.

The representation includes no parameters of the pin-
ning site. Schwarz analyzed the equilibrium shape of the
vortex in more detail and obtained the critical velocity
with the radius 6 of the sphere;

6
vg, pj~ 2' D ao

He also made the numerical calculation of one-vortex
depinning, whose results agreed quantitatively with the
equation.

We investigated numerically this problem too. An ini-
tial configuration of a vortex captured by a pinning site is
allowed to evolve under the influence of an applied super-
How field. Following the mot;ion to the stationary state
judges whether the vortex is depinned from the sphere or
stays there to find the critical depinning velocity. How-
ever, the obtained critical velocity v„ i differs a little from
one initial configuration to another.

A few typical examples are shown in Fig. 2. A vortex,
whose self-induced field is initially parallel to the applied
one, is blown down once [Fig. 2(a)]. It recovers, how-

ever, before depinning, thus getting finally to the station-
ary configuration where the applied field blows against
the self-induced one. On the other hand, when the self-
induced field is initially almost antiparallel to the applied
one, the vortex can easily reach the stationary configu-
ration only by a small distortion [Fig. 2(b)]. The former
is the relaxation from large deviation, while the latter is
that from small one. As a result, the value of v„i of the
latter is larger than that of the former. This is the rea, son
why the values of critical velocity cover some range. The
obtained values shown in Fig. 3 are entirely smaller than
those of Schwarz; the reason is not clear.

IV. MOTION OF A VORTEX NEAR
THE PINNING SITE WITH

ANOTHER VORTEX

This section discusses whether the pinning site that has
already captured a vortex (vortex A) can trap another
vortex (vortex B). Vortex B is subject not only to the
boundary-induced field that; tends to rotate it around
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B. Motion of a parallel pair

The motion of a parallel pair is more complicated.
Then, for vortex B, the nonlocal Beld from A and the
boundary-induced one tend to cancel each other. Their
values become comparable in amplitude when the dis-

FIG. 5. Motion of the vortex left after the reconnection
of two antiparallel vortices.

(b)

tance d between vortex B and the pinning site center is
equal to a critical distance d, determined by the sphere
radius b. If d is smaller than d„vortex B is rotated
around the sphere by the boundary-induced field supe-
rior to the nonlocal one, thus being captured [Fig. 7(a)].
The numerical calculation finds that d, is about 1.2b.
The values of d larger than d, cause the nonlocal Beld to
dominate the boundary-induced one. The nonlocal in-
teraction generally tends to rotate two parallel vortices
about a point halfway between them. If vortex B hap-
pens to be close to the pinning site within d, during the
rotation, it is attracted by the boundary-induced field
[Fig. 7(b)]. As long as it does not approach the sphere
within d„ it cannot be captured, because the boundary-
induced field does not work [Fig. 7(c)]. In contrast to
the attraction by a pinning site with no vortices, the mu-

tual friction makes vortex B spiral out from the sphere.
During the rotation of B, vortex A is trapped on the
site. This is because the direction of the nonlocal ve-

locity made by B is changing continuously even if the
amplitude exceeds that of the critical depinning velocity
discussed in the last section.

An applied superflow Beld has a great effect on the
behavior of the parallel pair. Figure 7(d) shows that the
applied field moves vortex B to the pinning site getting
over the nonlocal interaction. Whether vortex B can
reach the sphere depends on the applied field and its
initial position relative to the sphere. We followed the
motion of vortex B that was initially parallel to the z
axis. The initial end point on the x-y plane is given by the
coordinates (—2b, y, ). Figure 8 shows the trajectory of
the end point on the plane for various initial values of y,
under an applied field of v, = 0.5 cm/sec. Only vortices
within the range from y, = 0.5b to y, = 3b can arrive at
the sphere. The range increases with the amplitude of
v, . The case of Fig. 8 has a critical velocity v, below
which any vortex B never reaches the site; the value of
v, is found to be about 0.3 cm/sec.

V. MOTION OF TWO VORTICES
TRAPPED ON A PINNING SITE

(c)

FIG. 4. Motion of an antiparallel pair without @n applied
field. (c) represents the top view of (b).

As discussed in the last section, a vortex can be at-
tracted to the pinning site with another under some con-
ditions. This section investigates their motion after both
were trapped on the sphere.
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FIG. 6. Motion of an antiparallel pair with an applied field. (c) represents the top view of (b).

A. Motion of an antiparallel pair

Figure 9 shows the typical motion. Both the nonlo-
cal field from the partner and the boundary-induced one
have the component directed to the 2; axis, which moves
the vortices. Since the boundary-induced field also tends
to rotate them toward the direction opposite to each
other, their end points get close on the sphere. Their
collision leads to a reconnection of two vortices. The re-
sulting vortex leaves the pinning site because of its self-
induced field. It might be due to the initial configuration
that these two vortices reconnect just on the sphere. An-
other kind of reconnection is shown in Fig. 10; this can
be regarded as a rather general case. Two vortices recon-

neet at a point not on the sphere, which produces two
new vortices. The upper one leaves the sphere similarly.

The motion of the lower one is shown in Fig. 11. Both
end points on the site become close to each other because
of the self-induced and boundary-induced fields, which is
similar to the situation of Fig. 9. There is, however, a
great difference between the present and previous cases.
During the approach of both end points, the plane in-
cluding the vorte~ is inclining. This reminds us of the
motion of a vortex ring moving parallel to a specular
surface; the image field acts most strongly on the part
nearest the surface, retarding it. In our present case, the
image Beld prevents the end points from moving, thus
causing that incline of the vortex. The vortex which has
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FIG. 7. Motion of a parallel pair: (a), (b), and (c) without an applied field, while (d) with a field. In (c) the dotted and
solid lines refer to vortices A and B, respectively.

become almost parallel to the surface begins to proceed
toward the surface, expanding under the efFect of the im-
age field. Investigating the last destiny of the vortex is
beyond hydrodynamics using the Biot-Savart law. It is
sure, however, that the vortex gets depinned from the
pinning site.

So far, we have seen that two antiparallel vortices
pinned on a pinning site make some reconnection or other
to get depinned from the site. Advancing very rapidly,
the depinning process is inBuenced little by an applied
superBow field so far as it is not so large as to blow them
oK.

Vs, a,

(—26, 0.56) ( —26, 36)

B. Motion of a parallel pair

Two parallel vortices pinned as described in Sec. IV
begin to rotate around the pinning site. Figure 12 shows
the motion starting from a comparatively symmetrical
initial configuration. The rotation direction shows that it
results from neither the local nor boundary-induced field,

FIG. 8. Trajectory on the x-y plane of vortex B under an
applied field v~, ~ = 0.5 cm/sec. The initial end point is given

by the coordinates (—2b, y;). Only vortices starting from the
range 0 5b ( y, ( 3b can reach the pinning site.
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tively, with the z axis. As soon as the motion starts,
they arrange themselves so that they are opposite eac
other, in other words, included in an identical plane. As
two vortices rotate around the z axis, their angles made
with it oscillate out of phase. Eventually mutual friction
relaxes the motion to the symmetrical stationary config-
uration.

C. Critical repinning velocity of t~o parallel vortices

The stationary configuration of two parallel vortices
described in the last subsection can be influenced more
or less by an applied superHow field. A small field would

ony mol modify the equilibrium, while a large enough one
could distort it so much as to drag the vortices ou o
the pinning site. This subsection describes the eKect of
an applied field on the motion of two parallel vortices
trapped on the sphere.

The stationary configuration without a field is adopted
as the initial condition. Figure 14 shows how a relatively
small field changes it, where the field is applied perpen-
dicular to the plane including initially two vortices. The
new equilibrium state breaks the symmetry of two vor-
tices. The curvature of vortex A becomes smaller than
the original, while that of vortex B increases oppositely.
This is because the nonlocal field from the partner, which
the local-induced one should cancel, is antiparallel to the

z/

innin site (c) is the top view of (b). (a) is the initial configurations ofFIG, 13. Another motion of a parallel pair on a pinning site; ~c~ is e op v'

two vortices.
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(cI

FIG. 17. Summary of motion of a parallel pair without an
applied field. See the text.

motion is not calculated, may follow a similar process. A
pinning site is believed to have the capacity for capturing
parallel vortices; the capacity probably depends on the
sphere and channel size. Assuming the vortex to be in-
finitely thin, the present formulation cannot investigate
the capacity.

The dynamics of two parallel vortices is influenced a
great deal by an applied superflow field v, . The previ-
ous sections had three kinds of critical velocity. A strong
applied flow above v„ i, which. is the critical depinning
velocity of only one vortex trapped on the pinning site,
would blow off vortex A. Only the applied flow above
v, can make vortex B reach the pinning site that has
already captured A. furthermore, even once vortex B is
trapped, both vortices cannot stay on the site when v,
is larger than the critical depinning velocity v„2 of the
two vortices described in the preceding section. There-
fore, only when v, ( v, & v„&,v„2, can the pinning
site keep both vortices. Our numerical calculations show,
however, that the values of v„q, n„2, and e, are, respec-
tively, about 0.4, 0.2, and 0.3 cm/sec. Thus a pinning
site can hardly keep two parallel vortices together under
an applied superflow field. However, since these critical
velocities depend on the geometry, we may have the case

that satisBes the above condition of v,
These results are compared with experiments described

in Sec. I. To understand the difference of the observed
critical velocity between rough and smooth surfaced ro-
tating channels, Hegde and Glaberson solved the non-
linear equations stating that the net force on a station-
ary vortex, Magnus force plus friction force, must be
zerp, when the nonlocal Beld was neglected. The cal-
culated values of critical heat flux agreed well with their
data. Our present results considering the nonlocal field
are qualitatively consistent with the experimental results.
The rotating channel contains parallel vortices whose
density depends on the rotation speed. The smooth sur-
face means less protrusions on it. Thus it happens more
often for two vortices to be captured by the same pin-
ning site. It follows that the critical depinning velocity
is expected to be smaller than that in a rough surface.
The spin-up problem studied by Adamss can be under-
stood similarly. They observed responses of smooth and
rough surfaced cells to an impulsive torque. The former
relaxed faster than the latter, which is compatible with
the smaller depinning velocity of the former. Phase slip-

page can be an important application of our present cal-
culation. The phenomena is believed to depend on the
details of aperture geometry, flow direction, and tem-
perature. Whether a vortex is nucleated thermally or

quantum mechanically, it moves according to the above
scenario. Thus, the comparison with experimental data
needs a further calculation for various values of parame-
ters, such as D, b, the channel length, and temperature.
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