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Unwinding of a single quantized vortex from a wire

K. W. Schwarz
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(Received 13 July 1992)

The dynamical behavior of a quantized vortex partially attached to a wire is studied theoretically,
with the aim of interpreting recent experiments on quantized circulation in superAuid He-B. The
geometry considered consists of a thin wire running parallel to the axis of a circular cylinder enclosing
the wire. The circulation is assumed to run part way up the wire, and then to enter the Quid as a free
vortex which eventually terminates on the outer wall. It is found that such a vortex achieves a state of
steady precession around the wire, accompanied by a steady unwinding motion down the wire due to
frictional effects. For an off-center wire, both the precession rate and the unwinding rate develop oscilla-
tory components. Various particulars, such as the effects of friction, of moving the wire off center, and
of pinning, are investigated. Excellent agreement is obtained between experiment, analytical theory, and
numerical calculations.

I. INTRODUCTION

One of the basic assumptions of superAuid dynamics is
that quantized vortex lines behave like idealized classical
vortex filaments subject to a frictional force acting on the
core. This semiclassical picture was first combined with
the two-fluid model of Landau to describe vortex arrays
in rotating superfluid He, ' and has ever since provided
the basic phenomenology assumed to underlie the macro-
scopic Aow properties of the superAuid. Although there
does not appear to be any serious reason to question this
assumption, it is very difficult to observe individual quan-
tized vortices. Thus, the only direct, quantitative demon-
stration of the validity of the semiclassical approximation
has come from measurements made on the propagation
of quantized vortex rings. A recent remarkable experi-
ment on the behavior of a single quantum of circulation
trapped on a wire now provides a stringent test of this
whole approach.

Using a method pioneered by Vinen, and later also
utilized by Karn, Starks, and Zimmermann, the circula-
tion properties of superfluid He are studied by setting
the fluid into rotation about a fine stretched wire. A
Gnite circulation of the Auid about the wire causes a lift
force to be exerted on the wire when it is set into vibra-
tion, leading the plane of vibration of the wire to precess.
As was pointed out by Vinen, it is possible for the circula-
tion to be only partially trapped on the wire, peeling off
into the fluid as a free vortex at some point along its
length. The precession rate of the wire, and hence the
apparent circulation, will be appropriately reduced when
this occurs. In measurements on superfluid He, it was
found that the circulation is indeed quantized in the ex-
pected units of h/m4, but signals indicating a partially
attached quantized vortex were often observed. Such
Aow states tended to persist indefinitely, indicating that
the free vortex was permanently hung up on some local
protrusion on the wire or on the walls of the rotating con-
tainer.

The vibrating-wire technique has now been extended to
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FICx. 1. Measured effective circulation as a function of time
[after Zieve et al. (Ref. 3)].

investigate the circulation properties of He-B. The
dynamical features associated with quantized vortices are
expected to be much the same as for superfluid He, ex-
cept that the quantum of circulation ~3 =h /2m 3
=0.665 X 10 is somewhat smaller, and the vortex core

0
size of about 1000 A is 3 orders of magnitude larger than
that found in "He. Davis et al. have used this technique
to measure the quantum of circulation in He-B. More
recently, Zieve et al. have found that the measured cir-
culation tends &o decay away, typically over a period of
many hours. They observe this process to be accom-
panied by a striking periodic modulation of the preces-
sion rate of the wire, i.e., of the effective amount of circu-
lation remaining on the wire. Figure 1 reproduces the
relevant data from their paper.

The authors of Ref. 3 interpret their observations as
reAecting the dynamical properties of a partially attached
quantized vortex, configured as shown schematically in
Fig. 2. On the surmise that such a vortex undergoes a
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FIG. 2. Schematic geometry of the partially attached vortex.
The circulation travels partway up the inner wire (radius r&)
and then enters the Quid as a free vortex, terminating on the
containing cylinder (radius r2). There is no circulation about
the wire above A. The dashed lines indicate how the vortex is
continued into the boundary in order to evaluate the Biot-
Savart integral.

rigid precession about the central wire, they find excellent
agreement with experiment. It is the purpose of our pa-
per to show that it is indeed possible to explain the ob-
served behavior in terms of the quasiclassical dynamics of
a partially attached vortex, and to extend the simple pic-
ture of a precessing vortex in several ways.

Kso= s' X s"ln
4~

2(l+I )'~2 ~ J, (s, —s) Xds,+e' ao 4~ ~s, —s~

must therefore be added to satisfy the requirement that
there be no Quid Aow into any solid surface. The sum
v +v& then generates the motion of the vortex.

The onerous part of doing a calculation like this is to
find v&. In the present situation, however, v& at the core
can be made small by an intelligent choice of how the
vortex is continued into the boundaries. In Fig. 2, the
portion from —~ to 3 generates a contribution to v
which has no normal component into the boundaries and
hence generates no boundary correction. The boundary
field generated by the part running from 3 to + ~ is
large in some regions, but happens to be small where the
vortex core is located. It is, in fact, easily seen from sym-
metry that, if the vortex runs out as a radial straight line,
the value of vb at the core is identically zero. Since the
steady-state configuration achieved by the partially at-
tached vortex will turn out to deviate only slightly from
this, vb can be entirely neglected to a satisfactory order
of accuracy.

Given that vb is neglected, the velocity acting on the
vortex core at a given point P is obtained simply by in-
tegrating the Biot-Savart law over the vortex shown in
Fig. 2. Because of the well-known logarithmic diver-
gence in the velocity that a curved vortex-filament gen-
erates on itself, the integration must be broken up into a
locally self-induced motion, arising from the part of the
vortex near P, and a nonlocal correction term arising
from the Biot-Savart integral over those parts of the vor-
tex that are farther away:

II. BASIC CALCULATION

In the absence of normal Auid friction, the dynamics of
a quantized vortex is determined by the Kelvin circula-
tion theorem, which states that the vortex core must be
convected along with whatever translational velocity field
it sees. This velocity field, in turn, arises from the pres-
ence of the vortex itself, so that the motion of the vortex
filament at any instant is determined solely by its own
configuration. The task of finding the motion of the vor-
tex shown in Fig. 2 thus boils down to finding the veloci-
ty field that it generates at its own core. This problem is
very similar in spirit to the problem of a vortex terminat-
ing on a hemispherical bump, the complete solution of
which has been presented elsewhere. The reader is re-
ferred to Ref. 7 for a more detailed discussion of some of
the following points.

The velocity field generated by a vortex filament in an
infinite medium can be calculated using the Biot-Savart
law provided the filament is continuous. To apply the
Biot-Savart law to the configuration shown in Fig. 2
therefore requires one to continue the filament into the
boundary in some fashion, the integration being carried
out over the entire filament so defined. The field v„cal-
culated in this way does not account for the presence of
the wire or the outer container. An irrotational field v&

satisfying the condition 8' (v& —v )=0 on these surfaces

Here s(g) describes the vortex configuration, ~ is the
quantum of circulation, ao is the vortex core radius, the
primes denote the derivative with respect to the arc
length, and I+ and I are the lengths of the elements
used in evaluating the local configuration. The prime on
the integral indicates that it is taken so as to exclude I+
and t' . In the present geometry, the only important
nonlocal contribution to the velocity acting at point P is
the circulating field contributed by that part of the vortex
(
—ca to A) which is still on the wire, a contribution

which can readily be evaluated analytically:

v„(5)= 1+cosg
sing

where g is the angle between the line from —~ to A and
the line from A to P, 5 is the distance from A to P, and y
is the unit vector into the figure in accord with the right-
hand rule. Since g never differs much from m/2, one can
further approximate v by (v/4mr)y, this being just half.
the field of a vortex running from —~ to + ~. The oth-
er nonlocal terms are small and can be neglected. The ac-
curacy of this approximation is optimized by setting the
logarithm in Eq. (1) to ln(crz/ao), where c is of order 1.
Instead of an apparently very complicated problem in
vortex dynamics, we now have the simple approximate
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The equations governing the time evolution of the vortex
are then

Bg . Bg
Bt " Br r
Bz . Bz=.+sr sz
Bt ' Br

(7a)

(7b)

and the condition of uniform helical motion reduces to
By/Bt = II, Bz/Bt =Z, where 0 and Z are constants to be
determined. The components of s can be evaluated from
Eq. (6) by writing s=(r cosy, r siny, z) and going through
the algebra, where it must be remembered that since the
independent variable r is not the arc length, the more
general forms (Bs/Br ) /~ Bs/Br

~
and (8 s/Br )/~ Bs/Br

~

must be used for s' and s", respectively. The rather com-
plicated result is

s„=pk [ry'z" —(ry" +2y')z']

+aA, '[( V„—V, )ry' A„rz'cosy—

—pA, 'ry' +(x/4m. r )z'],

s, = W'(z"—+ry'z')+ (~/4~r )

+a& '[ —
( V„—V, )+Q„rz'sinyz'

(8a)

FIG. 4. Top view of vortex precessing under various cir-
cumstances: (a) transient oscillations of a vortex coming into
steady-state rotation (standard configuration, a =0.03 ); (b)
motion with a highly eccentric wire placement, corresponding
to the middle curve of Fig. 10; (c) motion with pinning on the
outer wall (critical angle 10', path length 4X10 cm); (d)
motion with pinning on the inner wire (critical angle 20', path
length 4X 10 cm).

scaled by simultaneously multiplying all spatial dimen-
sions by A, , all velocities by A, ', and all times by A, . Be-
cause P varies logarithmically with A, , there is, in fact, no
such scaling. The variation is very slow, however, so that
the above scaling property exists in an approximate sense.
With a core radius of 1000 A, changing scales by a factor
of 10 results in a deviation of order 10% from perfect
scaling.

+PA, (2y'+ ry" )],
s, =PA(2y'+, ry" +r y' )+ V,

+aA, '[Q„r(cosy —ry'siny)

+pA, z"—(x /4mr) ], '

(gb)

(8c)

pz' =

r3 2

Pr y'=ya(Q —II„) +(yZ —V, +pa V„) +c~,

where A, =(1+r y' +z' )'~, and the primes now denote
the derivative with respect to r.

Retention of only terms to first order in By/Br and
Bz/Br, i.e., in the deviation of the vortex from a straight
radial line, in Eqs. (7a) and (7b) results in two linear equa-
tions which can easily be integrated to yield

lnr —y(A+a 0„) +ay(Z —V„)r +c, , (9a)

III. ANALYTICAL APPROXIMATIONS

We describe the detached part of the vortex by the
curve y=y(r, t), z =z(r, t), and associate the instantane-
ous velocity s of Eq. (6) with each point on this curve.

I

(9b)

where y=(1+a ) '. With the boundary conditions
s.y=s' z=0 at r =r„r2 one then obtains the again
rather complicated results

2[s'(1+a )/2']ln(r2/r, ) —a Q„[(rz —r, ) ——,(r2 r& )/(rz+r, )]—2a(1+—a )(V —V )(rz —
r&n s

[(r2 r, )+(4a /3)—(rz r& )/(r2+—r& )]

20!Z = — (0—Q„)(r2 r, )l(r2 r—, )+ V, —a—( V„—V, ) .

A comparison of these predictions with representative
numerical calculations is given in Figs. 5 and 6, which
show differences of a few tenths of 1%. This is consistent
with the residual numerical errors of our calculations.
Equations (9a) and (9b) are trivially integrated to yield

I

the vortex configuration. Figures 7 and 8 show the re-
sulting dependence of the filament shape on the friction
constant. Again, the numerically calculated
configurations are in essentially perfect agreement. The
consistency of analytical and computational results not
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of the vortex trapped on the wire. Their discussion is
presented in a language peculiar to the low-temperature
literature, and it is at least of cross-cultural interest to
translate it into more conventional Quid dynamical terms.

For simplicity, we assume that the normal Quid veloci-
ty is negligible. The quantity describing the Qow of
forces is then the momentum flux tensor

~ik I ~ik +ps vsi vsk (14)

The instantaneous velocities are determined by solving
the vortex motion problem as outlined previously. The
pressure p needed to complete the evaluation of ~;k can
then be obtained from Bernoulli's equation

fi =p, a X(s—u), (16)

i.e., simply the usual lift force. It is the content of the
computational approach outlined in Sec. II that, since the
vortex core has negligible inertia, it cannot absorb or sup-
ply any momentum. Hence, in the absence of external
forces such as f acting on the vortex core, fI must be
zero and the vortex must everywhere translate along with
the local Quid velocity u.

One can artificially separate Eq. (16) into a force that
would be felt were the vortex translating through a Quid
that is somehow adjusted to have no translational veloci-
ty u at the core (the s contribution or the "net Magnus
force" of Zieve et al. ), and the force that would be ex-
erted by the Quid on the vortex were it held stationary
(the —u contribution). For the uniformly precessing vor-
tex it is easy to show that the total s contribution in the
vertical direction is p, vII(rz —

r& )/2, independently of
the shape of the filament. The u contribution, on the oth-
er hand, can be evaluated by the following trick. If the
vortex were to be held stationary, say by a wire passing
along the core, the total vertical force that the Quid
would exert on the bottom of the bucket (ignoring gravi-
ty) plus the force it would exert on the vortex would have
to equal zero (the total momentum of the fiuid is not
changing, and the top of the bucket is assumed to be far
enough away so that v is negligible there). According to
Eq. (15), the force exerted on the bottom of the bucket in
this time-independent situation is just

(p, /2) f v, dS =(p, v /4m)ln(rz/r, ) . (17)

The negative of this, then, must be the force that would
be felt by the mythical stationary vortex, independently
of its configuration. When this is balanced against the s

+ + u'=f—(r)
Bt p, 2

where N is the scalar potential v, =V+. The velocity
field in the neighborhood of the vortex core can always be
written to leading order as the basic circulating field
(s/2~a)P plus a translational velocity u arising from
various contributions such as the vortex curvature, the
nonlocal vortex contributions, and boundary corrections.
It is then easy to show from Eqs. (14) and (15) that if the
vortex translates with a velocity s, the momentum Qux
into the vortex core per unit length of line is just

term, Eq. (12) is recovered. The derivation shows that
this is an exact result in the limit a~O.

The argument just given can be adapted to the case of
an off-center wire where, as we shall see in the next sec-
tion, the vortex does not precess as a rigid object. ' We
note in Eq. (16) that p, IcXsdlb. t is just p, s times the ele-
ment of area swept out be a vortex element of length dl in
term At. Since a vortex precessing around to its initial
configuration sweeps out an area vr(rz —

r& ), no matter
how it gets there, the time integral of the s contribution
to the total force acting on the vortex must be just
p, xm(rz —

r& ). The time integral of the u term is just
2~/( 0 ) times the pressure integral over the bottom, ex-
cept that now the velocity field appropriate to an off-
center inner cylinder must be used in the integration.
The field in this case is just the sum of +ac and —K axial
line vortices placed at positions

+ Q(r r+b, )
—4b, r—1

2 1 2 (18)

as the generalization of Eq. (12) for the a~0 limit.
As regards the actual situation, it is important to un-

derstand that it is not time independent, and that in the
limit a~O neither the processing vortex nor the bottom
surface of the bucket feel any net force. The vortex is
precessing precisely because it must maintain fI equal to
zero along its entire length. As it precesses, it generates a
BN/Bt term which exactly cancels out the p, v, /2 contri-
bution to the pressure when it is integrated over the bot-
tom of the bucket, or over any other surface spanning the
bucket below the free vortex.

While Eq. (12) has been seen to follow from a force-
balance argument, Eq. (13) can be derived from energy
conservation by balancing the work done by the precess-
ing vortex because of normal Quid friction against the en-
ergy per unit length of the trapped vortex. Unlike the ex-
pression for 0, this does depend on the configuration of
the vortex, even in the limit a~o, so that Eq. (13) is only
a first approximation.

V. C)FF-CENTER WIRE

Because it is rotationally symmetric, the motion shown
in Fig. 3(a) will not, in fact, produce an oscillating signal.
The oscillations observed by Zieve et aI. arise from the
fact that their wire was placed substantially off center. If
it is assumed that the vortex remains more or less straight
as it rotates around the off-center wire, then it will be-
come longer and shorter as it moves around. Conserva-
tion of energy would then require the point of attachment
to move up and down the wire, giving rise to an oscillat-
ing component in the measured effective circulation.

where 6 is the distance by which the wire axis is dis-
placed from the center. Integration over the resulting
Qow pattern then gives

K
2 2 2T2+I')

(A) =
2

cosh
2m(rz —rf ) 2r& r2
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FIG. 9. Precession rate (dots) and unwinding rate (triangles)
in the limit +~0, calculated as a function of b, with rI =0.005
cm and r2=0. 100 cm. The rates are normalized to the on-
center values given by Eqs. (12) and (13). The solid line is the
prediction of Eq. (19).

Computations done with an increasingly eccentric wire

placement illustrate a number of interesting features. A
typical calculation using a moderately off-center wire
[Fig. 3(b)] shows that the vortex develops a significant os-
cillating curvature when viewed along the z axis. This
gives rise to an additional vertical self-induced term
)33s'Xs", and thus generates the vertical oscillations ad-
duced in the previous paragraph and observed experi-
mentally. The rate of precession also develops an oscilla-
tory component, so that the observed oscillating signal
becomes increasingly anharmonic as the wire is moved
farther off center. Because the vortex travels farther
when it is oscillating, the average unwinding rate (Z ) /a
will be affected to first order by the eccentricity. This
efFect will have to be taken into account when trying to
extract the friction constant 0. from experimental data.

At high eccentricities, two additional features become
very apparent. First, the velocity field of an off-center ax-
ial vortex must be supplemented by an image term as dis-
cussed previously. Both the u-term "force" acting on the
bottom of the bucket and the energy per unit length of
trapped circulation are greatly reduced. On the basis of
momentum and energy balance, one would therefore ex-
pect the average rate of precession (0) to decrease and
the amplitude of the vertical oscillations to become very
large. The latter, in turn, has a large effect on (Z)/a.
Figure 9 shows the calculated magnitude of these correc-
tions in the limit +~0. The top curve in Fig. 10 shows
that the experimental "signal" for large eccentricities is
expected to be strikingly anharmonic, an effect which
should be accessible to observation.

The second feature is the increasing loss of symmetry
of the precession curves at large eccentricities and finite

This is due to the fact that when the vortex oscillates
downward it feels a frictional force in the plus z direction.
This, in turn, reduces the precession rate, the effect being
the same as that which produces the a( V„—V, ) term in
Eq. (10). The opposite occurs when the vortex oscillates

0
0 4 6

TIME (10 s)

FIG. 10. Experimental signatures for a highly eccentric wire.
Here r& =0.005 cm, r2=0. 100 cm, and 6=0.080 cm. The top
cure is calculated with ca=0.03, the middle with +=0.06, and
the bottom curve with o.=0. 10.

upwards. The effect is linear in n, and as seen in the mid-
dle curve of Fig. 10 and in Fig. 4(b), it becomes quite
dramatic as a increases. In fact, the precession rate can
easily decrease to zero, as shown by the bottom curve of
Fig. 10. What is happening here is that the vortex
reaches a limiting bowed shape, and propagates directly
down the wire without precessing.

VI. EFFECTS OF PINNING

A particular advantage of the numerical approach is
that it permits exploration of complicated questions.
Thus, we brieAy discuss here the efFects of surface rough-
ness on the unwinding vortex. To represent the effects of
roughness, we use the critical angle model, in which the
terminus of the vortex on the boundary is allowed to
propagate for a certain distance, is then pinned, and is
released again when the vortex (which comes in normal
to the surface in the absence of pinning) has heeled over
from the normal by a specified critical angle. The model
is crude but descriptive, and the choice of the propaga-
tion path length and the critical angle allows a con-
venient parametrization of the nature of the surface.
Thus, a surface containing only a few sharp asperities
would correspond to a large free path length and a criti-
cal angle approaching m/2, while a small-scale waviness
of the surface would be represented by a small free path
length and a critical angle near zero.

Since a sharp asperity provides the strongest pinning
and hence the clearest experimental signal, we have stud-
ied only the effects of large-angle roughness on the wire
and on the outer boundary. As it turns out, for an on-
center wire the critical angle cannot in any case be made
very large: because the ~/4mry driving field is compara-
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tively weak, pinning with even a moderate critical angle
on either the inner or outer surface causes the vortex to
hang up permanently. That is, once one end of the vor-
tex is fixed, the vortex will spiral into a stationary
configuration without ever suffering a suf5ciently large
deviation from normal incidence to become unpinned
again. For our standard geometry of r, =0.005 cm and
r2=0. 100 cm, and with 6=0, the maximum critical an-
gle for which interesting dynamical behavior occurs is
about 12' for pinning on the outer surface and about 22'
for the inner. Figures 4(c) and 4(d) show the kind of
motion which occurs when there is pinning on the outer
and inner surfaces, respectively. Although this looks
reasonably dramatic, it is dificult to observe pinning
events directly: the glitches introduced when the vortex
hangs up and is released are of rather low amplitude.
The effect of this kind of pinning on (II) and (Z) /a,
however, appears to be both large and unpredictable. We
find that the smooth-wall results Q =0.0316 s
Z /a =0.002 13 cm s ' are modified to 0.0265 s
0.00344 cms ' for the case shown in Fig. 4(c), and to
0.0179 s ', 0.00181 cms ' for pinning on the inner wall
[Fi . 4(d)]. The good agreement (discussed below) be-
tween the experimentally observed value of 0, andnd the
smooth-wali theory indicates that surface roughness
effects are, in fact, not important in the actual experi-
ment, and we have not investigated these effects further,
except as discussed in the next section.

VII. CALCULATIONS
FOR THE EXPERIMENTAL CASE

The actual geometry quoted by Zieve et al. is
r, =(8+0.8) X 10 cm, r2 =(1.480+0.006) X 10 ' cm,
and b, =(0.35+0.05) X 10 ' cm. If one estimates a fric-
tion constant from the inset of Fig. 1 and the results of
Sec. V, one obtains a value of about 0.018. From Eq.
(18), the theoretically predicted value of 0 is 0.0249 s
The friction correction to this can be estimated from q.E .
(10) to be of order 0.01% and is hence totally negligible.

Numerical calculations of the vortex motion become
extremely time consuming when the inner radius and the
friction constant are small. Nevertheless, we have ob-
tained a few results in the actual geometry of Ref. 3
which may be of particular interest. Figure 11 shows the
initially straight vortex coming to steady-state motion
under the inhuence of a friction constant similar to that
acting in the experiment. One may conclude that a vor-
tex starting from an arbitrary initial configuration should
reach its steady-state behavior in a few precession cycles.
An incompletely converged calculation of (0) and
(Z) /a has been carried out with a friction constant of
0.10, yielding values of 0.0242 s ' and 0.00144 cms
respectively. When corrections for convergence and fric-
tion are applied, the average precession rate becomes
(0.0248+0.0002), where the error estimate derives from
unccertainties in making the corrections. is corre-

+ $s onds to a calculated precession period of (253 2) s,
compared to a theoretical value from Eq. (18) o s.f 252 s.
As mentioned at the end of Sec. III, if the calculations
were carried out using the more accurate form o q.

FIG. 11. Transient behavior calculated for the actual
geometry of Ref. 3, using a=0.03. Steady-state precession is
achieved in about one revolution.
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FIG. 12. Oscillation signature expected for the geometry of
Ref. 3. The unwinding baseline has been subtracted out.

for the circulating field, one would expect to obtain a pre-
cession period of about 263+3. Comparison with the ex-
perimental result of (253+1) s is only good to about 3%
because of uncertainties in the experimental values of r„
rz, and (especially) b, . The agreement between experi-
ment, theory, and computation for this primary parame-
ter is consistent with the estimated uncertainties.

A second interesting computational result (Fig. 12) is
the oscillation signature that one expects to observe for
the geometry of Ref. 3. The calculation was carried out
using ex=0. 10, and the unwinding slope was than adjust-
ed to zero. We note that the oscillations are predicted to
be noticeably anharmonic, an effect which may be experi-
mentally testable. As discussed in Sec. V, a much more
strikingly anharmonic signature could be obtained with a
more eccentric placement of the inner wire.

Finally, we have calculated (Figs. 13 and 14) how an
individual pinning and release event would appear in the
actual experiment. Referring to the discussion of Sec. VI,
the effect is somewhat more dramatic for a small-
diameter, off-center wire, because the critical depinning
angle can be made larger without permanently trapping
the vortex. As seen in Fig. 14, the signature of such an
event is still not very impressive, but it now looks distinc-
tive enough to be perhaps observable in data of the quali-
ty shown in Fig. 1.



12 038 K. W. SCHWARZ
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of the wire. If conditions are set such that pinning and
release can occur, the experimental signal will exhibit
steplike glitches'followed by damped oscillations, which
may be observable. However, the most obvious effect of
pinning is likely to be a complete disappearance of the os-
cillating signal as the vortex is immobilized.

For the specific geometry quoted by Zieve et al. , the
computations using Eq. (6) give a precession period of
(253+2) s, compared with the analytical value of 252 s.
Computations using the more accurate circulating field of
Eq. (2) are projected to give 263+3 s. The experimentally

observed value is 253+7 s. This agreement provides the
best evidence to date for the applicability of classical
vortex-filament dynamics to quantized vortex lines.
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