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In this paper we present the calculation of the Landau parameters for a two-band Fermi liquid using
the induced-interaction model. The model studied consists of two bands crossing the Fermi surface; one
of these bands has electrons with a large crystalline mass and strong Coulomb correlations. The other
band is made up of electrons with a small crystalline mass and negligible intraband correlations. For an
antiferromagnetic coupling between the two bands, the system exhibits heavy-fermion behavior, i.e., very
large linear in T-specific-heat coeKcient, large T term in the resistivity, and a small Wilson ratio. A fer-
romagnetic couphng between the two bands does not result in heavy-ferrnion behavior.

I. INTRODUCTION

In a recent paper Sanchez-Castro and Bedell'
developed a generalization of the induced-interaction
model to a two-component Fermi liquid. The one-
component version of this model has been applied to a
variety of systems. These include, among others, liquid
He, ' strongly correlated electronic systems, ' and

spin-polarized Fermi systems. ' It has been very success-
ful in accounting for the properties of a variety of corre-
lated Fermi systems, in particular unpolarized ' and
polarized ' liquid He. Some of the features of the
heavy-fermion materials could also be accounted for
within this model. However, it failed to account for one
of the most prominent heavy-fermion signatures, the
small value of the Wilson ratio, R =~ k~y/3p~y, where

g is the Pauli susceptibility and y is the linear in T-
specific-heat coefficient.

One of the approaches that has been extensively used
in the heavy-fermion problem that gives a reasonable
value for the Wilson ratio is the slave-boson approach to
the Anderson lattice model. The suppression of the dou-
ble occupancy of a single site by two f electrons is treated
in the slave-boson mean field. This produces a renormal-
ized band structure with large mass enhancements for the
quasiparticles. If the interactions, which are of order
1/Nf, with Nf the f-electron degeneracy, are ignored,
then the Wilson ratio is equal to 1 with no room for devi-
ations. The inclusion of interaction effects will give rise
to small corrections, for large Nf, to the Wilson ratio. ' '"
The interactions between the quasiparticles also lead to a
superconducting instability. ' ' The pairing instability
was predicted to be a d wave when terms of order 1/Nf
were included. ' ' More recent calculations, including
terms of order (1/Nf), have opened up the possibility
that a p wave is favored. '

A number of phenomenological models were proposed
to account for the properties of heavy fermions. One of
the more interesting was the single-component Fermi
liquid of Pethick et al. ' used to study UPt3. This was
interesting since it revealed that a single-component Fer-
mi liquid could not provide a consistent account of UPt3.
In particular, the large T lnT term in the specific heat C,

(Ref. 16) required that the Fermi-liquid parameter I'o was
close to —0.8, which gives a Wilson ratio close to 5.
This discrepancy led Pethick and Pines' to introduce a
two-component phenomenology. At high temperature
they' begin with local moments and a conduction band
which couple strongly at low temperature to yield a mas-
sive quasiparticle band. They argue that the magnetiza-
tion is not conserved, due to strong spin-orbit interac-
tions, and that this makes it difficult to relate the moment
of the quasiparticles to the conduction electrons or the
free-ion moments. This in principle could account for
the discrepancy between the small Wilson ratio and the
large T lnT terms in the specific heat; however, no de-
tailed calculations of the T lnT terms within the Pethick
and Pines' model exist. Moreover, the extraction from
experiment of the spin-nonconserving part of the magne-
tization is not straightforward, and estimates based on
microscopic calculations do not exist. The evidence for
abandoning some variation of a Fermi-liquid state, e.g. ,
an anisotropic Fermi surface or a multiband scheme
without spin orbit interactions, is not so clear.

While no detailed calculations exist for the T lnT term
of a single-component system with an anisotropic Fermi
surface, we do not expect this to resolve the discrepancy
between the small Wilson ratio and large T lnT in some
heavy-fermion systems. In such a Fermi liquid the vari-
ous properties will involve averages of the quasiparticle
velocity and interactions over the Fermi surface. To
evaluate the Wilson ratio and the coefficient of the T lnT
term in C„very different averages are needed. Given the
broad range of heavy-fermion materials, it would be hard
to imagine that a realistic single-band picture could ac-
count for the systematics of these materials.

In the slave-boson treatment of the Anderson lattice
model, the model of Pethick and Pines, ' and the single-
component Fermi liquid model, there is only one heavy
quasiparticle band at the Fermi level at low temperatures.
While these models capture some of the many-body phys-
ics they miss the multiband character of the heavy-
fermion materials. The multiband character is clearly
evident in UPt3 from the de Hass —van Alphen effect
measurements of Taillefer et aI. ' The structure of the
Fermi surface obtained by Taillefer et a/. ' is in remark-
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ably good agreement with that predicted by several elec-
tronic band-structure calculations. ' The problem with
the band-structure calculations' is the effective-mass
enhancement. The measured effective masses are from 10
to 25 times larger than the band masses. ' These large
discrepancies suggest that the many-body correlations are
significant; however, the underlying bandlike character of
the quasiparticles is crucial.

To fully incorporate the band structure into a many-
body calculation is beyond current technology. What we
are proposing is a model that starts with a simplified
band structure, a two-band model, with the many-body
physics treated using the induced-interaction model
developed by Sanchez-Castro and Bedell. ' It is important
to emphasize that our starting point is a band picture; we
have no localized f electrons to begin with. The band
structure we start with has electrons in one narrow band,
with large band masses, and another broad band with
much smaller masses. This simplified band picture is
motivated in part by some work of Albers. In this paper
it is shown that an f-like band is formed when the plati-
num p electrons hybridize with the 5f electrons of the
uranium. This is the narrow band at the Fermi level in
our model, and our broad band is designed to model the
5d band of platinum. No additional effects of hybridiza-
tion between the two bands are included. In principle,
the effects of hybridization can be included in the
induced-interaction equations; however, this is beyond
the scope of the current calculation.

With the simplified starting model and the approxima-
tion introduced to obtain the induced-interaction equa-
tions, it is useful to explore the extent to which the
essential many-body physics is preserved in the induced-
interaction model. Direct checks on the approximations
used to obtain the induced-interaction equations are not
possible. However, some qualitative comparisons with
other techniques can be made and some physical motiva-
tion can be used to understand the single-component
model.

The structure of the induced interaction was originally
motivated by Babu and Brown using physical argu-
ments. The approximations in which the frequency and
momentum dependence of the quasiparticle interactions
are ignored allows one to convert the multidimensional
coupled nonlinear integral equations into one-
dimensional coupled nonlinear integral equations. While
these are drastic approximations they are constrained by
the forward-scattering sum rule and the antisymmetriza-
tion of the scattering amplitude. More recently, there
have been a number of calculations ' that have tried
to go beyond the approximations used in the induced-
interaction approach. In particular, the work of Bickers
and collaborators ' has included the third channel (the
particle-particle channel) on an equal footing with the
two particle-hole channels. Moreover, they have includ-
ed the detailed energy and momentum dependence of
their vertices.

The emphasis of Bickers and collaborators ' has
been on the lattice system, and at present detailed com-
parisons with the induced-interaction approach are not
possible. However, one of the approximations used by

II. THE TWO-BAND SYSTEM

We start by constructing a model Hamiltonian for the
two-band system we propose to study. The Hamiltonian
of a two-band system can be written quite generally as

H=H +H' . (2.1)

Here H is the mean-field Hamiltonian obtained, for ex-
ample, from an electronic structure calculation, and is
given by

0 0t pi pie~ pie
P, la

(2.2)

Bickers and White is worth noting. The pseudopoten-
tial approximation introduced by Bickers and White is
in the spirit of the induced-interaction approach. Here
they use pseudopotentials obtained from the irreducible
vertices evaluated at a particular value of the momentum
and energy transfer. These are used to calculate the vari-
ous dynamic susceptibilities which in turn are used to
determine the effective interactions. The self-energy is
then calculated and then fed back into the equations.
This procedure is repeated until self-consistency is
reached between the vertices and self-energies. This gives
quite reasonable results for a number of properties. The
main point to note here is the fact that the full energy
and momentum dependence of the pseudopotentials is
not needed to calculate some properties. The same ap-
proach has been used in the induced-interaction model.
And while we have no comparable checks like those em-
ployed by Bickers and White, their results are most sug-
gestive.

The work of Chen et al. is also worth discussing at
this point. In this work they study the magnetic proper-
ties of the two-dimensional Hubbard model using a
modified RPA (random-phase approximation) to calcu-
late the magnetic structure factor. The modifications in-
volve replacing the Hubbard U by a renormalized in-
teraction U„„. Here U„„arises in their work due to re-
peated scattering in the particle-particle channel. This
effective interaction, in principle, is as well renormalized
by repeated scattering in the exchange particle-hole chan-
nel, the induced interaction. Again, detailed comparisons
between our approach and that of Chen et al. are not
possible; however, one of their qualitative conclusions is
significant. They find that ferromagnetism is suppressed
if you include the contributions from the other channel.
This was found to be the case with the induced interac-
tion model as well (see, for example, Ref. 4).

This paper is organized as follows: in Sec. II we de-
scribe the two-band system, whose many-body physics we
propose to study using a Fermi-liquid formalism con-
veniently summarized in Sec. III. In Sec. IV, we restate
the induced-interaction model for a two-component Fer-
mi liquid recently introduced by the present authors.
Next, in Sec. V, we develop an approximation for the
direct interaction or driving term of the induced-
interaction equations. Finally, in Sec. VI, we present the
results of our calculation and a corresponding discussion.
Section VII contains our concluding remarks.
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H —H11+H22 +H21, (2.3a)

H- =-'
/I

P1'P2, P3'P4
0' l, 0 2, 0'3, 0 4

(p3l cr3yp41 cr4lv lp, so»p2io 2)

a a a aXQp jg ap jg ap Qp (2.3b)

where a~; is a creation operator for an electron with
crystal momentum p, from band i and spin o., and, t; is
the corresponding band energy. H' is the residual in-
teraction which can be written as

Substituting this result into Eq. (2.3c) generates a mag-
netic coupling like in Eq. (2.6). Thus, in this case, the
strength of the magnetic term coupling the electrons in
the two bands is given by the band exchange matrix ele-
ment.

To summarize, the two-band system we propose to
study has initially a broad and a narrow band crossing
the Fermi surface with Hamiltonian H, given by Eq.
(2.2), and a residual interaction 0' given by Eqs. (2.3a),
(2.4), (2.5), and (2.6), i.e., the total Hamiltonian of the sys-
tern is

H21
P] P2 P3 P4

0 ), CT 2, 0 3, CT4

((p32a3~ p41a4l v lp12o 1 ~p21a2)

—(p32cr3 , p4l'o4 v p2lcr2, 'p, 2o, ) )

0H P tp'c2 p' op' + UP cl p+q21op2tc2 p —q21 c2p
I

P, I, 0' Pp

J
~ '

p+ q2a Cr aP O p2P p' —q1 a' Cr a'P' p'1P'
pp

a, p, a', p'

a a aXa 2 ap 2 a 1 a (2.3c)

a p+ q2 fa p2 $ a p' —
q2 pa p'2 $

pp
(2.4)

Here and throughout this work, we limit our considera-
tion to normal or non-umklapp processes. In addition,
we have taken the system volume V=1. The other band
crossing the Fermi surface (band 1) is assumed to be a
broad band with negligible intraband correlations.
Therefore,

H11=0 . (2.5)

For the interaction between electrons belonging to
different bands, we choose a contact, magnetic coupling
of the form

21 2 ~ ~ p+ q2a aP p2P p' —q1a' a'P' p'1P'
pp

a, p, a', p'

(2.6)

where cr is a vector whose components are the Pauli ma-
trices. The parameter J is a constant chosen to be posi-
tive (negative) for ferromagnetic (antiferromagnetic) cou-
pling. A term like this one usually appears in the two-
band-system Hamiltonian even in the case of spin-
independent residual interactions due to exchange. To
see that, we note that for a contact, spin-independent in-
teraction, we have

( p+ q2a; p' —q 1a'
l
v

l
p'1P', p2P )

=
—,'(p+q2;p' —qllvlp'1;p2)(6 t3f3 ~ t3. +o t3 o &) .

(2.7)

where v is the two-body interaction.
Now, we specialize to a two-band system where both

bands cross the Fermi surface. We assume that one of
the two bands crossing the Fermi surface (say band 2) is
very narrow and that the Coulomb correlations between
electrons belonging to this band are large. The simplest
choice of correlations between band-2 electrons is a
repulsive, contact interaction (Stoner Hamiltonian) given
by

This Hamiltonian is formally identical to the Kondo lat-
tice Hamiltonian, except for the form chosen for the
band energies t, . We will assume that both bands have a
quadratic dispersion relation, and in the presence of in-
teractions they become renormalized to

&0 + (+2 +(i)2)1
(2.9)

where p is the chemical potential, pz' =Akz',
kF"=(3m n;)' is the Fermi wave vector and n; is the
particle density of the ith band, a fixed quantity in our
calculation since we start with fully hybridized bands.
Here m;* is the effective mass of the ith band, which, as
we will discuss below in Sec. III, contains contributions
from the crystal lattice and from electron-electron in-
teractions. For the moment, we just state that the lattice
contribution to the effective mass, called the crystalline
mass m;, is taken as a fixed parameter in our model. By
setting the effective masses equal to the crystalline
masses, the renormalized band energies Eq. (2.9) reduce
to the band energies t; appearing in Eq. (2.2).

The phenomenological Hamiltonian describing this
two-band system contains four parameters: the two crys-
talline masses m;, the strength of the repulsion between
the narrow band electrons U, and the strength of the in-
terband magnetic coupling J. To study this strongly in-
teracting Fermi liquid, we will calculate the quasiparticle
interaction function using a generalization of the
induced-interaction equations recently introduced by the
authors and presented in Sec. IV. In the next section, for
the sake of completeness, we will summarize some results
of the Landau theory of a two-component Fermi liquid
that are subsequently used to analyze our results.

III. LANDAU FERMI-LIQUID THEORY

In this work, we will study the many-body physics of
the two-band system described in Sec. II through a
Fermi-liquid formalism. This approach focuses on the
calculation of the quasiparticle interaction function
f;~ (p, p'), which describes how the quasiparticle ener-
gies are changed by their interactions with other quasi-
particles by
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I

Epia Epi o'+ X fij (P~P )~np'j a'
PJ

(3.1)

f;; (p p') = g f;;( I'i(p p') .
1=0

(3.2)

Here c. ; is the equilibrium quasiparticle energy,
6n; =n; —n; is the deviation in the distribution
function n, from its equilibrium value n, A detailed
discussion of the theory of a charged two-component Fer-
mi liquid can be found in Ref. 1. In this section, we sum-
marize some of the results which we subsequently use.

Fermi-liquid theory expresses the renormalization of
the physical properties of a system of interacting fer-
mions due to their mutual interactions in terms of Lan-
dau parameters. These are defined by the usual Legendre
expansion of the quasiparticle interaction function

tions (such as the spin-orbit coupling) are negligible and
to a good approximation the magnetic moment of the ith
band electron equals p~. As stressed in Ref. 1, both the
numerator and denominator of the magnetic susceptibili-
ty must be separately positive to guarantee the stability of
the Fermi-liquid state. This requirement does not pre-
clude, however, that one of the terms in Eq. (3.6), i.e., a
partial susceptibility, be negative as long as the total sum
be positive. Thus, the formula for the magnetic suscepti-
bility of a two-component system is considerably richer
than for a one-component Fermi liquid.

For a two-band system with spherical Fermi surface
branches, such as ours, the effective masses, the crystal-
line masses, and the I =1 spin-symmetric Landau param-
eters are related by'

m.
I

f;;(p p') =-,'[f;,'"(p p')+f;,"'(p p')]

f;;(p, p') =-,'[f;,""(p p') —f;,"(p p')] .

(3.3a)

Some frequently occurring combinations of Landau pa-
rameters are

where

( i)
PF

( )

1 —
—,'N; (0) f; i, +

m.
fij, 1 =1

m).

(i&j), (3.7)

The static properties of the system we are interested in
are the specific heat at constant volume Cv, the magnetic
susceptibility y, and the Wilson ration R, defined by

~ k~R=
3@2~ y(0)

(3.4)

where y(0) is the linear in T-specific-heat coefficient, and

pz is the Bohr magneton.
The specific heat at a constant volume and fixed num-

ber of electrons in each band (N„N2) is given by'

()5

V, Nl, N2
=y(0)T, (3.5)

where

m = g N;(0)j2jia;,
i =1

(3.6)

where s is the entropy density, y(0)=(vr /3)ki) [N, (0)
+N2(0)], and Ni(0)=m;*pF'/(~ fi ) is the density of
states of the 1th band crossing the Fermi surface. Here
m;* is the effective mass of the ith component at the Fer-
mi surface.

The magnetic susceptibility can be obtained from the
induced magnetization m divided by the magnitude of the
external magnetic field, H, and for small values of H is
given by

(0m
N; (0)=

This relation, which is formally equivalent to the expres-
sion obtained for a Gallilan invariant system provided
one replaces the crystalline masses by the bare mass, is a
consequence of the isotropy of the system. The crystal-
line masses give the effective-mass enhancements due to
the periodic potential of the ions; the l = 1 spin-
symmetric Landau parameters give the additional
enhancements due to the electron-electron interactions.
As stressed in Ref. 27, the potential used in most band
calculations is taken to be that of the bare ions screened
by the electron response. Thus, the decomposition
presented here is not always feasible, and the effective-
mass enhancements obtained from a band calculation do
not always correspond to the crystalline masses appear-
ing in Eq. (3.7).

Once the quasiparticle interaction is determined, we
are interested in calculating the resistivity and studying
pairing correlations in the model. To calculate them, we
must first obtain an expression for the quasiparticle
scattering amplitude in terms of the quasiparticle interac-
tion function. There are several ways to derive this rela-
tion. One route starts from the Bethe-Salpeter equation
for the four-point function, while the other approach be-
gins from the Landau kinetic equation. The final result
of both approaches is

1+f;, , oN, (0)—f,', , oN, (0)
D'(0)

A' '(k k')= y A"'P (k k')
1=0

(3.8a)

D'(0) = [1+f;, i oN, (0)][1+f;2, oN2(0)]

(f21,!=0) Nl(0)N2(0)

Here we have assumed that spin-nonconserving interac-

Bs(a)(k kt) g Bs(a)P (k ks)
1=0

(3.8b)

Here A,'j('),B"' are the spin-symmetric (antisymmetric)
scattering amplitude and band-Aip scattering amplitude
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at finite exchange momentum transfer q=)pi~k —k' ex-
pressed in a series of Legendre polynomials in terms of
the angle between k and k'. For l=0, 1, it has been
shown that'

1

A21 (8 4) 2 g l(A21, 1+A211 Bl Bl )

1=0

+(A2( l+ A2, 1+Bi'+Bi') cosp]
fs(a)(1 fs(a)~l )+(fs(a))2xl

~ s(a) &&) I JJ, I JJ 'j l jj .m ~

)Ll~ii, I ~s(a) ~J
L/I

ps(a)
s (a) J 21, I

~s(a)
L/I

s(a)
gs(a)—

1 —"'XIgI

(3.9a)

(3.9b)

(3.9c)

XPl ( cos8),

1

A21" (8,$)= —,
' g [( A2( l

—A q( l 2B(')—
I=O

+( A 211
—A 2) l+2Bl') cos{tt]

(3.11a)

where

Ds{a) ( 1 f (sa)~l )( 1 fs(a)~l ) (fs(a) )2g I ~l
t t

I
3 I n —g m m(2

~l ( )=2J
d P p'+qi p' j 1 q'P

(2trA')' Ep+q, —ep, j 2

and np, =8(pF' —p). Here 8 is a step function and expli-
cit expressions for the X; —=X," are given in Sec. IV.

Except for some accurate transport calculations, Eqs.
(3.8) and (3.9) are not normally used; instead, a simpler
approximation due to Dy and Pethick, the s-p approxi-
mation, is often introduced. To perform this approxima-
tion, we must first express the scattering amplitudes in
terms of the Abrikosov and Khalatnikov angles (8,$),
the angle between the incoming momenta, and the angle
between the incoming and outgoing scattering planes, re-
spectively. The s-p approximation in the one-component
case expresses A (8,$) as a linear polynomial in cosP,
the coefficient determined from certain restrictions.
First, we must require that the forward-scattering ampli-
tudes A (8,/=0) agree with the expansion in terms of
Landau parameters truncated after the l = 1 term. In ad-
dition, we must require, under the interchange of outgo-
ing quasiparticle momenta (P~(ti+tr), that the triplet
(singlet) scattering amplitude be antisymmetric (sym-
metric).

To generalize the s-p approximation to the two-band
system, we again expand the scattering amplitudes in a
linear polynomial in cos(t. The coefficients are chosen
such that the forward-scattering amplitudes are matched
and the resulting scattering amplitude has the right be-
havior under exchange ({t)~st)+sr). For the intraband
scattering amplitude, the derivation is identical to the
one-component case and gives

X Pl (cos8),

B t "(8,$)= —A ~~(t (8,$+tr),

B" (8 i)t)= —[A ""(8 its+~) —A" (8 {t)+sr)]

(3.11b)

(3.11c)

(3.11d)

The calculation of the resistivity, p, proceeds as de-
scribed in Ref. 1. There, the non-umklapp contribution
to the resistivity is calculated from

2—=
—,
'e'

P I Jtk=1
[X,(0)r, (0)Nk (0)&k (0) ]

2v+ 1

,dd v(v+1)[v(v+1) —2A,, ]

(3.12)

gS; i(, (S(k —A, , 5,k .
j, I

(3.13)

Here U, , r;(0) are, respectively, the Fermi velocity and the
quasiparticle lifetime of the ith band electrons at the Fer-
mi surface, and e is the electron charge.

To construct the matrix A, , for a two-band electron
system, we first define the transition probabilities

(3.14a)

and

where S; is a 2X 2 matrix (S;J being its transpose) that
diagonalizes A, , a 2X2 matrix involving angular aver-
ages of the scattering amplitude. The A, are the eigenval-
ues of this matrix, i.e.,

1

A;I t(8, P) = g ( A;; 1 + A;; 1 ) cosPP((cos8),
I=O

(3.10a) ~v=~ t,it+ ~
&,j&+II'( t, &; i, t) (3.14b)

where

+( A; 1+A;;, ) cosg]P((cos8) .

(3.10b)

For the interband scattering amplitude, it is shown in the
Appendix that the approximation gives Then the matrix A, ," is given for (pF'=pp') by
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A A +A A +A A
~ii I 2 (g/2)

( Pl'P2 Pl P3 Pl P4)

let (L =0) and triplet (L =1) pairing is given by (keeping
up to 1= 1 partial waves)

2
m

m I

dA &J

4vr 2 cos(0/2)

(i%j ) (3.15a)

1

g;; =
—,'X;(0) g (

—1)'(3; 1
—3A,', 1),

1=0
1

g;; '=
—,', N;(0) g ( —1)'(A;1+ 3,', 1)

1=0

+ W', i=a)

(3.18)

(3.19)

4' 2cos 9/2

(i&j), (3.15b)

Here we have made use of the forward-scattering sum
rule'

1

( A,', 1+ A;;i)=0 .
1=0

where dII= sin0d0dg,

dO, El

4~ 2cos(0/2)
t- dn

47r 2 cos(9/2)

IV. CALCULATION OF THE QUASIPARTICLE
INTERACTION FUNCTION:

THE INDUCED INTERACTION MODEL

P, -P2= cosI9,

p, p3 = 1 —
—,
'

( 1 —cos8)( 1 —cosp ),

p, p4=1 —
—,'(1 —cos6))(1+ cos(b) .

(iwj),
To calculate the quasiparticle interaction function, we

will use the induced-interaction equations for a two-
component Fermi liquid obtained by Sanchez-Castro and
Bedell. ' These are coupled, integral equations for the
quasiparticle interaction and antisymmetrized scattering
amplitudes on the Fermi surface. They allow us to think
of the Landau f function as divided into a direct part d
and an induced part f;„„,

In terms of these transition probabilities, the quasiparti-
cle lifetimes are given by

1

r;(0)

m* (k T)i B

16~ A
(3.16)

L 1 13a T(i)e 1/g ..
cii ' i F 7 (3.17)

where a, is a constant independent of the density and in
general different for each band, Tz" =pFl' /(2m;*ks ), and

g,-, is the ith band intraband pairing interaction for L-
wave pairing. The intraband pairing interaction for sing-

As discussed in Ref. 1, we neglect the eigenvalue of A, ,-

equal to 1, which is an artifact of neglecting umklapp or
momentum-nonconserving processes in the calculation of
p. Thus, by keeping only the other eigenvalue of A,;, we
are assuming that the interband scattering is much larger
than the intraband scattering between electrons. The
eItectiveness of the umklapp scattering depends in detail
on the band structure and the Fermi surface. For simple
metals with nearly spherical Fermi surfaces, the
e6'ectiveness of the umklapp scattering is small; howev-
er, for tight-binding bands it is most efficient. ' ' In ei-
ther case, the intraband scattering will be smaller than or
at most comparable to the interband scattering. Thus,
the calculation for the interband scattering in the two-
band model should give a reasonable estimate of the resis-
tivity.

Another quantity we can readily calculate in our model
is the intraband pairing interaction for L-wave pairing.
According to the Patton-Zaringhalam formula, the crit-
ical temperature due to L-wave intraband pairing of the
ith band is given by

f(P P )=d(P P )+f;.d(P P ) . (4.1)

1 (f21 ) Xl 1 ( 1 +f22X22 )

2 Ds

3 (f22 ) X22( 1 f 11X11)

2 DQ

3 (f21)'Xll(1+f22X22)

2
(4.2a)

The induced interaction is the contribution to the quasi-
particle interaction due to its coupling to the collective
modes of the system, i.e., the contribution due to multiple
propagation and scattering of a particle-hole pair. The
induced term has the same form for all Fermi systems.
The direct term, however, contains the details about the
specific system considered and must be calculated from
the bare Hamiltonian. Once calculated, the direct term
acts as a driving term in the integral equations. In the
case where the particles in the system have a short-range
interaction, the direct interaction would have a predom-
inantly short-range nature, and the induced interactions,
mediated by virtual collective excitations, would have
long-range contributions. The structure of the induced
interaction guarantees that any antisymmetric approxi-
mation for the direct interaction yields an antisymmetric
scattering amplitude. Thus, as stressed by Quader, this
approach is an approximation to the full parquet series
for the quasiparticle interactions (see Fig. 1).

The induced-interaction equations for an unpolarized,
two-compound Fermi liquid are'

1 (f22) X22(1 —f'llX, l)
f22 PrP 22
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K K' K K' K'

SX 2 1 aX
21

(4.26)

K K' K K'

A

P P' P P'

P P' P P'

X A

Pt

K'

A

X

1 (g )X21 1 (g )X21f' (, ')=d' —— +-PP 2l $~ 2

1 fz(X) if ) 1( I —f22X22 )

g'(p p') = id' —
2

1 f21X22~f22+(f 21)'X» j

2 DS

(4.2f)

P'

FIG. 1. Schematic representation of the induced interaction
equations.

1 (f» ) X„(1—f22X22)
f)1(p p')=d'» —

2

1 (f21) X22(1+f'„X„)
2 DS

and

3 f21X11f 11(1 f22X22 )

2 Da

3 f2)X22r.f22+«21) Xll j

2 Da

I f2,X„f'„(1—f22X22)
g'(p p') =id' —

2

(4.2g)

1 (f2i )'Xii(1+f22X22)

2 Ds

1 (f22 ) X22(1 f;,X„)+—
2 Da

1 (f2, ) X„(1+f22X22)+—
2 Da

1 (f 11)Xii(1 f22 22)f ii(p p')=d» —
2 Ds

1 (f21) X22(1+f'1(X11)
2 Ds

3 (f 11 ) X„(1 —f22X22 )

2 D'

3 (f2i )'X22(1+f i)X»)
2 Da

1 «22)'X22(1 —f»X»)
f22(p p ) — 22

—
2

(4.2b)

(4.2c)

1 f21X22 ~f 22 +(f21 )'Xi i j

2 Ds

1 f21Xllf 11 (1 f22X22)+—
2 Da

1 f2(X22tf 22 +(f21 )'Xi i ~+—
2 Da (4.2h)

where

D"=(1—f22"X22)(l —f", X„)—(f2' ) X22X1, .

Here we have written the full quasiparticle interaction as
f~"(p,p') and kept only the contribution to the induced
interaction due to the 1=0 Landau moments,
fJ'=f) &" o. The functio—n X; (q') was calculated in
Ref. 5 for a quasiparticle dispersion relation

=@+(p —pF' )/(2m;*), where p is the chemical po-
tential, and is given by

1 (f11)'Xi1 (
—f22X22)+—

2 Da

1 (f2, ) X22(1+f;,X„)+—
2 DQ

X;;(q')= —
—,'N; (0) 1+

PF

(4.2d) and

p() ~p()
ln

~p,"'+q'/2~

(2)2 (1)2
PF PF I+~, , ~1+a~
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where

( (2)2+ (1)2 2 (1) (2) os@)1/2

)fc )fc

1 2

mz —m1

teraction through the m;*. Thus, any numerical solution
of these equations must be performed in a self-consistent
way.

V. DIRECT INTERACTION

and

A=
(p(1)+p(2) )y

y +p~"pF '(1 + cos9)
(2) (1)

PF PF
m' m*

2 1

(1) (2)

u 2+ (1+ cos8)
m m*

1 2

To calculate the direct interaction, we must sum all
particle-hole irreducible diagrams. In this work, we will
approximate it by keeping only the diagrams linear in U
and J. These diagrams themselves constitute the
Hartree-Fock approximation to the quasiparticle interac-
tion function. Since all pair interactions are contact in-
teractions, the direct interaction has only an I=O mo-
ment and is given by

d;,' '; '( p~ p') = ( pi 3o 3~ p'14o 4l H l pi ( o» p'12o 2 & .

(2) 2 (1)
' 2

PF PF

m 2
m*

1

(1) (2)
PF PF

m m1 2

cosO

1/2

One interpretation of these equations is as follows: the
induced-interaction term for f22, for example, contains
four distinct contributions. The first (third) is an induced
interaction between two component-2 quasiparticles by
interchanging a density (spin-density) fluctuation of its
own component. Those terms are also present, in the in-
duced interaction for a one-component Fermi liquid but
with different screening factors. The second (fourth) con-
tribution is an induced interaction of two component-2
quasiparticles mediated by the interchange of a density
(spin-density) fluctuation in component 1. This effect is
analogous to the Ruderman-Kittel-Kasuya- Yusida
(RKKY) magnetic interaction between distant localized
spins mediated by an interaction with an itinerant elec-
tron gas. In our case, however, both components are
itinerant. The RKKY interaction is calculated using
second-order perturbation theory; our theory, however,
takes into account further screening effects that go
beyond second-order perturbation theory.

One important feature of these equations is that they
are symmetrical, i.e., by interchanging component labels
in Eq. (4.2a), we obtain Eq. (4.2b), the quasiparticle in-
teraction between two component-1 quasiparticles. Thus,
we have a "reverse RKKY" effect in which the interac-
tion between two component-1 quasiparticles is also
mediated by interchanging a fluctuation in the other
component. Since the interaction between quasiparticles
in each component is affected by the coupling to the oth-
er component, we must solve these coupled equations
simultaneously in order to be able to account for all feed-
back effects.

It should be noted that although we have retained only
up to I=O moments in the induced interactions, Eqs.
(4.2), in principle, any number of moments can be pro-
jected out from the full particle-hole interaction. This is
a consequence of introducing the q' dependence through
the phase-space functions X~.(q'). Even the projected
I =0 moments on the left will be coupled to the I = 1 mo-
ments, in addition to the I=O moments on the right.
This is because the phase-space functions X~ (q') are
dependent on the I=1 moment of the quasiparticle in-

(5.1)

Substituting the residual interaction Hamiltonian Eq.
(2.3) into the above expression and making use of the
definitions,

ds(a) 1(d TT;TT+d TT, L1)
1J P ll jJJ ll jJJ

ds(a) 1(d T1", T1+d 1'T;1T
)21; 12 — 21; 12

(5.2a)

(5.2b)

Equations (5.3) are the driving terms used in solving the
induced-interaction equations. The approximation that
sets the quasiparticle interaction equal to the Hartree-
Fock approximation yields results for the response func-
tions entirely equivalent to the random-phase approxima-
tion. ' Thus, the induced interactions for this case
represent the effect of correlations that go beyond the
random-phase approximation.

VI. RESULTS AND DISCUSSION

The two-band system studied has four adjustable pa-
rameters, namely U, J, and the two crystalline masses.
For the cases we study with U))J the results depend on
only three parameters J, m „and m2. The solutions for
the induced-interaction equations, Eq. (4.2), for certain
choices of the adjustable parameters are shown in Tables
I—III and in Figs. 2—6. All calculations were done as-
suming an equal number of electrons in each of the two
bands, n1=n2=n and a fixed value of n U=11.18 eV,
where U is the matrix element of the band-2 —band-2 in-
teraction Hamiltonian, namely Eq. (2.4). The crystalline
mass of the "light" electrons (band 1) was set equal to five
times the bare electron mass, m„while the crystalline
mass for the heavy electrons (band 2) was varied between
5m, and 50m, . Calculations were performed for positive
(negative) nJ, i.e., ferromagnetic (antiferromagnetic) in-
terband coupling. The most interesting of our results
given in Table II is that for m2/m, =50 and negative nJ,
the two-band system displays heavy-fermion behavior in

We readily get for the direct interactions

d, '=0, d22'= U/2, d2, =0, d2, = —J/2,
J (5.3)

1d =
4 J, and 1d'= ——
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TABLE I. Landau parameters as a function of nJ (eV), m&, m2. We assumed equal number of electrons in each band, i.e.,0
kF"=kF '=kF=1/A and fixed nU=11. 18 eV. Both the direct interactions and the Landau parameters are presented in a dimen-
sionless way by multiplying by 5m, pF/(m A ). Here m, is the electron mass. The values used for the crystalline masses are denoted
by m;.

m2/m, m&/m, b bqi

3.05
1.52
0

—1.52
—3.05

3.05
1.52
0

—1.52
—3.05

5.0
5.0
5.0
5.0
5.0

50.0
50.0
50.0
50.0
50.0

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

22.75
22.68
22.51
24.91
27.13
22. 10
22.09
22.06
23.51
25.43

0.52
0.31
0.00
3.16
5.44
0.65
0.49
0.00
6.76

14.72

2.86
1.37
0.00
3.50
5 ~ 84
2.94
1.45
0.00
1.87
2.46

6.32
3.34
0.00

—0.40
—0.38

6.13
3.15
0.00

—0.10
—0.10

—0.35
—0.39
—0.50

0.58
1.35

—0.03
—0.03
—0.05

0.46
1.10

0.07
—0.02

0.00
0.72
1.48
0.08

—0.02
0.00
2.07
4.73

—0.33
—0.27

0.00
1.06
1.80

—0.12
—0.10

0.00
1.07
2.37

—0.27
—0.23

0.00
2.46
4.01

—0.09
—0.08

0.00
1.28
1.67

TABLE II. Various physical properties as a function of nJ (eV), m &, m2 for the system described in Table I. The linear term in the
specific heat y(0), the magnetic susceptibility X, and the T term in the resistivity 0. are expressed in mJ/(cm K ), 10 emu/crn,
and pA cm/K, respectively.

nJ m2/m, X y(0) m2 /m, m,* /I,

3.05
1.52
0

—1.52
—3.05

3.05
1.52
0

—1.52
—3.05

5.0
5.0
5.0
5.0
5.0

50.0
50.0
50.0
50.0
50.0

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

0.028
0.026
0.015
0.003
0.002
0.195
0.190
0.124
0.098
0.096

0.65
0.64
0.58
1.11
1.21
3.93
3.89
3.52
6.38
6.54

3.16
3.01
1.88
0.22
0.12
3.62
3.56
2.57
1.12
1.08

8.22X 10
4.31 X 10-'

0.00
5.15

28.6
4.04X 10
3.47 X 10-'

0.00
1.74
2.18

6.87
6.70
6.16

10.92
11~ 80
68.82
68.13
62.63
99.93

101.66

5.69
5.52
5.00

10.46
11.52
6.75
6.59
5.00

22.72
23.90

TABLE III. The magnetic moments and the intraband pairing interaction as a function of nJ (eV),
m &, m2 for the system described in Table I. The magnetic moments in each band are denoted by a;, i.e.,
X=+,N, (0)pea;. In this . model, we found no intraband singlet pairing in either band. The intraband
triplet pairing interaction is denoted by g;;

' = [N (0)/6] A t it=0.

nJ Pl 2 /ale I j /Ale ap a&
L=1 L=1

3.05
1.52
0.0

—1.52
—3.05

3.05
1.52
0.0

—1 ~ 52
—3.05

5.0
5.0
5.0
5.0
5.0

50.0
50.0
50.0
50.0
50.0

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

3.72
3.56
2.60
0.48
0.28
3.39
3.34
2.69
2.54
2.54

2.49
2.34
1.00

—0.05
—0.04

5.91
5.83
1.0

—5.13
—5.15

—0.13
—0.13
—0.11
—0.35
—0.40
—0.16
—0.16
—0.12
—0.46
—0.48

—0.03
—0.02

0.00
—0.31
—0.38
—0.05
—0.05

0.00
—0.45
—0.48
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FIG. 6. Semilogarithmic graph of the T term of the resis-
tivity, a, expressed in pQ cm/K .

the ith effective mass due to the backAow of the other
component. Clearly, for very different crystalline masses,
the renormalization of the light electron mass as they
propagate must be larger since they must displace the
much more massive electrons of the other component,
and vice versa. Thus, in effect, as we crank up nJ, both
types of electrons become heavy. To summarize, the
linear in T term in the specific heat, being essentially the
sum of the density of states of the two bands at the Fermi
surface, is greatly enhanced for antiferromagnetic cou-
pling in comparison with ferromagnetic coupling (see
Fig. 3).

Now, we consider the most interesting of our results,
the behavior of the magnetic susceptibility. The results
shown in Table II and Fig. 4 give a magnetic susceptibili-
ty which is decreased (enhanced) over its nJ=0 limit for
antiferromagnetic (ferromagnetic) coupling. To under-
stand this effect, it is crucial to consider the expression
for the magnetic susceptibility, Eq. (3.6), and the sign of
fz«0. We can interpret Eq. (3.6) as the sum of the par-
tial susceptibilities of each of the two bands. Clearly, as
discussed in Sec. III, one of the partial susceptibilities can
be negative as long as their sum is positive as required for
the stability of the Fermi liquid. In addition, from Table
I, it is evident that for antiferromagnetic coupling f2, is
positive since that coupling lowers the energy of a pair of
band-2 —band-1 electrons with opposite spins compared
to the similar spin arrangement. Thus, as Table III
shows, for antiferromagnetic coupling the magnetization
of the "light band" points in the opposite direction to the
one of the "heavy band" and they tend to cancel. This
cancellation of the partial magnetizations is analogous to
the Kondo screening of a local moment by the conduc-
tion electrons, except that in our case the "local-
moment" band is not fIat but somewhat delocalized for
large m@/m, . For the case of ferromagnetic coupling,
both magnetizations point in the same direction and add
to an enhanced total magnetic susceptibility. We stress

the fact that for large m2/m, the partial susceptibilities
in both bands are well enhanced over their nJ=O limit
for both couplings. This is easily seen from Tables II and
III by noting that the partial susceptibilities are propor-
tional to the product m,*a;, which is equal to 1 for an
ideal Fermi gas.

The physical picture that we can draw from these re-
sults is the following: the large repulsive U induces fer-
romagnetic correlations in the heavy band. A magnetic
coupling of any sign will induce these ferromagnetic
correlations in the light band. The enhanced partial sus-
ceptibilities are a consequence of this effect. The sign of
nJ determines the relative alignment of the magnetiza-
tions.

It is evident from this analysis why the physics seems
to saturate with nJ; i.e., once the partial susceptibilities
lock relative to each other, further increases in nJ have
an insignificant effect. The quenched susceptibility and
enhanced linear in T term in the specific heat give a Wil-
son ratio R given by Eq. (3.4) and shown in Table II and
Fig. 5, which for m z /m, =50 is of the order of 1 for anti-
ferromagnetic interband coupling. In contrast, for fer-
romagnetic coupling R =3, due to the enhanced magnet-
ic susceptibility and not so dramatic increase in y(0).

This picture brings about the interesting possibility
that an antiferromagnetically coupled two-band Fermi
liquid could display metamagnetism, in the sense first in-
troduced by %'ohlfarth and Rhodes, in the presence of a
large external magnetic p&8„,)nJ which breaks the
internal locking of the partial magnetizations. In addi-
tion to a real metamagnetic transition, a "near"-
metamagnetic transition, as proposed by Bedell and
Sanchez-Castro for liquid He, is possible. This in fact
is a more realistic possibility within our mode1, and ex-
periments here could provide a clear test of our band-
based picture versus the local-moment picture provided
by the Anderson lattice. It has been argued by Stamp
that the application of a large magnetic field would cause
an unbinding of the local moment and the conduction
electron in the Anderson lattice. At high fields there
would remain a light conduction band and a lattice of
weakly interacting local moments. In our picture, the re-
sulting state ~ould consist of two bands with much sma11-
er masses, since the interband spin fluctuations would be
suppressed. As a function of temperature, we expect the
thermal fluctuations to increase as the temperature is in-
creased and these will tend to suppress the antialignment
of the band magnetizations. This in turn will decrease
the masses and result in two bands that are close in mass
to the J=O starting bands. The important point to em-
phasize is that at high fields or high temperatures we will
have two bands present, which is distinct from the An-
derson lattice model or the Pethick ad Pines model. '

Support for a band picture can be found in photoemis-
sion experiments. Photoemission experiments have been
carried out as a function of temperature on UPt3 and
UBe&3. The main conclusion is that at low T there is a
narrow band at the Fermi level and at high T there is lit-
tle change. ' At first sight, the picture that we have of a
narrow band and a broad one at high temperatures ap-
pears inconsistent with the thermodynamic properties of
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the heavy fermions. In particular, the Curie or Curie-
Weiss behavior of g for large T is suggestive of local mo-
ments. It should be noted, however, that for T))TF a
Fermi liquid also has a Curie-like susceptibility. For
UPt3 a single-band picture would give a TF of the order
of 100 K and so by room temperature we could have
y-1/T. That this behavior is possible in a strongly
correlated system can be seen in liquid He. In He at
T TF, the spin susceptibility is of the Curie form. '

This is at a temperature far less than one might have ex-
pected. We do not wish to argue that the high-
temperature behavior of heavy-fermion materials is just
that of nondegenerate narrow-band electrons. However,
we wish to point out that this is not incompatible with
the observed behavior in these heavy-fermion systems.

In Table III, we also show values for the intraband
triplet interaction. That the triplet interaction is attrac-
tive and singlet pairing is not predicted (repulsive) is very
plausible within the framework of enhanced ferromagnet-
ic correlations within each band for any nonzero nJ. The
critical temperature of the system defined by the highest
T, predicted cannot be determined since we do not calcu-
late the constants a,. appearing in the Patton-
Zarringhalam formula, Eq. (3.17).

In Table II and Fig. 6, we also present the results of a
calculation of the non-umklapp part of the resistivity due
to electron-electron scattering as outlined in Sec. III.
The calculation was done using an s approximation for
the scattering amplitudes. It is evident from these results
that for a fixed m 2/m, an antiferromagnetic coupling
gives a larger T term in the resistivity than a ferromag-
netic one. This property, as well as the large effective-
mass enhancements for antiferromagnetic coupling, are
due to an enhanced scattering rate and a rapid energy
dependence of the electron self-energy. The conductivi-
ty is proportional to the imaginary part of the self-energy
while the effective mass is proportional to the real part,
thus large mass enhancements are consistent with large
T terms in the resistivity.

APPENDIX: THE s-p APPROXIMATION

and

1

A,"'(8,/=0)= g A," P, (cos8)
1=0

1

B"'(8,/=0)= g BP'Pi(cos8) .
1=0

(A I)

(A2)

The A ~'1' and B1'"', for example, can be obtained from
Eq. (3.11) evaluated with q =0 in X», X2z, and

q =pF —pF in X». The construction of the s-p approxi-(2) (&)

mation for the A '(8, $) is very similar to the one-
component case, and we will merely state the result,

ancl

1

A;; (8,$)= g (A;i+A;;i)cosPPi(cos8)
1=0

(A3)

1

A;t~(8, $)=—,
' g [(A; i

—3A;;i)
1=0

+ ( A;; l + A;; i ) cpo]SPY( c8o)s (A4)

For A2","(8,$), we must be more careful. We know that
under exchange of p3 and p& (P~P+7r),

A 2t,
" (8,$+~)= B t t(8,$)— (A5a)

In this appendix, we will show how to make an s-p ap-
proximation for the scattering amplitudes. These scatter-
ing amplitudes could be used in the calculation of trans-
port processes and the study of pairing mechanisms be-
tween quasiparticles. As usual, the scattering amplitudes
are described by the Abrikosov and Khalatnikov angles
(8,$), the angle between the incoming momenta p, and

p2, and the angle between the plane defined by the incom-
ing momenta p& and p2 and the plane defined by the out-
going momenta p3 and p4, respectively. We will assume
that we know the forward-scattering amplitudes, i.e.,

VII. CONCLUSIONS

In conclusion, the residual interactions in the two-band
Fermi liquid just described with antiferromagnetic inter-
band coupling induce ferromagnetic correlations in each
band and lock the partial magnetizations against each
other. This correlated state has an enhanced linear in T
term in the specific heat, a quenched magnetic suscepti-
bility, a small Wilson ratio, and a large T term in the
resistivity: all signatures of heavy-fermion behavior. The
properties of the system saturate with increasing J. A
strong external magnetic field that aligns the magnetiza-
tions of the two bands will produce a state with masses
closer to the zero interband coupling limit.
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or

B "t(8,$+~)= —A ~~,~(8,$) .

In addition, Eqs. (Al) and (A2) give

1

Aztt(8, /=0)= g (A2, i+ A2, i)Pi(cos8)
1=0

1

B tt(8, /=0)= g (Bi'+BP )Pi(cos8) .
1=0

To solve for the Azt,t(8, $) and B "t(8,$), we write
1

A z",
t (8,$)= g (a, +Pl cosg)Pi(cos8)

1=0

and

1

(8,$)= g (y&+5icosg)Pi(cos8) .
1=0

(A5b)

(A7)

(A8)

(A9)
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Using Eq. (A5) with /=0 and Eqs. (A6) and (A7), we can
determine at, Pt, yt, 5t. We obtain

1

~21 (0 ( ) p X [(~21,!+~21,/ Bt Bt )
1=0

+(A2t t+ A2, t+Bt'+Bt') costb]

XPt(cos0)

and
1

B 1 "(0,$)=—,
' g [(Bt'+Bt' A2, ,

——22, 1)
1=0

and

1

B'(0,/=0)= g Bt'Pt(cos8) .
I=O

(A 14)

+ ( A 2) t
—A 2, t +2Bt') cosg]Pt (cos8)

Solving these equations in an analogous way to Eqs. (A8)
and (A9), we obtain

1

A" (0 p):—g [(Az~ t 22~ t 2Bt )
1=0

+ (Bt'+ Bt'+ 3 2, , + A 2, t ) cosP]

XP, (cos0) . (Al I) and

(A15)

A similar procedure is done with Azt, (8,$). We know
that under exchange of p3 and p&,

1

B'(0 0)= 2' X [[Bt'
j=o

or

3 2t,
" (0, ttp+rr) = 2B'—(8,$) (A12a) +[Bi'+ ,'(2 z, t

——22,i)] cosg]Pt(cos8) .

B '( 8, $+ rr ) = —
—,
' A 2t,

t
( 8,$ ) .

In addition, Eqs. (Al) and (A2) give

(A12b) B (0,y) follows from

B«(0, y) =B"(0,(())—ZB'(0, y) . (A17)

1

A2tt(8, /=0)= g (Az, t
—Az, t)P&(cos8)

1=0
(A13)

Thus, we have the desired generalization of the s-p ap-
proximation to a two-component Fermi liquid.
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