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Quantitative study of the Kosterlitz-Thouless phase
transition in a system of two-dimensional plane rotators

mo e: i - em era ure ex ansions o Or er

P. Butera and M. Comi
Istituto Nazionale di Eisica NucLeare, Dipartimento di Fisica, Universita di Milano,

Via CeLoria 16, 20189 MiLtano, Italy
(Received 20 August 1992)

High-temperature series expansions of the spin-spin correlation function for the plane rotator (or
XY) model on the square lattice are extended by three terms through order P . Tables of the
expansion coefBcients are reported for the correlation function spherical moments of order t = 0, 1, 2.
The expansion coefficients through P for the vorticity are also tabulated. Our analysis of the series
supports the Kosterlitz-Thouless predictions on the structure of the critical singularities and leads
to fairly accurate estimates of the critical parameters.

I. INTRODUCTION

The critical behavior of the two-dimensional (2D)
plane rotator (or XY) model, has long been studied nu-
merically by high-temperature expansions (HTE's), i s

by Hamiltonian strong-coupling expansions, by Monte
Carlo (MC) simulations, s and by other techniques. In
spite of these considerable efforts, a really accurate ver-
ification of the Kosterlitz and Thouless (KT) theoryvs
remained out of reach before recent technical advances
such as the recent invention of MC algorithms with re-
duced critical slowing down, the calculation of long
high-temperature expansions, and the availability of a
greater computing power. In the last few years many ex-
tensive numerical studies of an increasing accuracy have
appeared, part of which have been also stimulated
by a challenge to the KT approach issued in Ref. 6. These
works generally favor the essential singularity structure
predicted by KT arguments over the power-law structure
of usual critical phenomena. However, one more warning
for caution on the actual scope and limits of MC results
came from Ref. 13, reporting an exemplary analysis of a
multigrid MC simulation and a critical review of previous
MC works. This paper sets higher qualitative standards
for future MC studies and, like Ref. 6, again questions
the possibility of discriminating between the KT and the
power-law scenarios, only by fits to MC data with the
present level of accuracy and extension. On the other
hand, we had stressed that, even in the absence of a de-
tailed rigorous theoretical treatment of the XY model,
the general attitude in favor of the KT picture can be
convincingly justified, already now, if all available nu-
merical evidence both from the simulations and from the
newly computed HTE's is properly taken into account.

Here we present a further extension (by three terms
up to order P~o) and a new analysis of HTE's for the
2D plane rotator model on the square lattice. A HTE
approach is always a necessary complement to the statis-
tical simulations since it provides detailed and extensive
information, but in this case it also improves significantly
our chances to distinguish numerically between the KT

and the power-law behaviors and leads us to exclude this
latter possibility. Once the question concerning the na-
ture of the critical singularity is settled, we can get re-
liable estimates of the critical parameters, although, in
this case, perhaps less precise than it could be expected
from series of such a length.

The paper is organized as follows: In Sec. II the def-
initions of the quantities that have been computed are
brieBy recalled and their HTE coefBcients are tabulated.
Section III is devoted to an analysis of the series by ratio
extrapolation and by rational and differential approxi-
mants techniques. Section IV contains some discussion
of previous work and our conclusions.

II. HIGH-TEMPERATURE SERIES

The Hamiltonian of the two-dimensional plane rotator
(or AY) model is

H(s) = —) ) s(x) . s(x+ e„).

Here s(z) is a two-component classical spin of unit length
associated to the site with position vector x = nqeq +
n2e2 = (ni, nq) of a two-dimensional square lattice, and
e~, e~ are the two elementary lattice vectors. The sum
over x extends over all lattice sites.

Our series have been computed by a FORTRAN code
which solves iteratively the Schwinger-Dyson equations
for the correlation functions. i i The algorithm has
been described in full detail in Ref. 9. Here it is enough
to mention that we have computed the HTE coeKcients
of the two-point correlation function

&(~ &) = (s(0). s(~)) (2)

for the 120 inequivalent sites x for which the expansion
is nontrivial to order P . In this approach the main
obstacle to a further extension of our results is not com-
putational time which is still definitely modest (of the
order of 20 h for a 3500 VAX station), but the increas-
ing demand of fast memory. Our work has been made
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TABLE I. HTE coefFicients of the nearest-neighbor corre-
lation C(0, x) with x = (0, 1).

TABLE III. HTE coefFicients of the next-nearest-neighbor
correlation C(0, x) with x = (1, 1).

Order

1
3
5
7
9
11
13
15
17
19

CoefFicient

0.500000000000000000000000000000
0.187500000000000000000000000000
0.010416666666666666666666666666
-0,005045572916666666666666666666
-0.011897786458333333333333333333
-0.009914482964409722222222222222
-0,006428721594432043650793650793
-0,003556433509266565716455853174
-0.001900080568517583644836294214
-0.000804827256075995542618566322

Order

2
4
6
8
10
12
14
16
18
20

CoefFicient

0.500000000000000000000000000000
0.125000000000000000000000000000
0,005208333333333333333333333333
-0.012695312500000000000000000000
-0,016959635416666666666666666666
-0.012420654296875000000000000000
-0.007721207633851066468253968253
-0.004255058809562965675636574074
-0.002158290178150189710135275818
-0.000850845285942630162314763144

possible by a laborious segmentation of the computing
procedure.

The object of our analysis are the series for the spher-
ical moments of the correlation function m((&(P) defined
as follows:

TABLE II. HTE coefFicients of the next-nearest-neighbor
correlation C(0, x) with x = (0, 2).

Order

4
6
8
10
12
14
16
18
20

Coefficient

0.25000000000000000000000000000000
0.31250000000000000000000000000000
0.04557291666666666666666666666666
-0.0239257812500000000000000000000
-0.0236504448784722222222222222222
-0.0180172390407986111111111111111
-0.0109599196721637059771825396825
-0.00643771678156743394424465388007
-0,00331282301929834284736622835219
-0.00150452549535034334988961284262

(here ~x~ = gni + n2), l & 0, and the sum extends
over all lattice sites. The zeroth-order spherical mo-
rnent m(o)(P) is also called (reduced) susceptibility and
denoted by y(P). The data we are presenting augment
significantly our earlier work.

In Tables I, II, and III we have reported the HTE coef-
ficients through P2o of the spin-spin correlation functions

(s(0) s(x)) with x = (1, 0), x = (2, 0), and x = (1, 1),
respectively.

In Tables IV, V, and VI we have reported the expansion
coefficients for the moments m(() (P) with t = 0, 1, 2.

In Table VII we have reported the HTE coefBcients
through Pis of the expectation value of the squared vor-
ticity v(P), a quantity built in terms of two-, three-, and
four-spin correlation functions which probes the vortex
pair dissociation mechanism of the phase transition. In
the definition of the vorticity it is convenient to refer to
the representation s(x) = ( cos 8(x), sin e(x)), and then
we have

( ]1~+m( ) (ein(sq —82)+im(82 —83)
)7r2 nm

n, m+0
( 1)n+m( )

(
in(sg —sg)+irn(sp —84)

)7r2 nm
n, mgo

TABLE IV. HTE coefBcients of the susceptibility m

Order

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

CoeKcient

1.000000000000000000000000
2.000000000000000000000000
3.000000000000000000000000
4.250000000000000000000000
5.500000000000000000000000
6.854166666666666666666667
8.265625000000000000000000
9.722005208333333333333333
11.205078125000000000000000
12.675553385416666666666667
14.152012803819444444444444
15.601900227864583333333333
17.019300672743055555555556
18.392466299874441964285714
19.714506515624031187996032
20.971455838629808375444362
22.163650634196279751140184
23.280944825182959960064373
24.320568285114725921379686
25.279185763955802490448171
26.153731926768238512226443

Here Oq, 02, 83, 04 are the angular variables associated
with the four sites defining an elementary square on the
lattice. We shall only tabulate this series, since it has
already been extensively discussed in Ref. 18, where our
HTE has been compared to a Langevin simulation.

Finally, we remind the interested reader that a list
of the presently available HT data for this model also
includes a seriess through P for the "true correlation
length" and a series through P 4 for g(4)(P), the sec-
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TABLE V. HTE coefficients of the first correlation mo-

ment m~ &.

TABLE VII. HTE coefficients of the expectation of the
squared vorticity (v(P) ).

Order Coefficient Order Coefficient

0
1
2
3

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.000000000000000000000000
2.000000000000000000000000
4.828427124746190097603377
8.958203932499369089227521
14,774302788642591334803698
22.405537350785873843406389
32.018311604539175300778647
43.776633965886723037276578
57.804795726728279225339368
74.171223440617174956388203
92.948162559177956624043786
114.170878181118055761226873
137.820848184699262000940865
163.889685030219313242632769
192.312469972536223823702791
223.008032736766111405219191
255.881465307579934186740726
290.805253343564738390269085
327.634680720388208255919862
366.217176852355184083122429
406.375299064909623959197097

ond derivative of the susceptibility with respect to the
magnetic Beld at zero Beld.

TABLE VI. HTE coefFicients of the second correlation
moment m~ ~.

Order CoefFicient

III. ANALYSIS OF THE HT SERIES

In this section we present the estimates of the crit-
ical parameters obtained by simple methods of series
analysis which, after some numerical experiment-

0
1
2
3

5
6
7
8
9
10
11
12
13
14
15

0.33333333333333333333333333333333
-0.20264236728467554288775892641946
-0.13931662750821443573533426191338
-0.00093815910779942380966555058527
-0.01391846988836801417621000438623
0.02145616787492672223895597466054
0.00395517130108460209757177042318
0.00626571732016345480145945834089
0.00498164199972076876178153427788
0.00188487896531662245169702329601
0.00506374324797059743179508168123
-0.00016501166685598670821344313122
0.00321456708015923485554342658920
-0.00038482795295650133767225429558
0.00167133027095100840999836256202
-0.00028727125412299355443537746859

where 7 = P, —P.
The value of the exponent o predicted in Ref. 7 is o. =

1/2 and 6 is a nonuniversal positive constant.
At the critical temperature, the asymptotic behavior

of the two-spin correlation function as r = ~x~
—+ oo is

expected to be

ing both with appropriate model series and with our se-
ries, turned out to be best suited for extracting the ex-
pected behavior of the correlation moments in the critical
region.

Let us first recall briefly the main results of the non-
rigorous renormalization-group analysis of the plane ro-
tator model. 7 8

The correlation length ((P) is expected to diverge as
P f P, with the unusual singularity

((P) ~ ( .(P) = exp
I —.

I
[1+O(r)],

(bl

0
1
2
3

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.000000000000000000000000000
2.000000000000000000000000000
8.000000000000000000000000000
20.25000000000000000000000000
42.00000000000000000000000000
76.85416666666666666666666666
129.0208333333333333333333333
203.2220052083333333333333333
304.6718750000000000000000000
438.9568033854166666666666666
612.0054470486111111111111111
830.0374037000868055555555556
1099.397710503472222222222222
1426.589506772964719742063492
1818.089718954903738839285714
2280.298322941197289360894097
2819.491738309136984419780644
3441.674843107074259683802248
4152.534972385628279951911521
4957.398607418558360103903951
5861.100409957330553479786132

lnr"
(s(0) s(x)) oc [1 + O(ln[ln(r)]/ln(r))]. (6)

The values predicted7' for q and 0 are, respectively,
r1 = 1/4, 8 = 1/16.

From Eqs. (5) and (6) it follows that, for t ) q —2,
the correlation moment m~'1(P) should diverge as P $ P,
with the singularity

m~'1(p) oc r (,(p) "+ [1+O(r&ln(r))].

At P, a line of critical points should begin which ex-
tends to p = oo, so that for p ) p, both ( and the
correlation moments remain infinite.

Finally, we must recall that the existence of a transition
of the system from a vortex-dominated high-temperature
phase to a spin-wave low-temperature phase has been
proved2s and that the lower bound P, ) ln(1 + v2) =
0.88 has been established for the critical inverse tem-
perature.
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In Ref. 9 we used a theorem of Darboux to point
out that the leading asymptotic behavior for large order
of the HTE coefficients of ( (and of the correlation mo-
rn~nts) may be estimated by saddle-point approximation
of a contour integral, if it is determined by the singularity
(5). Consider, for example, ((P) = P„c„P";then, for
large n, we have

(8)

For general 6, o & 0, the following asymptotic expression
is obtained:9

c„ocP,
" exp[B(n+ 1) '+ O(n( &')], (9)

with

(cr + 1)b'
(&p )oe

1

1+CD
(10)and

Therefore for the ratios of the successive HTE coefficients
r„(() = c„/c„+i we have

with C = —(oh'~)' and A = min(1, 2e). A similar for-

mula is valid for the ratios r„(m( &) = a„ /a„+i of the(~) (~)

successive HTE coeKcients of the correlation moment
m('&(P) if C is replaced by C~ = —[(2 —

r& + t)crbP, ]'.
The correction terms O(1/n") in (ll) also account for
the subdominant singularities in (5). According to the
KT prediction we should have e = 2/3. This is a neat
signature of the KT singularity in the HTE approach.

On the other hand, if, instead of (5) and (7), we had
conventional power-law critical singularities so that, as
/3T P.,

m&'&(P) - r ' '"
[At + Bir~ + ],

where 6 ) 0 and, as usual, p and v denote the suscepti-
bility and the correlation length exponents, respectively,
we would obtain a formula analogous to Eq. (11) with
a=1 and A= 1+4, namely,

r„(m('&) = P. + ' +O(1/n'+ ). ( 3)n

A complication for the series analysis is due to the occur-
rence of an antiferromagnetic singularity at —P, which is
typical of loose lattices. It should, however, affect only
the higher correction terms in (11) [or in (13)], usually
introducing oscillations in the ratio plots. A simple pre-
scription to reduce this inconvenience in numerical ex-
trapolations consists in studying the ratios of alternate

coefficients, for example, r„(m ) = a„ i/a„+i in-(~) (t)

stead of the usual ratios r„(m ) = a„ /a„+i.(i) (l) (l)

In view of the above considerations consistent evidence
that o P 0 is evidence against simple power-law behav-
ior and therefore our analysis should begin by trying to
estimate o. or, equivalently, e.

Let us first perform the simplest tests on the ratio se-
quences.

I I I I t I I I I

1.0 0

n
O

0

0.7
4

I I I I I I I I I I

0.20. 1

1/n
0.0

FIG, 1. Alternate ratios of HTE coefBcients of various
moments are plotted vs 1/n. The alternate ratios r„(y) are
represented by solid squares, r„(m ) by solid triangles. We
have also plotted the linearly extrapolated sequences r~'&(y)

(open squares) and r„(m~ &) (open triangles).

In Fig. 1 we have plotted vs 1/n the sequences of al-
ternate ratios r„(m('&) for t = 0, 1, 2. These ratio plots
exhibit a sizable curvature and an increasing slope for
large n. If Eq. (13) were an adequate representation of
the asymptotic behavior of r„(m('&), we should be able to
suppress the O(l/n) terms in (13) by forming the linearly
extrapolated sequences

r( &(m('&) = nr„(m('&) —(n —1)r„ i(m(' )
= P, + O(1/n'+~), (14)

which, for large n, should approach with vanishing slope
their common limit P, . However, this does not happen,
as is shown in Fig. 1, where we have also plotted the
extrapolated sequences r„(m('&) vs 1/n. The estimates-(&)

of P, thus obtained are still rapidly increasing with order.
Still under the assumption of power-law critical singu-

larities, we might also compute a sequence of (unbiased)
estimates of p + l v by the formula

(~+lv) = (n —1) r„(m&'&) —n(n —2)r„ i(m&'&)

nr„ i (m&'&) —(n —1)r„(m('& )

(15)

We have reported the sequences of estimates so ob-
tained for p and p+ v vs 1/n in Fig. 2. If any conclusion
at all may be drawn from these standard computations
it is that, under the assumption of power-law scaling, a
ratio analysis might suggest that P, ) 1.06, p ) 2.9,
and p + v & 4. The simplest extrapolations would sug-
gest P, ) 1.09, p ) 3.4, and p + v ) 4.8. As we shall
discuss later, these estimates are inconsistent with the
significantly smaller estimates resulting from fits of MC
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4.0

Vl

C
El
C
O

3-0

0.0 0.05
1/n

oo 0 0
I

0.10

I IG. 2. Unbiased estimates of the critical exponent p of
the susceptibility under the assumption of a power-law critical
singularity obtained from the alternate ratios r„(y) (open cir-
cles). Analogous estimates of the exponent p+ v as obtained
from r„(m ) (open triangles).

n2/sr„(m&'&) —(n —2) '/'r„, (m('&)s„(m') =
n2/s (n 2)2/s

=P, + O(1/n)

does not result in a sequence regular enough to war-
rant a further extrapolation in 1/n and therefore a more
precise estimate of P, . We have, however, computed
also the linearly extrapolated sequence s„(m& )) and re--(~)

ported the results in Fig. 3. From these we can infer
that P, = 1.120 + 0.005. A possible improvement of this
procedure should be based on Euler-transformed moment
series, as we have discussed at length in Ref. 9, where the
results and the conclusions of this kind of analysis on a
shorter series can be found. Since this procedure might
be questioned, 2 we will not insist on the details here.

We can give a direct unbiased estimate of e in terms of
ratios as follows. Introduce the quantity

"(X).
" (&)

data to power-law critical behavior.
Let us observe now that, if Eq. (11 is valid instead of

Eq. (13), then by reporting the r„(m( ) ) sequences versus
I/n2/s, we should obtain nicely straight plots. Figure 3
appears to be a convincing illustration of this statement.
The next obvious step of suppressing the O(1/n2/s) terms
in the sequences r„(m&')) by forming the (nonlinearly)
extrapolated sequences

I I I I I I I I I I I I I I

&n —&e„=nln
tn+z —1) (18)

will provide estimates of e. Quantities u„and v„analo-
gous to t„may be defined in terms of the moments m&~)

and m(2& and their squares, and, via Eq. (18), the corre-
sponding sequences e'„and e„" may be formed. All these
sequences have been plotted vs 1/n in Fig. 4. They are
slightly irregular so that it is not easy to get precise ex-
trapolations to n = oo. The figure, however, clearly sug-

then, if the ratios r„(y) and r„(y ) have the asymptotic
behavior (11), the sequence

CF

q 0
0.80

0.9
0.75

0.&

0.8

0.0
I I I I I

0. 1 0.2
S n'~'

0.4S

FIG. 3. Ratio plots for alternate HTE coefBcients vs
1/n / . The alternate ratios r (y) are represented by solid
squares, r„(mi l) by solid triangles. The alternate ratio se-
quences have been extrapolated in 1/n obtaining the se-
quences s„(y) (open squares), s (m~'l) (open triangles). A
further extrapolation in 1/n of the sequences s gives s„(y)
(stars), s„(m ) (crosses).

0.
n

FIG. 4. Sequences e (crosses), e'„(open triangles), e'„'

(open circles), as computed from the quantities t introduced
in (17), and from the analogous ones u and v~, are plotted
vs —„. The dashed line indicates the KT prediction for the
value of e.
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gests that the sequences have a common limiting value
somewhere around 0.67. This result definitely excludes a
power-law singularity (in that case, of course, the limit-
ing value should be 1) and compares very nicely with the
KT prediction e = 2/3.

Other prescriptions to compute e, as well as to obtain
a first estimate of the exponent 8, involve Pade approxi-
mants (PA's).

Before entering into the PA analysis, let us recall that
PA's are known to converge well to (locally) meromor-
phic analytic functions. In order to take advantage of
this property, it would be convenient to work with suit-
able functions of the given HT series for which the crit-
ical singularity is a simple pole. Because of the struc-
tures (5) and (7), this is not possible in general, and, at
best, one can form functions of the HT series having a
simple pole accompanied by subdominant confiuent sin-
gularities. As a consequence, whenever high-precision
estimates are pursued from expansions of limited length,
one should keep in mind that the convergence properties
and the accuracy of the PA estimates may be different,
not only for different quantities, but also for different
functions of the same quantity, according to the nature
and relative strength of the subdominant singularities.
For instance, estimates of P, or cr obtained from differ-
ent moments (or different functions of the same moment)
may differ more than the (statistical) quantity (see be-
low) we shall adopt as an estimate of the error. In order
to reduce this "systematical" error in the analysis, one
should resort to differential approximants (DA's), a nat-
ural generalization of the rational approximants which,
unlike PA's, can make allowance numerically for the con-
Huent subdominant singularities. Occasionally, we have
also computed DA s, restricting for simplicity to first-
order inhomogeneous DA's. These are probably not Hex-

ible enough, so that only partial improvements are gained
and therefore the analysis ought to be properly extended
to second-order DA's.

One should also note that it is necessary to analyze var-
ious moments in order to compute all critical parameters
of interest, but not all moments (at a given fixed order
of HTE) are expected to be equally reliable. Indeed, for
higher values of t, the moment rnid'&(P) receives a larger
contribution from correlations between distant spins for

which a smaller number of HTE coefBcients is available,
so that it might be slower in reaching the asymptotic
regime. In this connection we have also explored the
consequences of a prescription of least sensitivity of the
results to the choice of t. As we shall discuss later, in an
estimate of the critical exponent g which involves two dif-
ferent moments, it seems convenient to use m~o&(P) and
another moment mi'l(P) with small l chosen such that
the estimate of g is stationary in t.

Let us now specify our way of presenting the results.
Given the first n+ 1 terms of a power series in P, we

will form all [N/D] PA's with N + D & n. We will al-

ways take N, D & G. The quantities of interest for each
approximant, such as the location of the "critical" pole,
the residue at that pole, or simply the value at P, of
the PA, will be displayed in a triangular array, denoted
as a Pade table, with N labeling the columns and D
the rows. Whenever some entry is followed by an aster-
isk ("defective entry") we will mean that there might be
convergence problems indicated by the presence in the
corresponding approximant of more than a single pole
in the range 0 & P & 1.2P, or in a narrow complex
strip containing this segment. A blank is left in the ta-
ble whenever no value in the numerical range of interest
exists for the corresponding approximant.

The indications coming from a PA analysis using n+ 1
coeKcients will be summarized by an estimate, obtained
by averaging over a "sample" including all nondefective
entries of the PA table with N, D & 5 and n —2
K+ D & n and qualified by a conventional "error, " de-
fined as twice the standard deviation of the mean value.
Whenever, for suKciently large N+ D, the entries of the
PA table are not too scattered and the successive aver-

ages show no residual trend, these are sensible definitions
which may be slightly refined by excluding from our sam-
ple occasional entries differing from the mean more than
5 standard deviations and then recomputing the mean
value and the standard deviation on the smaller sample.
Sometimes we shall find it suggestive to visualize by a
histogram the spread of the entries of a Pade table.

Let us now evaluate e by a Pade technique.
Computing the PA's to Din[in(y)/P], the logarithmic

derivative of ln(y)/P should enable us to discriminate
between the structures (7) and (12) of the critical singu-

TABLE VIII. Location of the critical poles of the PA's to Din[In(g)/P]. The degree N of the PA numerator labels the
columns, and the degree D of the denominator labels the rows. Asterisks indicate the "defective entries"; blanks indicate the
lack of an acceptable entry.

5
6
7
8
9
10
11
12
13

1.1408
1.1476*

1.1142
1.1208
1.1265
1.1185
1.1236
1.1611*

1.1277

1.1431
1.1271
1.1242
1.1233
1.1218
1.1208

1.1129
1.1193
1.1225
1.1223*
1.1218
1.1375*
1.1068*

1.1261
1.1223
1.1226*
1.1225*
1.1029*

1,1312
1.1169
1.1219
1.1225*
1.1225*

10

1.1319*
1.1231
1.1202
1.1116

1.1029
1.1094
1,1174

12

1.1087
1.0996*

1.1133



47 QUANTITATIVE STUDY OF THE KOSTERLITZ-THOULESS. . . 11 97S

TABLE IX. Residues at the critical poles of the PA s to D in[in(y)/P]. Same conventions as in the previous table.

5
6
7
8
9
10
11
12
13

N
5

0.611
0.630*

0.512
0.540
0.566
0.526
0.553
0.740*

0.563

0.620
0.567
0.554
0.550
0.543
0.537

0.504
0.531
0.545
0.545*
0.542
0.549*
0,408*

0.564
0.545
0.546*
0.545*
0.364*

0.596
0.516
0.542
0.545*
0.546*

10

0.600*
0.549
0.533
0.470

0.420
0.463
0.516

12

0.458
0.400*

0.488

larity, since the residues at the critical poles have either
to approach o, if (7) holds, or to vanish, if (12) holds.

Table VIII is the Pade table for the location of the
critical pole of the approximants to Dln[ln(y)/P], and
Table IX is the Pade table for the residues. From this
(unbiased) analysis we get the estimates P, = 1.118 +
0.003 and o = 0.52 6 0.03.

By a similar argument it should be convenient to
study the residue at the critical pole for the PA's to
D ln[D ln(y)], the double-logarithmic derivative of y(P).
The residue should tend either to 1, if (12) holds, or to
1+o, if (7) holds.

In this case, however, the convergence is less good,
probably due to subdominant singularities stronger than
in the previous case, but again the KT structure is clearly
favored. We find P, = 1.114+ 0.0035 and cr = 0.4 +
0.02. We can try to reduce the influence of the confluent
singularities by a simple modification of this analysis,
namely, by computing PA's to ~D ln[wD ln(y)] at P = )9,.
Of course, this is a biased test since a previous knowledge
of P, is required. If we take P, = 1.118, we get o
0.48 + 0.03, in good agreement with the results obtained
from the study of D in[in(y)/P]. Repeating these tests on
higher-order moments we get consistent results although
with slightly higher central values for P, . For instance,
a study of Dln[ln(l+ m( ))/P] yields P, = 1.127+0.005
and o = 0.55 + 0.03; however, the successive averages
show a residual decreasing trend.

Another simple (biased) test of the singularity struc-
ture (7) is performed by computing the quantity

The data suggest that p ) 4 5 and p+ v ) 6 5, show-
ing complete consistency with the indications from the
ratio tests. These conclusions remain essentially unmod-
ified if we evaluate T(y) and T(m&r) ) at the smaller value

P, = 1.09 which, under the assumption of power-law be-
havior, seems to be indicated by ratio extrapolations and
by PA's to the logarithmic derivative of y(P) (see be-
low). Finally, taking the value P, = 1.01, as indicated
by a recent power-law fit to MC data, yields p ) 3.5
and p + v ) 6.5. Needless to mention, we may also
compute T(ln(y)) or T(Din(y)) and check that ln(y)
[respectively D ln(y)] exhibit the power singularities ex-
pected from (7).

Another biased computation which gives fairly good
estimates for some critical parameters is the following.
Let us fix a value for the constant o' and compute PA's
for the quantity

(20)

under the assumption (7).
We have varied o' in small steps from 0.49 to 0.51.

The results are summarized in Fig. 6 showing how the
estimate of )9, depends on a'. By the same procedure we

15

D ln[Dy(P)]
D ln[y(P)]

(19)

or analogous quantities formed from other correlation
moments. If y(P) has the KT singularity structure
(7), then, as P 't P„we find T(y) = 1 + O(~ ). If,
on the contrary, y(P) has a power-law singularity, then
T(y) = 1+ —+ O(~). We can therefore distinguish the
two cases by evaluating PA's of T(y) at the critical in-
verse temperature P, and thus obtaining some "effective
value" for p. We have taken P, = 1.118. The histogram
in Fig. 5 shows the distribution of the values of T &

in the
PA table. Analogously computing T(m(r) ) we can obtain
an "effective value" for p+ v. The results of this compu-
tation are also reported in Fig. 5 as a hatched histogram.

5
D
C P

n, , e, ~~.
4-0 6.0

value
8.0

FIG. 5. Distribution of the values in the PA table of the
quantity [T(g) —1] (P,) defined by (19) (unhatched his-
togram). The same for the quantity [T(m ')) —1] '(P, )
(hatched histogram) .
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FIG. 6. Estimates of the inverse critical temperature P„
obtained from a study of the "critical pole" of the PA's to
('"&" )+, are plotted vs cr'.

may get the quantity (2 —rl)b as a function of 0 from the
residue at the critical pole of the PA's. For the particular
value cr' = 1/2, the PA table for the position of the crit-
ical singularity is reported as Table X. The distribution
of the values of P, in the PA table is displayed in the
histogram of Fig. 7. The values of 6 computed from the
residues at the poles (assuming moreover ri = 1/4) are
reported in Table XI. From this analysis final estimates
for P, and b are P, = 1.1151+0.14(cr' —0.5) +0.0002 and
b = 1.672 —3.4(cr' —0.5) 6 0.004.

If we assume a power-law singularity such as in (12),
from a study of the PA's to the logarithmic derivative
of the susceptibility D ln(X), we should be able to esti-
mate P„and from their residues, the critical exponent

As we have already discussed, s both the PA tables
for the poles and for the residues (which we shall not
report) contain many "defective entries" or blanks and
do not show a good convergence. These features of the
approximants suggest that the critical singularity is not
a power. If we insist in producing anyway some estimate
of the critical parameters, then, by averaging over all rel-
evant entries of the PA tables for the poles and residues
of the approximants to D ln(y) with 18 & N + D & 19,
we get P, = 1.08 + 0.02 and p = 4.1+0.6. Analogously
by studying the PA's of D 1n(m(2) /m( &), we get the esti-
mates P, = 1.07+0.01 and v = 2.2+O.l. These estimates

FIG. 7. Histogram of the distribution of the values of P, in
the table of PA's to D ln(g) (N, D ) 5 and N+ D & 19) with
a resolution of 10 . For contrast the narrow distribution of
the values of P, in the PA table for [In(y)/Pj is also reported
(hatched histogram on the right).

are consistent with those obtained from ratio tests and
from a study of T(y) and T(m( )) but not with those
obtained from recent power-law fits to MC data. ' 3 A
histogram showing the broad distribution of the values
of P, in the PA table for Din(g) is reported in Fig. 7.
Note the contrast with the very narrow distribution of
the values of P, in the PA table for [In(y)/P]2 displayed
(as a hatched histogram) in the same figure.

The critical index g governing the large distance behav-
ior of spin-spin correlation functions may be estimated
observing that, by Eqs. (5) and (7),

(21)
at p = p, . Taking p, = 1.118 yields rl = 0.293 +0.015,
which is not too far from the value predicted by KT.
A similar quantity has also been computed by MC
simulationsii 4 in the range 0.73 & P & 0.94, obtaining
results completely consistent with ours. The exponent g
may also be computed from PA's to the ratio

(22)

We have taken P, = 1.118 and have repeated the com-

TABLE X. Location of the critical poles of the PA's to [In(y)/Pj . Same conventions as in the previous table.

5
6
7
8
9
10
11
12
13
14

1.1152
1.1136
1.1128
1.1130
1 ~ 1142
1.1155
1.1155
I.1173*
1.1157

1.1088
1.1132
1.0901*
1.1130
1.1127*
1.1189*
1.1155
1.1155
1.1151

1.1105
1.1119
1.1127
1.1136
1.1059*
1.1148
1.1147
1.1152

1.1106
1,1079*
1.0944*
1.1153
1.1164
1.1147
1.1148

1.1091
1.1160
1.1157
1.1155

10

1.0811*
1.1128
1.1155
1.1154

1.1167
1.1151
1.1145
1.1154

1.1154
1.1140
1.1148

1.1149
1.1149

1.1149
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FIG. 8. Estimates of the exponent g obtained from the
quantity L(P„l) of Eq. (22) are plotted vs I for P, = 1.118.
The solid line indicates the KT prediction for the value of g.

8(P, ri) = ~[D ln(y) + (2 —ri) D ln(m ) /m( &)]. (24)

In Fig. 9 we have reported the quantity 8(P„q) vs ri for
various values of p, in the range 1.112 ( p, ( 1.121. It
is remarkable how precisely correlated are the expected
values of 6I and g.

putation for closely spaced values of t in the range [1/4,
7/4]. The estimates so obtained have been plotted vs
t in Fig. 8. Since the results should not depend on t,
it is reasonable to expect that the stationary value of
L(P„t) with respect to t is the best value of rl. This
gives g = 0.27 + 0.02.

Finally let us discuss brieBy the small power correction
s to the dominant singular behavior in (7) which has

always eluded detection by any numerical method, in-
cluding the HT series. By taking advantage of the three
new HT coefficients available we can now give a first in-
dication of its existence. We can isolate this singularity
in a doubly biased analysis (with respect to rl and P~) by
forming the quantity

S(p) = &(p)[ &'&(p)/ml')(p)]'- = O( -'). (23)

Then 8 is obtained as the residue of the logarithmic
derivative of S(P) at P = P, or, equivalently, as the value
at P, of the quantity

FIG. 9. Estimates (biased in rl and P,) of the exponent
8 as computed from the quantity 8(P, rl) defined in (24) are
plotted vs rl for various values of P, : P, = 1.112 (squares),
P, = 1.115 (triangles), P, = 1.118 (triangles), P, = 1.121
(rhombuses). The continuous line indicates the KT prediction
for the value of 0.

IV. CONCLUSIONS

Let us now compare our results to those obtained in
previous papers and state our conclusions.

The first MC works5 were suggestive, but inconclusive.
The size of the systems studied was too small and there-
fore the range of values of P explored in the simulations
was still too far away from criticality, so that the data,
although compatible or even strongly suggestive of a KT
behavior, generally could be fitted as well in terms of
a conventional power-law singularity. The limitations of
these first-generation studies have been thoroughly de-
scribed in Ref. 13, to which we address the interested
reader.

The new generation of MC studies l1—14 taking de-
cisive advantage both of the greater computing power
presently available and of the newly invented algorithms
with reduced critical slowing down, could be performed
on rather large lattices, up to 512' sitesi (or even 1200
sites in the case of Ref. 14 devoted, however, to the Vil-
lain modelzs). As a consequence, the recent MC data
are either practically free from finite-size eKects
or they have been carefully analyzed in terms of finite-

TABLE XI. Residues at the critical poles of the PA's to [ln(y)/P] . Same conventions as in the previous table.

5
6
7
8
9
10
11
12
13
14

1.670
1.653
1.646
1.648
1.660
1.676
1.677
1.698*
1.680

1.609
1.649
1.306*
1.648
1.645*
1.738*
1.677
1.676
1.671

1.623
1.636
1.644
1.654
1.636*
1.667
1.665
1.673

1.623
1.607*
1.676*
1.674
1.692
1.666
1.667

1.613
1.685
1.680
1.677

10

2.255*
1.643
1.677
1.675

1.692
1.671
1.663
1.676

12

1.675
1.655
1.667

13

1.668
1.669

14

1.668
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size scaling. As has been extensively discussed in Ref. 13,
the recent simulations give more reliable, but, perhaps,
not yet definitive indications in favor of the KT descrip-
tion. Indeed, the authors of Ref. 13 point out that a
previous fit to power-law behavior, which produced the
estimates for the critical parameters, P, = 1.01 6 0.01,
p = 2.17 + 0.10, v = 1.34 + 0.04, and g = 0.386 + 0.02,
seems to be still consistent with their data, provided that
the critical inverse temperature is increased to the value
P, = 1.05.

The data of Ref. 13, of course, may also be fitted to
the KT behavior, and, assuming cr = 1/2, the estimates
P, = 1.13 + 0.015 and b = 2.15 + O. l are obtained.

We should also mention an overrelaxed MC study on
a 512 lattice, in which data have been taken up to
P = 1.02. The conclusions of Ref. 11 are not essen-
tially difFerent: It is difficult to discriminate between the
KT and the power-law fits (even) if only MC data for
P & 0.94 (( ) 15) are used. Moreover unconstrained in-
dependent (four parameter) best fits to KT behavior of
the data for y and g require somewhat diferent values
for P, (1.127 and 1.117, respectively) and for o (0.57 and
0.47, respectively). (A safe estimate of the errors in this
case is supposed to be given by the differences of these
results rather than by the much smaller nominal uncer-
tainties in the fit values. ) If, however, o. is held fixed at
0.5, the best-fit values for the remaining critical parame-
ters are P, = 1.118+0.005 and b = 1.7+ 0.2, which agree
with our own estimates. In these analyses some diKcul-
ties are met also with the determination of the exponent
g: If its value is extracted directly from the parameters
of the fits to y and (, it turns out to be much larger than
expected. It should be noted, however, that estimates
near to the KT value are obtained either by resorting to
MC renorrnalization group (as shown also in Ref. 15) or
by using a discretized form of Eq. (21) (as shown also
in Ref. 14). It is interesting to quote also a very recent
"verification of the KT scenario" by a method based on
matching the renormalization-group flow of the dual of
the XY model with the flow of the body-centered solid-
on-solid model which has been exactly solved to exhibit
a KT transition. The method has to assume that cr = 1j2
and yields P, = 1.1197+0.0005 and b = 1.88 6 0.02.

We can summarize the main limitations of these MC
works as follows: The range of values of P covered, even
in the most extensive among these studies, is presently
restricted to P & 1.02 (corresponding to ( & 70) and,
anyway, the estimates of the critical parameters have not
yet reached a satisfactory level of precision. Finally, it
should also be noted that there are arguments indicating
that the KT critical region has a very small width, and
therefore it might have been explored only in its extreine
periphery by these studies, Therefore all authors of MC
works agree that further simulations much closer to P,
are still desirable.

Early HT studies, based on ten-term series, were also

inconclusive and unable to provide reasonably stable es-
timates of the critical parameters. Better suited methods
of series analysis were later proposed. A computations
of HTE's to order Pi2 on the triangular lattice gave a
first valuable support to the KT scenario with the es-
timates o = 0.5 + 0.1 and g = 0.27 + 0.03. Extensive
calculations on highly asymmetric lattices by Hamilto-
nian strong-coupling or finite-lattice techniques always
gave indications in favor of the KT scenario.

As we made available substantially longer HT series,
it emerged not only that the KT critical behavior is
favored by all tests (this conclusion was strengthened
by the independent analysis of Ref. 32 by the four-fit
method), but also that any series analysis designed to
extract power-law scaling leads to estimates of the criti-
cal parameters definitely inconsistent with those coming
from the corresponding fits to MC data. As we have ob-
served above, the study of ratio plots, and of the PA's to
the logarithmic derivative of y and (, shows clear signs
of a non-power-like nature of the critical singularity, and,
if forced to produce estimates of the critical parameters,
points to values of P„p, and v which are significantly
larger than those derived from power-law fits to MC data
and show a clear trend to increase with the number of
HT coefficients used. This is precisely what one should
see when trying to interpret an infinite-order singularity
as a power singularity. It is then reasonable to expect
that also future MC studies will still appear to be unable
to decide between the two kinds of fits, but power-law
fits will suggest embarassingly larger and larger values
for p and for v. Conversely, extrapolations of the HT
series by ratio, Pade, or differential approximant tech-
niques, in a way consistent with the KT behavior, show
a good stability, and agree with the KT fits to the MC
data. They lead to the values of the critical parameters,
P, = 1.1186 0.003, 6 = 1.67 6 0.04, o = 0.52 + 0.03, and
g = 0.27 + 0.02, and moreover make a first detection of
the exponent 8 possible. These are quite acceptable es-
timates, although they do not yet reach the high level of
precision that is usually expected from so long a HT series
probably because we are not yet using methods of series
analysis which are entirely adequate to the complicated
nature of the critical singularities. We conclude that a
suKcient extension of the HT series has been achieved to
enable us to assert that the critical behavior of the plane
rotator model agrees only with the KT predictions7 and
that it is now possible, by various essentially different
methods, to get consistent and fairly accurate estimates
of the critical parameters.
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