
PHYSICAL REVIEW B VOLUME 47, NUMBER 18 1 MAY 1993-II

Quenched bond-mixed cubic ferromagnet in a planar self-dual lattice: Critical behavior
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The critical behavior of the quenched bond-mixed ferromagnetic cubic model, on a planar self-dual
hierarchical lattice, is investigated within a simple real-space renormalization group. We obtain the
complete phase diagram of the system, exhibiting three phases. This phase diagram is believed to be of
high precision for the square lattice. The correlation-length critical exponents and the universality
classes are determined as well.

I. INTRODUCTION

The study of the quenched bond (site)-diluted and bond
(site)-mixed models is motivated by both theoretical in-
terest and various possible experimental applications on
disordered magnetic systems. Several works have been
dedicated to these models, very particularly to the
Heisenberg model (see Ref. 1 and references therein), the
Ising model (see Ref. 2 and references therein), and the
cubic model.

The cubic model or discrete ¹ ector model has
been conveniently applied to describe phase transitions in
rare-earth compounds, molecular oxygen adsorbed on
graphite, order-disorder transition in atomic oxygen on
tungsten, among many other applications (see Ref. 3 and
references therein). The dimensionless Hamiltonian asso-
ciated with the cubic model is given by

PH= NK g S;.S—~,
(ij )

where P—:Ilk' T, (ij ) runs over all the couples of first-
neighboring sites, the spin S; at any given site is an ¹

component vector which points along the edges of an ¹

dimensional hypercube, i.e., S, =(+1,0, 0, . . . , 0),
(0, +1,0, . . . , 0), . . . , (0,0, 0, . . . , +1). As we shall see
later on, the model is closed, under the renormalization-
group (RG) transformation, if a quadrupolar interaction
is included into the Hamiltonian, i.e.,

Sec. II, our results in Sec. III, and our conclusions in Sec.
IV.

II. QUENCHED BOND-MIXED MODEL
AND RG FORMALISM

P(K, L)=(1—p )5(K —Ki )5(L L i
)—

+p5(K —Kz)5(L L2), — (3)

where O~p ~ 1. By imposing the ground state to be fer-
romagnetic we obtain that K& )0 K2 )0 K& +NL

~
)0,

and E2+XL2 )0.
Our treatment consists in constructing a real-space RG

which associates the probability distribution given by (3)
with each bond of the self-dual Wheatstone bridge (Fig.
1), a graph which guarantees an excellent approximation
for the square lattice. ' Let us introduce for convenience

The quenched bond-mixed model is defined by Hamil-
tonian (2) where the following probability law is assumed
for the coupling constants K and L:

13H= NK $ S; S, —NL $ (S; S,.—)
(ij) (ij)

This Hamiltonian is an interesting one since it contains,
as limiting cases, various important statistical models,
namely, the Ising model (N = 1), the Z(4) model (N =2),
the 2N-state Potts model (NL =K), the ¹tate Potts
model (K =0) and the grand-canonical statistics of the
self-avoiding walk ( N ~0 ).

The purpose of the present paper is to study, for the
first time as far as we know, the criticality of the
quenched bond-mixed ferromagnetic cubic model on the
square lattice which we approximate here by a self-dual
hierarchical lattice. The RG formalism is presented in

(gW gW)

FIG. 1. Iteration associated with the Wheatstone-bridge
hierarchical lattice (the full and open circles, respectively,
denote the internal and terminal sites of the graph).
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the transmissivity variables ' "
1 —exp( —2NK)

1+2(N —1)exp [ N—(K +NL )]+exp( 2N—K)
e [0,1],

1 —2exp [ N( K—+NL ) ) +exp( 2NK—)t2= 1+2(N —1)exp [ N(—K +NL )]+exp( 2NK—)

K[0, 1],
hence

1 —t 2

1+Nt, +(N —1)tz

1 Nt, —+(N —1)tz
exp( —2NK) = 1+¹)+N —1 t,

(4)

(5)

The transmissivity (t), tz) generalizes the scalar one in-
troduced for the Ising, ' and Potts, " and Z(4) (Ref. 17)
models. The equivalent transmissivity ( t )', t z' )

((t',~), t(zl') )) of a series (parallel) array of two bonds with
transmisivities ( t', ",t z" ) and (t', ', t z

'
) is given by

t(s) t(l)t(2) (r 1 2)

(t(&))D=(t( )) (t(z))D (p =1 2)

with

1 N—t P'+(N 1—)t,'"
(t'P) )=,(q =1,2,p),1+Nt(P)+(N —1)t,'" '

1 —t2(&)
(t(z~))D=, (q = 1,2,p),I+Nt(, q)+(N 1)t',"—'

(10)

(12)

with

~( W)
(8)
2 D( (13)

where D stands for dual (see Ref. 18 and references
therein).

The series and parallel algorithms enable the calcula-
tion of the equivalent transmissivity of any (two-terminal)
graph which is reducible in series and parallel operations.
For those graphs (e.g., the Wheatstone-bridge array of
Fig. 1) which are not reducible, the Break-collapse
method' ' can be used. We have applied this method to
Fig. 1 and have obtained the following equivalent
transmissivity ( t ', ', t (z

'
) where

N, =y, w, +x,z, +u, y, z, +u, w, x, +(N —1) (u, xzy, z, wz+u, x,yzzzwl)
( 8') 2

+(N —1)(xzy lzzw) +x)z)yzwz+u)ylz) wz+u lx lzzwl +u l w) x)yz+u)z)xzy

+uzwzz)x l + uzxlyzzl +uzwlzzy) +uzwlxzy ) )

+(N —1)(N —2)(uzwzx, yzz, +xzy, zzw) wz),

Nz =yzwz+xzzz+ uzyzzz+ uzwzxz+N(N —1)x ly, zl w) uz
( W)

+(N —2)(N —3)xzyzzzwzuz+N(N —2)(x ly lzzwzu, +xzyzz) wlu ) )

+(N —2)( xzyz zzwz+xzyzzzzu+yzzzwzuz+xzzzwzuz+xzyzwzuz)

+N(x)ylz, w, +yzz, w, u, +xzz, w, u, +x,y, wzu, +x,y, zzu, ),
D '=1+N(u, z, w, +u, y, x, )+(N 1)(uzyzxz+u—zwzzz)+Nx, z, wly,

+(N —1)xzyzzzwz+N(N —1)uzy, z, w, x,
+(N —1)(N —2)xzzzwzuzyz+N(N —1)(u,xlylzzwz+u, xzyzzlwl ) .

(14)

(15)

(16)

Let us now focus the bond-mixed problem. Distribu-
ticn (3) can be equivalently rewritten as follows:

14

P~(t„tz)= g F;(1—p) 'p '5(t, t",)—
P(t „t,) =(1—p )5(t, t',")5(t, —t',"—)

+p5(t t(z) )5(t t(z) ) (17)

x5(t, —t,"), (18)

where (t'l", tz(" ) are related to (K),L) ) through Eqs. (4)
and (5) [which also provide the relationship between
(t() ), t(z ) ) and (Kz, Lz ) ]. If we associate now distribution
(17) with each bond of the Wheatstone-bridge array of
Fig. 1, we obtain for the equivalent distribution P~(t), tz )

the following expression:

where I', and n; are, respectively, the weights and ex-
ponents associated with the possible bond configurations
in the (self-dual) Wheatstone bridge. The [F;] satisfy
g,'4 )F; =2, and the I(t'l', tz" )] are straightforwardly
obtained from Eqs. (12)—(16). The present scaling opera-
tion does not preserve the original binary form since I'~
has 14 terms. At this level, we shall introduce an approx-
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TABLE I. RG values for some fixed points (exact results), correlation-length and crossover exponents, and limiting slopes. When-
ever available, exponents and slopes are compared with the square lattice exact results. vr and vp are the correlation-length critical
exponents; 4„ is the crossover critical exponent.

N=1

Critical points
( t(i) t(&) t(2) t(2) )

(1,0.414,0.414,0.414,0.414)

(1,0.414,0.414,0.414, 1)
(1,0.414,0.414,0.414,0.036)

vr =1.15

rp
=1 56

vr ——1.15
vr =1.15

la

?
la

la

Critical exponents
Present RG Square lattice (exact) Present RG

—dt, /dp =0.45

—dt j /dp =0.45
—

dt's /dp =0.45

Slopes
Square lattice (exact)

6V'2 —8 =0.48'

6V'2 —8 =0.48b
6V'2 —8 =P. 48b

(1,0.414,0.414,0.333,0.333)

(1,0.414,0.414,0.414,0.172)

vr =0.95

harp
=2.72

v, =1.15

2G
3

?
lb

—dt, /dp =0.44

—
dt's /dp =0.55

—dt, /dt2 =0.5

—=0.449

1

2
]e
2

N=3 (1,0.34,0.34,0.34,0.21)

(0.5,0,0, 1,1)

0.92

vr =1.43
v =1.43p

rp=1

1st order?

4f
3
4f
3
lf

—
dt's /dp =3.04 4 ln2=2. 77g

'Reference 21.
bReference 22.
'Reference 23.
Reference 24.

'Reference 25.
'Reference 26.
gReference 27

imation, namely, to approach P~ by the following binary
distribution,

P'(t, , t, ) =(1—p')Alt, —t'," )6(t, —t,"'
)

+p $( t t (2)'
)g( t t (2)'

) (19)

C

FIG. 2. N =2 phase diagram and RG Aow in the
(p, t l, t I, t2, t2 ) subspace (2¹tate Potts model). O, , 0
denote, respectively, the fully stable, fully unstable, and semi-
stable fixed points. The paramagnetic (P) and ferromagnetic
(F) phases are indicated. The critical surface is invariant under
the transformation (p, t &, t „t„t2)~(1—p, t2, t2, t i, t, ). The line
MBA lies on the plane p= 2, the line CBC corresponds to
t& =t2= 1/(&2N + 1).

(p, t'1",t2", tI ', t2 )
) to be determined. To do this we im-

pose

&ti)P =&t, )P

&'2&p =&t2&p

& tl t2 &P' & tl t2 &P

& (ti ) t2 )P'= & (ti ) t2 &P

& ti(t2) )P'= & ti(t2) )P

(21)

(22)

(23)

(24)

associated with the unstable fixed points. More precisely,

where &
. ) denotes the standard mean value (for ex-

ample,

& (t, )")p. =(1—p')(t', ")"+p'(t (
' )") .

This type of approximation (in which the first relevant
momenta are preserved) has been successfully used for
various problems ' ' which are recovered herein as par-
ticular cases.

The set of equations (20)—(24) provides

(p, t'1", t2"', t( ', t(2 '). Its iteration yields the RG flow in
the (p, t((",t(2", t(( ), t(2 )) space tor, equivalently, in the
(p, K),L, ,K2,L2) space], and consequently the phase di-
agram. The thermal critical exponents are obtained
through the calculation of the relevant eigenvalues
X;(A,; ) 1) of the Jacobian

g(p t(1)' t(1)' t(2)' t(2)'
)I ~ 1 ~ 2 ~ 1 ~ 2

g(, t((), t(1), t(2), t(2) )
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the correlation-length critical exponent v; is given by
v; =1n(b)/1n(A, ; ), where b is the RG linear expansion fac-
tor (b=2 for Fig. 1). The crossover critical exponents
N," are defined whenever more than one relevant eigen-
value exists, and are given by 4,"=1n(A.

&
)/ln(A, , ).

III. RESULTS

and

&(S; ) ) —1/N=O, VaE[1,2, . . . , NJ, (P);
&S,. ) =0,

&(S; ) ) —1/N)0 for a=aoEI1, 2, . . . , NI,
& 0 for aAao, (I);

Within the present RG we verify the existence of three
phases, namely the paramagnetic (P), ferromagnetic (F),
and intermediate (I), ones. These phases were already
present in the pure and diluted cases and are character-
ized by

&S, ) =&(S,', S,', . . . , S, ))=0,
and

and

&S, )&0,

&(S; ) ) —1/N)0 for a=aoE I1,2, . . . , NI

&0 for a/ao, (F) .

These phases are associated, in the (p, tI", t~z", tI ', tz' ')

(a) (b)

p= 0.5
p=0.5

p= 0.2
p= 0.2

0
0 2 3 4

I +2L /K

0
0 2 3 4

I +2L IK

IO

(c)

5-

p= 0.5

0.55
2—

p =0.2

0
0 2 3 4

I+3L /K

0
0

I+L /K

FICx. 3. Typical cuts of the full five-dimensional space (p, 1/K2, L, /K„K, /K2, L j /K& ): (a) %=2, K& =2L „K,/K, = 1; (b) N =2,
K& =2L&, E& /E2 =0.8; (c) 2V=3, K& =L& =0; (d) N=1, E

&
=L„E,/K~ =0.8. (P), (F), and (I), respectively, refer to the paramag-

netic, ferromagnetic, and intermediate phases.
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space, with the following fully stable fixed points:

(0,0,0, 0,0) and (1,0, 0,0,0) (P),
(1, 1, 1, 1, 1) and (0, 1, 1, 1, 1) (F),
(1,0, 1,0, 1) and (0,0, 1,0, 1) (I) .

Notice that, in the (I) phase, the system has chosen one
of the axes, but not a sense within that axis.

The model we are considering here contains, in many
different ways, the Ising, the Potts, and the bond percola-
tion models as particular cases. In all of them, the square
lattice exact critical points are recovered within the
present RG. Furthermore, various slopes are almost ex-
actly reproduced (see Table I). We have, consequently,
good confidence that the RG critical surfaces we obtain
here can be considered as a high-precision approximation
of the corresponding ones in the square lattice. This satis-
factory fact is clearly related to the self-duality of the
Wheatstone-bridge array we have used, thus preserving
the self-duality of the square lattice. The various critical
exponents we ha, ve obtained (see Table I) are exact for the
hierarchical lattice but clearly not for the square lattice.

The subspace (p, t, , t, , t2, t2) is closed under RG; it cor-
responds to the particular case Nl. =K (2N-state Potts
model with dimensionless coupling constant 2NK). For
the case N =1 (Ising model) the present approach repro-
duces the solution obtained in Ref. 2. The phase diagram
associated with X =2 is presented in Fig. 2. The points
marked 3 in this figure are fully unstable fixed ones and
correspond to the bond percolation limit. The axes CBC
and C'CC' correspond to the pure 2X-state Potts model.
The point 8 is unstable out of the critical surface; within
this surface it is fully stable if %~%*=2.6, and semi-
stable if X)X*; indeed, at X=X*, new fixed points ap-
pear through a bifurcation.

In Fig. 3 we show typical cuts of the phase diagram in
the five-dimensional full space. In Figs. 3(a) and 3(b) we

present cuts for %=2. These diagrams share with the
pure case (p =1) the presence of three phases. However,
when the value of p decreases, the intermediate phase re-
gion shrinks. Fig. 3(c) corresponds to the N=3 diluted
case, and we verify that for p (p, =0.5 (critical percola-
tion probability) the ferromagnetic phase disappears.
The N = 1 case is shown in Fig. 3(d); let us stress that the
P-I critical line must be considered as a mathematical ar-
tifact. '

The behavior for arbitrary values of N has been ana-
lyzed and the corresponding diagrams present the same
characteristics mentioned above.

IV. CONCLUSION

In this paper we have studied, within a real-space
renormalization-group method, the criticality of the
quenched bond-mixed discrete ferromagnetic cubic model
(¹ector model) in a square lattice, herein approached
by a self-dual hierarchical lattice. The five parameters of
the present problem ensure considerable freedom for re-
normalization, thus leading to results whose precision is
quite higher than that obtained for the diluted model.

The present treatment provides an efFicient method
with few mathematical requirements. In fact, the present
procedure is practically as simple as a mean-field approxi-
mation, providing nevertheless quite superior results. As
a final remark, it is worth stressing that the criticality of
the present model can be understood in terms of competi-
tions between the Ising, ¹tate, and 2X-state Potts, cu-
bic, and percolation models.
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