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Spin-triplet solitons in the one-dimensional symmetric Kondo lattice
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By analyzing the Cxutzwiller-projected, self-consistent mean-field solutions we demonstrate that for al/

coupling strengths of the half-filled, one-dimensional Kondo lattice (1) the spin excitations are local trip-

lets, {2) the charge gap is greater than the spin gap, and {3)doping by Kondo holes induces residual spin-

2
local moments. The implications of these results on a number of experiments and their relevance to

the "Kondo insulators" will be discussed.

INTRODUCTION

The strongly correlated electronic states formed in
rare-earth and actinide compounds have attracted much
theoretical and experimental interest. Examples of such
strongly correlated states include heavy-fermion metals,
heavy-fermion superconductors, Ruderman-Kittel-
Kasuya- Yosida (RKKY) metals, and the "Kondo insula-
tors. " The Kondo insulators, like the ordinary band in-
sulators, occur for an even number of electrons per unit
cell and exhibit a band gap in low-temperature transport
studies (although the gap can be 4 orders of magnitude
smaller than that observed for the conventional band in-
sulators). What is unusual about them, as we shall ex-
plain in this paper, is that their magnetic properties can-
not be accounted for by a naive insulating band structure
alone.

In this paper, we study the lowest-energy states in vari-
ous spin sectors of a one-dimensional half-filled (sym-
metric) Kondo lattice model by analyzing the
Gutzwiller-projected self-consistent mean-field solutions.
%'e find that for aII values of the antiferromagnetic Kon-
do coupling J (i) the spin excitations are local triplets,
and (ii) the spin gap is less than the charge gap. As a re-
sult, (i) the low-frequency spin susceptibility should be al-
most independent of wave vector, (ii) substituting the
magnetic rare-earth element by nonmagnetic ones creates
localized charge-neutral spin —''s (i.e., localized spinons).
These spinons can, in principle, be detected by low-
temperature electron-spin-resonance measurement.
Moreover, they can cause a low-temperature Curie com-
ponent in the magnetic susceptibility. (iii) At zero tem-
perature, an external magnetic field H induces magnetiza-
tion for H & H„where H„ the threshold field, is smaller
than that expected from the transport gap. For medium
to strong coupling, a magnetic field will induce a metal-
insulator transition when the field-induced local triplets

begin to overlap. (iv) Low-temperature transport and
magnetic (e.g. , NMR) measurements should exhibit a
difFerence between the charge and spin gaps.

On the theoretical side, the half-filled one-dimensional
Kondo lattice has also attracted much attention.
Among them, Tsunetsugu et al. "have recently shown
that a spin gap exists for all values of the antiferromag-
netic Kondo coupling by performing numerical diagonal-
ization. In this work we clarify the nature of the spin ex-
citations by analyzing the Gutzwiller-projected self-
consistent mean-field solutions.

The Hamiltonian for the Kondo lattice is given by

&~L= gt; (ct c —+H c. ) pgn—;,. .

+ —QSc; r c; ~ .J
2; '"-"

In Eq. (I), i,j label the unit cells of a crystalline lattice, t,.i
is the conduction electron hopping integral, c creates a
conduction electron with spin o, n,; =c; c; is the con-
duction electron occupation number, S is a localized
S=—,

' spin, r denotes the Pauli matrices, J ()0) and p
are the antiferromagnetic Kondo coupling and the
conduction-electron chemical potential, respectively. In
the above and in the rest of the paper repeated spin in-
dices are summed. In the following we shall represent
the localized spins as the spins carried by auxiliary fer-
mions via

1Si =
2 fia ran'fia'

Here f; creates an auxiliary fermion with spin o in the
ith unit cell. In order to remove the spurious charge de-
grees of freedom associated with the f electrons we im-
pose the Hilbert-space constraints n,f=f; f; = I for all-
unit cells. Using this identity and
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c"r yg.f r f ~ =2n;, —n, ,n,~
—2(c f )(f,c ~ ),

one can rewrite the Hamiltonian as
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where p'=p —J/4. It is important to bear in mind that
the Hamiltonian given by Eq. (4) is supplemented by the
Hilbert-space constraint n,&=1 for all i. By going to the
standard coherent-state path integral representation of
the partition function Z =Tr exp( —P&), we obtain
Z= fD[c,f,b, A, ]exp( —S), where

S=f drg[c; (8, p')c; —+f; B,f; ]
0
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FIG. 1. Mean-field spin and charge gaps as a function of the
Kondo coupling J.
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MEAN-FIELD SOLUTIONS

In Eq. (5), b, is an effective hybridization field introduced
in the Hubbard-Stratanovich decoupling of the second
term in Eq. (4), and A, ;, a time-independent field, is the
Lagrange multiplier which enforces the constraint n &=1.

distribution S,(x) associated with the (S = 1, S, =1) state
is shown in Fig. 2(a). The spin distribution remains local-
ized for all values of the Kondo coupling J)0. The
character of this local triplet changes continuously from
an f ftriplet in -the weak-coupling limit to an f ctriplet-
in the strong-coupling limit. The shape of the local trip-
let changes from involving f electrons in three neighbor-
ing unit cells (with a central spin- —,

' f electron) in the
weak-J limit to involving one c and one f electron in the
same unit cell in the strong-coupling limit. The energy

We have carried out mean-field analyses by assuming
b; to be time independent, but allowing the full site
dependence for both b,. and A,;. Mean-field solutions are
obtained by integrating out the fermions and minimizing
the resulting free energy. The resulting mean-field equa-
tions are
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b, =(OIc, f,. I0), &OIn,&I0) =1,
where

I
0 ) is the self-consistent mean-field electronic

state. In order to allow for the full site dependence, we
have performed numerical self-consistent mean-field cal-
culations for a one-dimensional lattice with nearest-
neighbor hopping t =1, with I., the length of the chain,
up to 100. Since the total spin operator commutes with
the Harniltonian, we can obtain mean-field solutions for
each spin sector. The results are summarized as follows.
(1) The S=0 sector: The global lowest-energy mean-field
state lies in this sector. The corresponding solutions for
k; and b; are A, ; =0 and b; =ho =const for all i. The elec-
tronic spectrum shows a hybridization gap b,, (which is
equal to the charge gap in the mean-field theory) whose
dependence on J is shown as the dashed line in Fig. l. (2)
The S=1 sector: The lowest-energy spin-1 mean-field
solution has A, ; =0 (as a consequence of the particle-hole
symmetry) for all i, but b, shows a . sharp minimum as
shown in the inset of Fig. 2(a). When compared to the
S=0 ground state, the electronic spectrum associated
with the S=1 mean-field solution shows two midgap
states which are both singly occupied. The spin-density
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FIG. 2. (a) Spin-density distribution of the lowest-energy
(S=1, S,=1) state. Inset: The self-consistent solution of the
hybridization field b(x). The soliton centers are fixed at the
same position for comparison. (b) Mean-field (open circles) and
Gutzwiller-projected (solid circles) spin-density distribution for
the lowest-energy (S=4, S,=4) state at J=1. In both (a) and
(b), the error bars associated with the numerical Gutzwiller pro-
jection are less than the size of the symbol.
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cost E, to create such a localized spin-1 charge-neutral
excitation, which we call a triplet soliton, is shown as the
solid line in Fig. 1. Both 6, and E, show the characteris-
tic exponential behavior exp( —1/y J) in the weak-
coupling regime, and smooth crossover to linear J depen-
dence in the strong-coupling regime. Moreover, E, &5,
for all values of J. (3) The S=M (M=integer) sector:
The lowest-energy mean-field solution in this case has
k; =0 for all i, and b; shows M localized minima which
are maximally separated. This indicates that the residual
interactions between the triplet solitons are repulsive in
nature. The corresponding electronic spectrum shows
2M singly occupied midgap states. The S,(x) distribu-
tion associated with the (S =M, S, =M) state
configuration is shown in Fig. 2(b). Thus, the spin excita-
tions in the one-dimensional (1D) half-filled Kondo lattice
always appear in the form of triplet solitons.

GUTZWILLER-PRO JECTED MEAN-FIELD SOLUTIONS

It is clear that the constraint n,f= 1 is only satisfied on
average in the above mean-field solutions. Do these re-
sults survive when we rigorously eliminate the spurious
charge degrees of freedom? To answer this question we
have performed Gutzwiller projections on our mean-field
wave functions ~4 ). The results are summarized as fol-
lows. (1) The S=0 sector: It is simple to show that after
Gutzwiller projection, our mean-field S=0 ground-state
wave function describes the exact ground state made of L,
independent local c fsinglets in the-strong-coupling limit
(the quality of our wave functions in the entire range of
Kondo coupling is discussed below). The difference of
the energy expectations between the Gutzwiller-projected
lowest particle-hole band excitation and the Gutzwiller-
projected S=O ground state, i.e., the charge gap 6„ is
plotted against J as the dashed line in Fig. 3(a). (2) The
S=1 sector: The spin-density distribution S,(x) in the
projected (S= 1, S,= 1) local triplet state for J=1 is
shown by the solid circles in Fig. 2(a). The effect of the
projection is to attach a fast-dying oscillatory tail to the
localized mean-field spin distribution. Although the ex-
tent of the oscillatory tail varies somewhat upon chang-
ing the Kondo coupling, the triplet core remains local-
ized for all values of J.

In the presence of lattice translational symmetry, all
eigenstates should have definite crystal momentum. To
construct the S=1 crystal momentum eigenstates, we
write ~%'q ) =g„exp(iqx, )~'Il„), where ~% ) =PG ~4 )
is the Gutzwiller-projected local triplet state with the
center of the soliton located at x, . Computing the energy
expectation value
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FIG. 3. (a) Gutzwiller-projected spin and charge gaps as a
function of J. The open squares are the exact result of the spin

gap on an eight-site chain from Ref. 4(c). (b) Dispersion of the
triplet soliton creation energy c,q.

J [see Fig. 3(b)]. The spin gap b,, as a function of J is
shown in Fig. 3(a) by the solid line. Again, both b, , and

show the characteristic exponential J dependence
exp( —1/y, ,pJ ) in weak coupling (p = 1/4mt) with.
y, =2.05+0.02, y, =2.56+0.01, and smooth crossover
to linear J dependence in strong coupling. We have
checked that in the thermodynamic limit both our spin
gap and charge gap recover the exact results 6, =J and
5, =

—,'J in the strong-coupling limit. Indeed, one can
show that after the Gutzwiller projection, both our spin
and charge-excited wave functions become exact in the
strong-coupling limit. In order to get a feeling for the
quality of our wave functions for weak and intermediate
Kondo couplings, we compare our spin gap with that ob-
tained by Tsunetsugu et ai. " from exact diagonaliza-
tion [the open squares in Fig. 3(a)] and find excellent

agreement over a wide range of J, indicative of a substan-
tial overlap of our projected wave functions with the ex-
act ones. As shown in Fig. 3(a), after Gutzwiller projec-
tion the spin gap 5, remains lower than the charge gap
5, for all values of J. As the result, the one-dimensional
Kondo insulator exhibits spin charge separation (3) The.
S=M sector: After the projection the S,(x) distribution
associated with the S=M, S, =M local triplet state is
shown as the solid circles in Fig. 2(b).

using the Monte Carlo method and subtracting the corre-
sponding projected ground-state energy in the S=0 sec-
tor, we obtain the dispersion relation for the creation en-

ergy of the triplet soliton E~ which is shown in Fig. 3(b)
for two values of J. The spin gap is given by
b,, =min(E' ), which corresponds to q =m for all values of

EXPERIMENTAL IMPLICATIONS

The results presented above have several experimental
implications.

(1) Dynamical spin susceptibility: The dynamical spin
susceptibility y(q, co) is given by
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FIG. 4. The mean-field and Gutzwiller-projected ground-
state spin-density distribution in the presence of a Rondo hole.

where the sum extends over all eigenstates ~a). Given
the narrowness of the local triplet soliton dispersion, we
anticipate the low-frequency spin susceptibility to be al-
most q independent. It is interesting to mention that a
recent neutron-scattering experiment on CeNiSn (Ref.
[7]) shows an Ry(q, co —+0) which is almost q indepen-
dent.

(2) Low-temperature magnetic susceptibility induced
by doping with "Kondo holes:" As one substitutes a
magnetic rare earth by a nonmagnetic one ' (e.g. , substi-
tuting Ce in CeNiSn by La), locally the Kondo spin
disappears and hence a "Kondo hole" is created. In our
model we simulate the Kondo-hole doping by raising the
self-energy of an f orbital far above the chemical poten-
tial [i.e., by adding a term ef nof to Eq. (4)]. In that case
we find that the lowest-energy mean-field state lies in the
S=

—,
' sector. The mean-field and the Gutzwiller-

projected spin-density distribution associated with the
(S=—,', S, = —,') state is shown in Fig. 4. The electronic
spectrum shows a single midgap state which is singly oc-
cupied in the mean-field solution. The character of this
doping-induced spinon changes from purely f-like in
weak coupling to purely c-like in strong coupling. Fur-
ther studies show that A.; and b, profiles are identical to
those of the S=1 local triplet in the stoichiometric sys-
tem. Therefore, upon Kondo-hole doping the system nu-
cleates an S=1 local triplet centered at the impurity
Kondo hole, from which an f spin is subsequently re-
moved. In the small-J limit, the energy of the system
with a Kondo hole equals that of the local triplet state in
the stoichiometric system since the center f spin in the
latter can be freely removed, whereas in the large-J limit
the Kondo hole gains a magnetic energy of J/4 by break-
ing the on-site f-c triplet. The spinons induced by
Kondo-hole doping can in principle be detected via elec-
tron spin resonance experiment. Moreover, they will also
contribute a Curie component to the low-temperature

susceptibility.
(3) External field-induced magnetic and metal-insulator

transition: In an external magnetic field, the triplet soli-
tons gain a Ziman energy —gp, ~H. As the result, when
the field strength is greater than H, =h, /gp, z, it be-
comes energetically favorable to nucleate triplet solitons.
For H & H„ the repulsion among the triplet solitons due
to the Kondo effect prevents the system from being fully
polarized. Indeed, for small H —H„we find" that the
magnetization is proportional to H —H, . " In the case
where the soliton has an infinite size, a metal-insulator
transition would directly occur at H, . On the other
hand, if the soliton has a finite extend, as in the one-
dimensional Kondo lattice, the magnetic state remains in-
sulating at H, . As one increases the strength of the mag-
netic field, more triplet solitons are created and they be-
gin to overlap at a field strength H,' &H„at which point
the system becomes metallic (as long as the Kondo cou-
pling is finite, such that the c character of the triplet soli-
ton is nonzero). For H, (H (H,', the nature of the mag-
netic phase (itinerant vs localized ferromagnetism) is
determined by the ratio of the soliton bandwidth and the
strength of their repulsion.

(4) Manifestation of the spin charge separation:
6, (5, can, for example, be revealed by comparing the
thermally activated transport studies and the low-
temperature NMR studies. It is interesting to note that
such a discrepancy is indeed observed for CeNiSn.
However, it is unclear whether such behavior is intrinsic.
Furthermore, recent NMR studies performed on
Ce3Bi4Pt3 indicate a spin gap close to the charge gap ex-
tracted from thermal transport. ' It should be em-
phasized, though, that the latter material is far into the
mixed-valence regime characterized by a relatively large
Kondo temperature compared to CeNiSn, which is
thought to be close to the Kondo regime.

It is well known' that the heavy Fermi-liquid state in
the Kondo lattice is unstable against the introduction of a
direct RKKY interaction among the f spins, so long as
the averaged RKKY coupling strength exceeds k~ T&. A
similar question can be asked about the stability of the
Kondo insulating state against the RKKY interaction.
For example, one can simulate the RKKY interaction by
adding to Eq. (I) a direct nearest-neighbor Heisenberg
antiferromagnetic exchange JHS,-.S . Such an interaction
tends to decrease E'. In fact, a simple mean-field calcula-
tion in which one decouples both the Kondo coupling
and the Heisenberg coupling leads to the conclusion that
if JH & k~ TI, the mean-field ground state will be semime-
tallic. Therefore, like the heavy Fermi liquids, the Kon-
do insulators are also unstable against the large RKKY
interaction.

All the results we report above are obtained for a one-
dimensional Kondo lattice. A natural question is wheth-
er these results survive in higher dimensions. We have
therefore looked at the two-dimensional square Kondo
lattice. In that case we find that the mean-field solution
the S =1 sector is also a local triplet. Although work is
still in progress, we believe that most of the qualitative
conclusions of this paper survive in two and three dimen-
sions. This is not to say, however, that one should take
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our results in quantitative sense. Eftects such as higher-
dimensionality, RKKY interaction, real crystalline struc-
ture, and finite Coulomb interaction among the conduc-
tion and the f electron can all change our results quanti-
tatively. We have attempted to relate our results to the
experiments on "Kondo insulators, "bearing in mind that
detailed comparisons are possible only after the above
e6'ects are taken into account.

Tote added. After the completion of this work we
were informed by Dr. Y. Hatsugai that the lowest spin

triplet excitation does have crystal momentum qa =~ in
agreement with our soliton dispersion.
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