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We present a calculation of spin waves in coupled multilayered structures that is based on exact evalu-
ation of both exchange and dipolar fields. We compare our results with earlier continuum treatments.
The gound-state spin configuration in antiferromagnetically coupled multilayers can differ significantly
from the uniformly canted ground state usually assumed. This nonuniform ground state is found to alter
radically the character of the spin-wave modes and sometimes lead to a strong localization of the wave
to the outermost magnetic films of the multilayer. In addition, we examine the validity of effective-
medium theory—a continuum theory—and find that it does not completely describe spin-wave excita-
tions in finite antiferromagnetically coupled multilayers. Finally, the spin-wave frequencies are found to
be nonreciprocal with respect to propagation direction for most directions, i.e., w(q)7w(—q) where q is
the propagation wave vector. This nonreciprocal behavior is explained from basic symmetry considera-
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tions. Again, the nonreciprocity is not properly described within effective-medium theory.

I. INTRODUCTION

The discovery of antiferromagnetic coupling between
ferromagnetic films across nonmagnetic layers! has raised
several important questions and resulted in a number of
exciting potential applications. For example, one of the
most fascinating phenomena associated with antiferro-
magnetic coupling is the giant magnetoresistance
effect.2”* It has been found that a system of antiparallel
ferromagnetic films has upward to a 60% higher electri-
cal resistance than parallel ferromagnetic films. Even
though the actual spin configuration may play a very im-
portant role in such phenomena, to date theoretical inves-
tigations’ 7 of giant magnetoresistance and dynamic
response of antiferromagnetically coupled systems have
assumed only the simplest possible magnetic ground
states.

In a recent paper,® we showed that multilayered sys-
tems of antiferromagnetically coupled films will have
complicated ground states that are strongly field depen-
dent. Some of these ground states are quite different
from the ground state assumed by previous theoretical
studies of these systems. In the present work we discuss
the effects of the correct ground state on the linear dy-
namic magnetic behavior of multilayer systems. Spin-
wave excitations in these systems are interesting for
several reasons. One reason is that the experimental
study of spin-wave excitations has proven invaluable in
the past in characterizing the properties of many different
types of magnetic structures.”!® A second reason is that
there have previously been no realistic theoretical models
for long-wavelength spin-wave excitations in noncollinear
antiferromagnetically coupled multilayers outside of at-
tempts which made use of effective-medium theory.!! 14

Effective-medium theory is a very elegant method of
calculating long-wavelength excitations in superlattices.
The essence of the theory is to assume that the wave-
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length of the excitation is long in comparison to the size
of a unit cell so that the amplitude of the wave is approxi-
mately constant across the unit cell. This allows for
several simplifying assumptions that make it possible to
perform calculations of dynamics for what are otherwise
hopelessly complicated superlattice structures.

In this paper we present a microscopic calculation of
spin-wave frequencies in magnetic multilayer structures
which makes no restrictions on the allowed ground-state
magnetic configurations and which does not make the
drastic assumptions of effective-medium theory. We will
use this model to discuss the effects of complicated
ground states on spin-wave frequencies and characteris-
tics. We also examine the validity of effective-medium
models for these systems by direct comparison to our mi-
croscopic model. As expected effective medium cannot
describe short-wavelength excitations. Furthermore, we
will see that in some cases it does not properly predict the
behavior of long-wavelength spin-wave excitations in
finite antiferromagnetically coupled systems.

We now review the important features of the ground-
state configurations before presenting our spin-wave cal-
culations. The geometry of the multilayer is shown in
Fig. 1. The axis of the multilayer lies along the y direc-
tion, an external applied magnetic field H, is directed
along the z axis, and the magnetizations in each layer lie
in the xz plane some angle a from the z axis. The mag-
netic layers are identified by the integer n and the angle
a, for the magnetization of each layer by the subscript n.
The number of atomic layers in each magnetic film is N
and there are a total of L magnetic layers in the multilay-
er. The number of atomic layers in each nonmagnetic
film is N,. For simplicity we assume that the lattice is
simple cubic with spacing a. The thicknesses of the mag-
netic films are then Na and the thicknesses of the non-
magnetic layers are N,a. For future reference, we also
define a wave vector q that lies in the xz plane at an angle
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FIG. 1. Geometry. The axis of the multilayer is in the y
direction and an external magnetic field is applied in the z direc-
tion. A wave vector q is defined in the xz plane that makes an
angle ¢ with the z axis. The magnetic films consist of N atomic
layers with a lattice spacing of a. There are N, nonmagnetic lay-
ers between each magnetic film. There are L magnetic films in
the multilayer.

¢ from the z axis.

If |a, | were independent of position then the magneti-
zation of each film would be canted away from the ap-
plied field direction by an amount a given by

cosa=—gugLNH,/4(L —1)J;S . (1)

Here J; is the interlayer exchange energy, g is the g fac-
tor, and up is the Bohr magnetron. S is the spin value.
Note that the sign convention is such that a negative J;
denotes antiferromagnetic coupling. In the remainder of
this paper we refer to this angle a as the “bulk” canting
angle. This ground-state configuration is sketched in Fig.
2(a). The arrows represent the net magnetization in each
magnetic film. Here the magnetization of each film is
canted away from the direction of the field by the angle a
calculated according to Eq. (1).

A canted state where every canting angle is given by
Eq. (1) is not stable for a finite multilayer. The reason is
that in a finite multilayer the outermost films experience
only half the interlayer exchange coupling compared to a
film inside the multilayer. Because of competition be-
tween antiferromagnetic exchange and Zeeman energies,
it is energetically favorable to rotate the outermost mag-
netizations away from the bulk angle given by Eq. (1) in
such a way as to lower the net Zeeman energy for the en-
tire structure.

The lowest-energy stable states are somewhat compli-
cated and strongly dependent on the magnitude of the
external applied field.® These states are depicted in Fig.
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FIG. 2. Spin configurations. Each arrow represents the mag-
netization of a magnetic film. The uniform ground state is
shown in (a) where the magnetization of each film is canted in
the xz plane an angle a away from the field direction. The dot-
ted lines in (b) and (c) are the a given by Eq. (1) for a uniform
state. A low-field configuration for a finite multilayer is shown
in (b) and a high-field configuration is shown in (c).

(o)

2(b) for small field strengths and in Fig. 2(c) for larger
field strengths. The dotted lines are the bulk a given by
Eq. (1) for large L. At high fields, the angles «, of the
outermost spins are less than the bulk «. For low fields,
the size of the angles alternate with respect to the bulk a
from layer to layer. Note that the equilibrium magneti-
zations all lie in the field direction for fields greater than
4J.S/gup.

The largest angular deviations from the bulk value
occurs for magnetizations in the outermost layers. We
might expect that any modes of the system which are lo-
calized to the outermost layers will be the most strongly
affected by the nonuniform canting. We will see that this
is indeed the case.

In the next section we present a theory for magneto-
static spin waves in multilayers which includes both dipo-
lar and exchange interactions. In Sec. III, we examine
the general features of the allowed spin-wave modes and
compare the results of this microscopic theory to those
obtained using an effective-medium approach. In Sec.
IV, we study the allowed spin-wave excitations for
ground states similar to those shown in Figs. 2(b) and
2(c). In Sec. V, we discuss the effects of canting and out-
of-plane anisotropy on the stability of the equilibrium
spin configuration. Finally, in Sec. VI, we discuss the
dependence of spin-wave energies on propagation direc-
tion and show that the spin-wave energies can differ de-
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pending on whether the wave is traveling forward or
backward for most propagation directions. We refer to
this behavior as nonreciprocity where o(q)#*o(—q).

II. THEORY

The geometry is the same as that of Fig. 1. As in the
above discussion, all layer-dependent variables are in-
dexed by the integer n. The spins are treated as point di-
poles arranged in a cubic lattice structure within each
film. A Heisenberg exchange interaction is assumed of
the form

Hex=%2’J(r—r’)S(r)-S(r’) . (2)

r,r

The notation is as follows: S(r) is the spin operator at
lattice site r and J is the exchange constant written as a
function of the distance between lattice sites. The sum is
taken over all magnetic lattice sites in the multilayer and
the prime on the sum means that the terms r=r’ are ex-
cluded. In what follows we assume exchange coupling
between nearest neighbors only with exchange constant J.
We assume a coupling constant J; between spins on the
outermost layers of adjacent films.
The spins are also coupled via dipolar interactions:

_ , | S(r)-S(r') [r-S(r)][r'-S(r')]
Hdip_(g.uB)zzl lr—r'|? lr—r'|°

.(3)

This interaction is long ranged and the sum includes all
spins in the multilayer system.
The complete Hamiltonian including a Zeeman energy

|
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term due to an external magnetic field H is

H=H,+Hg,—gup 3 HoS(r') . )
=

Next, equations of motions are constructed using the ap-
propriate commutation rules for the spin operators. We
then consider the long-wavelength region where the spin
operators can be treated as classical vectors.

We are interested in small-amplitude excitations so we
want to first linearize the equations of motion. This is ac-
complished by separating the spin variables into a static
part S(r), and a dynamic part s(r,):

S(r,t)—s(r,t)+S(r) . (5)

Terms of second order in s(r,?) are then neglected in the
equations of motion. Finally, we assume translational in-
variance in the xz plane. We thus choose plane-wave
solutions for s(r, ) of the form

i(q~r”-wt)

s(r,t)=s,e (6)
Note that the position in the y direction is now given by
the subscript n. The position in the xz plane is given by
. Furthermore, we may then write

S(r)=S, (7

since the static part is independent of position in the xz
plane but may vary from one layer to another.

The resultant linearized equations of motion for spins
within a film are

_ihwsn =S, X[g:u‘B(/iH0+H2 )+4an +Jn,nflsn~1+‘]n,n+lsn+l]

+S, X[gugh,(q)+2Js,(cosq.a + cosqa)+J, , 18, 1 F+Jp i 1Sns1] - (8)

Here a is the lattice spacing within a film. The exchange
constant J, ,, is defined as J, ,, =J when n and m are in
the same magnetic film; J, , =J; when n and m are the
outermost layers of neighboring magnetic films; and
J.m =0 when n or m is an outermost layer of the multi-
layer. The dipolar terms are contained in H® and h(q).
Fields which are independent of q are written in H® and
gq-dependent dipolar fields are written in h(q). Both of
these fields can be put in terms of the components of a

tensor g(q;n —n') as follows:

h,(qQ)=gup 3 8(q;n —n's, , 9)

H; =gugz > 80;n —n")S, . (10
<

The tensor g describes the q-dependent coupling between
the spins in layer n and the spins in layer n’. Forms for g’
are discussed later and given in the Appendix.

The complete set of coupled equations of motion define
a large but straightforward eigenvalue problem. The
equations of motion can be put in form

The matrix M contains the information from the right-
hand side of Eq. (8). The particular choice of ground
state enters in the direction of the S,. These are defined
in terms of the angle a,, as

S, =X%S sina, +ZS cosa,, . (12)

The calculational procedure is as follows: Low temper-
atures are assumed and the ground state is found using a
numerical mean-field approach which gives the angles «,,.
The ground-state calculation is explained in detail in Ref.
8. Next the eigenvalue problem is solved for the eigenfre-
quencies » and eigenvectors. We note that the matrix M
is not Hermitian, so care must be taken in finding the
correct set of right and left eigenvectors. The right eigen-
vectors satisfy Eq. (11) and the left eigenvectors satisfy
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[s;8, - [M—w]=0. (13)

We will refer to right and left eigenvectors as s, and s;.

We also note that when dealing with large numbers of
layers, it is helpful to write the equation of motion matrix
in a slightly different way. The reason is that, in the
coordinate system defined in Fig. 1, there will be three
equations of motion for each layer of spins. The order of
the matrix M is thus three times the total number of mag-
netic layers. This number can be reduced by writing the
equations of motion in different coordinate systems. This
is because there are only two equations of motion for s,
in a coordinate system rotated an angle a, from the
direction of the field. This rotation puts the z axis of the
local frame along the direction of the static magnetiza-
tion S,. The total number of equations can thus be re-
duced by one-third by writing the equations of motion for
each s, in their own coordinate systems.

|
sinp isgn(n —n')sing
g(q,n —n’)=2mqa |i sgn(n —n’')sing -1
sing cos@ isgn(n —n')cose

The k,m70 terms become important when S, from
different layers are no longer parallel. Due to the ex-
ponential decay of the k,m+*0 terms, however, these
terms will not be significant for small ¢ unless the non-
parallel S, are very close; i.e., when the spacing between
the two nonparallel S, is only on the order of one or two
lattice constants. For multilayers constructed by alter-
nating ferromagnetic with nonmagnetic layers, the
k,m50 terms will usually be negligible for realistic non-
magnetic layer thicknesses.

A suitable approximation can also be made for the
g =0 terms. A spin in the interior of a film would experi-
ence a ¢ =0 field (H*) containing contributions from the
sample demagnetizing fields as well as the local Lorentz
field. These fields are given by

20
g0,n —n')=47 |0 —1 S, - (15)
0 o0

v O O

This representation does not properly represent the local
fields for a spin near an interface, but the error involved
is very small.

III. GENERAL FEATURES
AND EFFECTIVE-MEDIUM THEORY

The general features of the allowed spin-wave modes
are most simply illustrated by first examining spin-wave
propagation assuming the uniform ground state defined
by Eq. (1). Later, this will allow us to compare our re-
sults to those obtained using an effective-medium ap-
proach which also assumes a uniform ground state. Un-
less otherwise specified, we use the following parameters
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We now pause to discuss the treatment of the dipolar
terms in Egs. (9) and (10). The lattice sums in Eq. (3)
converge very slowly, especially for small g. Fortunately
techniques exist which allow these sums to be put in rap-
idly convergent forms. These procedures are described in
Ref. 15 and the results for our problem are given in the
Appendix. The exact forms given in the Appendix are
not necessary under all circumstances, however. The first
terms of Egs. (A1)-(A6) dominate for small g when S,
from different layers are parallel. This is because the
magnitude of the remaining terms fall off as
exp[ —ga (k?+m?)'/?], where m and k are integers
greater than 0. The physical interpretation is that the g-
dependent k,m>0 terms describe the discrete nature of
the spin lattice while the k,m =0 terms are the continu-
um limit form of the dipolar fields. The g-dependent
k,m =0 terms can, in fact, be derived from the magneto-
static Maxwell equations for a planar geometry. The
form for g(q;n —n’) under this approximation is

sing cosg
isgn(n —n')cosp e " —n'l (14)
cos’p

f

in all the examples presented in this paper. N/N;=2,
L =10, J =10 Jcm?, J;=0.001 Jcm?, ga=0.001, and
¢=90°. Also, we use g(g;n —n') as given in Eq. (14).
The results are given in terms of unitless variables ) and
h where

fiw
Q:
47M, (16)
and
gugH,
h=—7—. 17
Ay (17)

1l

The saturation magnetization M, is given by pguzsS,
where p is the number of spins per unit volume.

As pointed out in the Introduction, the uniform
ground state is not stable, and we expect that some spin-
wave modes will soften at certain applied field strengths.
This can be seen in Fig. 3 where the lowest ten spin-wave
frequencies are shown as functions of applied field assum-
ing a uniform canted ground state. We have numbered
the modes at A =0 in order to simplify future discussions.
The modes are numbered beginning with the highest-
frequency mode as mode 1 and ending with the lowest-
frequency mode as mode 10. The canting angle is given
by Eq. (1) and the critical field, 4., at which the spins
align parallel, occurs for a=0. For our ten-film system

.=0.9. A mode softens for an 4 near 0.85 and reap-
pears at 4 =1. This gap where the mode disappears indi-
cates that the uniform ground state is not stable for A
values near k..

The modes can be characterized through the magni-
tude of the spin fluctuations in each film of the multilay-
er. Note that in order to calculate the magnitudes of the
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0.4

FIG. 3. Frequencies in the uniform canted state. The lowest
spin-wave frequencies are shown as functions of applied field for
the ten-film multilayer. The canting angle a is given by Eq. (1).
The magnetizations are oriented away from the field for 4 <1
and parallel to the field for 2 > 1. Propagation is perpendicular
to the field direction. The modes are numbered for future refer-
ence as shown.

spin fluctuations, both the right and left eigenvectors s,
and s; are required, as discussed above. It will be useful
to define a transverse magnitude as

Stran — SixSrx +slysry (18)
and a longitudinal magnitude as
Slong:slzsrz . (19)

In Fig. 4 we show s,,,, as a function of position in the
multilayer for each of the ten modes of Fig. 3 at a small A
value of 0.05. The mode profiles are labeled such that
profile 1 represents the highest-frequency mode and
profile 10 is the lowest-frequency mode. Profile 10 is the
Damon-Eshbach mode—the long-wavelength surface
mode—of the multilayer stack. Note the slight localiza-
tion of this mode to the upper outermost film of the mul-
tilayer. This mode is thus a surface mode in the trans-
verse fluctuations. We note that a plot of s,,, appears
practically identical to s, with the exception that s,,,,
for mode 10 is uniform across the multilayer and not lo-
calized to an outer film.

Some insight can be gained by noting that the unit cell
for an infinite superlattice with a uniformly canted
ground state consists of two magnetic and two nonmag-
netic films. The magnetization of each magnetic film is
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FIG. 4. Mode profiles at # =0.05. The transverse magni-
tudes of spin fluctuations in the yx plane are shown for each of
the ten lowest-energy modes from Fig. 3. Note the localization
of mode 10 to one side of the multilayer.

canted away from the field direction as shown in Fig. 2.
There are two possible ways for the magnetizations
within a unit cell to precess with respect to one another.
These are shown in Figs. 5(a) and 5(b). In Fig. 5(a), the
magnetizations precess together in phase, and in Fig.
5(b), the magnetizations precess 180° out of phase with
respect to one another. The coupled excitations of the
superlattice then form two bands: one band consisting of
Bloch waves from in-phase precessions within the unit
cell, and one band consisting of Bloch waves from the
out-of-phase precessions within the unit cells.

To illustrate this idea, in Fig. 6(a) we show the en-
velope functions of the Bloch waves comprising each
band. The applied field is again A =0.05. The five
lower-frequency envelopes (6—10) are in-phase oscilla-
tions between the magnetizations of neighboring films as
shown in Fig. 5(a). These waves are analogous to the
acoustic elastic waves on a diatomic chain. The five
high-frequency envelopes (1-5) are out-of-phase oscilla-
tions between the magnetizations of neighboring films as
shown in Fig. 5(b). These waves are analogous to the op-
tic elastic waves of a diatomic chain. Thus, the ten
modes can be viewed as one band of five acoustic modes
and one band of five optic modes.

The mode profiles suggest that the mode amplitudes
are sinusoidal functions of position within the multilayer.
If L is the total length of the multilayer, then the modes
appear to have a wavelength in the multilayer axis direc-
tion given by mL /2 where m is an integer. We will call
this wavelength A,,:

Ay=mL/2 . (20)

The spin-wave modes then fall into two classes: The five
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(a)

(b)

FIG. 5. Precession in a unit cell. The relative motion of the
magnetization in a unit cell of a canted superlattice are shown.
In phase precession is sketched in (a). The net fluctuations in a
unit cell for this case are in the xy plane and are measured by
Sian defined by Eq. (18). Out-of-phase precession is sketched in
(b). The net fluctuations in a unit cell for this case are in the z
direction and are measured by s),,, defined by Eq. (19).

lowest-frequency modes (acoustic modes) have m running
from O to 4 with increasing frequency and the five
highest-frequency modes (optic modes) have m running
from 5 to 1 with increasing frequency.

The acoustic and optic modes differ in a very impor-
tant way. To understand this, consider the net magnetic
fluctuation in a unit cell for each type of mode. It is clear
from Fig. 5(a) that the net fluctuating magnetic moment
must be mostly in the plane transverse to the applied
magnetic field since the longitudinal fluctuations in the
field direction will almost cancel across a unit cell. Simi-
larly, from Fig. 5(b) it can be seen that the net transverse
fluctuations should cancel across a unit cell while the lon-
gitudinal fluctuations add. Thus, the acoustic-type
modes represent fluctuations transverse to the applied
field and the optic-type modes represent fluctuations in
the field direction.

This can be seen in Fig. 6(b) where the amplitude s,, is
shown as a function of position across the multilayer for
each of the ten modes. The amplitude appears sinusoidal
with a period that decreases with increasing mode fre-
quency. s,, oscillates rapidly for the five lowest-frequency
modes and the average s,, for the entire multilayer is
nearly zero in each case. The five high-frequency modes
belong to the optic band, and the average s,, of these
modes can be large, especially for mode 1.

These observations are important from the point of
view of light scattering from spin waves. This is because
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the polarization of the incident light in a light scattering
experiment will determine which band of spin waves pro-
duce the largest scattering cross section. A more com-
plete discussion of this can be found in Ref. 16. In brief,
scattering from the acoustic-type modes is strongest if the
incident light is polarized in the field direction, since this
polarization produces the strongest coupling to the trans-
verse fluctuations. Scattering from the optic-type modes
depends on the coupling of the incident light to the longi-
tudinal fluctuations. This is strongest for light polarized

mode: 1
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FIG. 6. Bloch wave amplitudes. Modes 1-5 of Fig. 3 are
spin waves consisting of coupled out-of-phase precessions in
each unit cell. Modes 6-10 of Fig. 3 are spin waves consisting
of coupled in-phase precessions in each unit cell. The corre-
sponding Bloch wave amplitudes for both sets of waves are
shown in (a). In (b) the amplitude s, is shown for each of the ten
modes from Fig. 3. Note that the net amplitude in the z direc-
tion for the entire multilayer is very small for modes 6—10.
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in a plane perpendicular to the field direction.

The perpendicular wavelength A, of a mode is also im-
portant for light scattering from spin waves. The in-
cident electromagnetic field in a light scattering experi-
ment penetrates roughly 100 A into the multilayer. The
largest scattering cross section occurs when the magnetic
fluctuations throughout this penetration depth are
coherent; i.e., when the amplitude of the spin-wave oscil-
lates slowly as a funciion of position in the multilayer.
The net coupling io an incident electromagnetic field will
average to zero if the amplitude of the spin-wave oscil-
lates rapidly over the first 100 A of the multilayer. This
implies that modes with large A, will contribute most
strongly to the scattering cross section. Thus, mode 10
will provide the largest scattering cross section from the
acoustic band. The largest scattering cross section from
the optic band will be due to mode 1 because scattering
from these modes depend on the longitudinal magnetic
fluctuations.

We now discuss thie validity of effective-medium theory
in light of the above microscopic theory. As discussed in
the Introduction, effective-medium theory is valid only
for long-wavelength excitations. Furthermore, effective-
medium theory does not completely include exchange
contributions in the spin-wave energy. We cannot there-
fore expect that modes with small A, will be correctly de-
scribed by effective-medium theory. The only modes that
effective-medium theory can describe are, in fact, modes
1 and 10 of Fig. 3. These are the longest A, modes from
each band.

A comparison between the two theories is shown in
Fig. 7 where the results of an effective-medium calcula-
tion for the frequencies of spin waves of a uniformly cant-
»d multilayer are plotted as functions of applied field.
The effective-medium calculation is for a superlattice of
the same net thickness as the earlier microscopic calcula-
tions and is shown here by the dark solid lines superim-
posed on the discrete model calculation of Fig. 3. The
frequency of the effective-medium mode which begins at
zero frequency for & =0 matches that of mode 10 of Fig.
3. The frequency of the effective-medium mode which
goes to zero at & =1.0 matches that of mode 1. These
are the only two modes correctly described by effective
medium theory.

As a point of interest, a very simple argument can be
used to predict the frequencies of these two modes
without using the full apparatus of effective-medium
theory. The essential feature is that both of these modes
are long-wavelength excitations. One represents a long-
wavelength Bloch wave with in-phase precession of the
magnetization as in Fig. 6(a). This mode depends on the
net magnetization of the structure rather than the magne-
tization of the individual films. Thus, the frequency of
this mode depends on M cos(a). The limiting cases for
the frequencies for a thick superlattice structure and a
thin superlattice structure are given by and for propaga-
tion perpendicular to the magnetic field:

Q,=H,+27M, cosa , 21

Q,=V Hy(Hy+47M, cosa) . (22)
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FIG. 7. Effective-medium theory. Results from effective-
medium theory are shown superimposed on the results from mi-
croscopic theory (Fig. 3). The solid lines are the frequencies of
modes predicted by effective-medium theory. The dots are
modes predicted by microscopic theory. Note the good agree-
ment between the two theories for modes 1 and 10.

The thick structure result, Eq. (21), is the same as the
Damon-Eshbach surface mode in a semi-infinite fer-
romagnet but where M| has been replaced by M cosa. In
the thin structure result the frequency , of this mode is
the same as the uniform ferromagnetic resonance mode
again with M replaced by M cosa.

In contrast, the out-of-phase mode depeunds on sina.
In the limiting case that the superlattice structure is very
thin one finds

Qo=V'[2J;/gup)1(47M,)sincx . (23)

Note that this equation has the form Q=(2H,H,)!"? in
the limit a=w/2, an equation familiar from antiferro-
magnetic resonance theory. A complete discussion of
this can be found in Refs. 14 and 16.

We will see in the next section that spin-wave modes in
a finite structure with the correct stable ground state can-
not be classified as either acoustic or optic in the sense
used here. Furthermore, there will be a strong mixing of
modes for many values of 4 that results in all modes hav-
ing large transverse together with large longitudinal am-
plitudes. Especially important is that for many 4 values
small A, modes will mix with the large A, modes. The
consequence is that effective-medium theory does not al-
ways work if the multilayer is finite.
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IV. FINITE-SIZE EFFECTS: THE INFLUENCE
OF THE NONUNIFORM GROUND STATE

In a finite system the ground state will not show a uni-
form canting angle as discussed previously. This nonuni-
form ground state results in a nonhomogeneous distribu-
tion of internal fields which can significantly change the
spin excitations in the system.

Spin-wave frequencies are shown in Fig. 8 as functions
of applied field for the ground states shown in Figs. 2(b)
and 2(c). Propagation is again perpendicular to the field.
At small fields, the ground state is similar to that of Fig.
2(b) and at fields near 2 =1.0 the ground state is similar
to that of Fig. 2(c). For k& > 1, all the spins are aligned in
the direction of the field. The main difference between
the spin-wave frequencies in the nonuniform ground state
and those in the uniform ground state is that there is a
great deal of mode mixing. This is clearly seen in Fig. 8
for h near 0.5 where the Damon-Eshbach mode passes
through the bands of bulk modes. The reason for this is
that the symmetry of the structure has been significantly
lowered. For example, it is no longer possible to define a
small unit cell for a ground-state configuration. Here the
entire structure is the unit cell. As a result, modes which
were orthogonal to one another in the uniform structure
are now mixed and mode repulsion is observed. Note
that with the correct ground state there is a mode soften-

04

3

a"‘.“

o’
o
o
...

- a
0.3 K oot

‘0 ...0::0’..

)

° «*° o o

FIG. 8. Finite-size effects. The correct ground-state spin
configurations are used in the microscopic calculation of spin-
wave energies shown here. The frequencies are shown as func-
tions of applied field for a ten-film multilayer. The ground-state
spin configurations resemble those shown in Figs. 2(b) and 2(c)
for & <1. The spins are parallel in the field direction for 2 > 1.
Note the strong mixing of modes for 4 < 1.
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ing at h =1 where the magnetization changes from per-
fectly aligned to canted.

The nonuniform ground states occurs because the mul-
tilayers are finite and the outermost films therefore ex-
perience a reduced interlayer exchange coupling than
films within the multilayer. One might then expect some
of the spin waves to be strongly localized to the outer-
most layers due to the perturbing effects of the outermost
surfaces. This is, in fact, the case as seen in Fig. 9 where
Siran 18 shown for £ =0.4. Although for this value of A
the deviations of the canting angles a, from a given by
Eq. (1) are relatively small, the effects on mode mixing
are very large. Several of the modes are indeed strongly
localized to the outermost films of the multilayer. Also
note the lack of symmetry of the mode amplitudes with
respect to the midplane of the multilayer.

As mentioned at the end of Sec. III, effective-medium
theory can correctly predict the frequencies of two modes
if the magnetization is in the uniform ground state of Fig.
2(a). Comparison of Figs. 7 and 8 show, however, that a
straightforward application of effective-medium theory
does not describe the spin waves properly when the mag-
netization is in the stable ground states shown in Figs.
2(b) or 2(c). In particular, the mode mixing is not seen in
effective-medium theory.

Since perturbing effects of the outermost surfaces will
decrease as the number of layers in the multilayer is in-
creased, effective-medium theory should provide a better
approximation for very large multilayers. Nevertheless,
as shown in Ref. 8, nonuniform canting will occur
throughout the entire multilayer for values of 4 near O or
1 regardless of the number of layers. A better description
could probably be obtained if effective-medium theory

mode: 1

a

A L

-
o

A\

zero -amplitude lines

FIG. 9. Localization of modes due to finite size. S, is
shown at 2 =0.4 for the modes of Fig. 8. The finite-size effects
are due to the reduced exchange coupling experienced by the
outermost films of the multilayer. This leads to a strong mixing
of modes and the localization of several mode amplitudes to the
outermost films of the multilayer.
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FIG. 10. Spin-wave modes of a trilayer. An antiferromagnet-
ically coupled multilayer with an odd number of magnetic films
has a net magnetization that hinders spin canting for small ap-
plied field strengths. Here spin-wave frequencies are shown for
a three-film structure and are shown as functions of applied
field. The spins from different films are antiparallel for
h <0.25, canted for 0.25 < h <0.75, and parallel for & >0.75.

were extended so as to consider local variations in the
susceptibility produced by variations in the ground state.

So far we have only considered multilayers consisting
of an even number of magnetic films. Another kind of
behavior is possible when the number of magnetic layers
is odd. An odd number of layers means that the multi-
layer will always have a net magnetic moment even when
the films are aligned antiparallel in zero applied field.
The behavior at low fields is then dominated by the Zee-
man energy of interaction with the external field: The
magnetizations remain antiparallel such that the net
magnetization is in the direction of the field. The struc-
ture remains aligned like this until the applied field be-
comes large enough to overcome the cost in exchange en-
ergy needed to rotate all the magnetizations partially into
the field direction.

The spin-wave energies for an antiferromagnetically
coupled trilayer are shown in Fig. 10 as functions of ap-
plied field. The magnetizations are antiparallel for 4 less
than 0.25. Every magnetization is canted away from the
direction of the field for 4 between 0.25 and 0.75. For
h >0.75 the magnetizations are parallel and in the field

direction. Note that the frequency of the middle spin-
wave mode is nearly independent of % in the canted angle
region.

V. PHASE TRANSITIONS
IN ANTIFERROMAGNETIC
COUPLED MULTILAYERS
WITH PERPENDICULAR ANISOTROPY

We would like to remark on a curious prediction of
effective-medium theory noted in Ref. 14. It was found
that the inclusion of a perpendicular anisotropy energy of
the form

kq
— 2
Eani - Msz m,

(24)

leads to a softening of spin-wave modes in a canted multi-
layer for unusually small values of the anisotropy con-
stant k,. Here m, is the component of the fluctuation
magnetic moment in a direction perpendicular the mag-
netic film planes. This behavior is also found in the mi-
croscopic model when the in-plane exchange J is small.
The reason for this behavior comes from the dipolar in-
teraction. The dynamic g0 dipolar interaction reduces
the spin-wave energies from the ¢ =0 values for propaga-
tion directions parallel to the field direction. This arises
because a finite g excitation induces a spatially oscillating
magnetic surface charge on the magnetic layers. These
fields tend to reduce the average demagnetizing fields
seen by spins in the film interior. This reduction of the
average demagnetization fields increases with increasing
q.
We can see an example of this effect in a ferromagnetic
film. For a very thin film the dispersion relation is given
by

_ 8Up
WpE— h

VH[Hy+47M,(1—1qd)] , 25

where d is the thickness of the film. The reduction in fre-
quency comes from terms in the spin-wave energies of the
form

4rM,(1—1qd) . 26)

These terms ultimately come from the yy component of
the g tensors [Egs. (14) and (15)] and appear in this form
for a=0. q¢d is small in this approximation so this contri-
bution to the spin-wave energy is always positive.

The situation is more complicated in a multilayer with
antiferromagnetic coupling between films. In particular,
we consider the case where the external field is small
enough so that there is spin canting and a#0. As an ex-
plicit example, one can show that the frequency of the
Damon-Eshbach mode propagating in the field direction
on an antiferromagnetically coupled bilayer system is
given by!’

__ 8HMp
Wpg~— #

—2mM,gde " ¥sina} .

(V' Q}+(1—e ®)[4aM, —2(J, /M, )sin’a Jsin’a —27H oM, qd [ cos’a+(1+sin’a)e ~%]



47 MICROSCOPIC CALCULATION OF SPIN WAVESIN...

The thicknesses of the nonmagnetic layer is s =N,a and
Q, is the ferromagnetic resonance field for the canted
structure given by Eq. (22).

We see that the energy is again reduced by the M qd
terms, but in a way that depends on the canting angle.
Most importantly, the energy is also reduced by the anti-
ferromagnetic exchange coupling J;.

When a perpendicular anisotropy is present, the 47M,
terms in Eq. (27) are replaced by

kq
4mM, —247

s

. (28)

From static energy considerations (a comparison of the
energy for the uniformly in-plane magnetized state versus
that for the uniformly out-of-plane magnetized state), one
can show that when k, >27M,?% the magnetization will
orient out the film plane in zero applied field. From the
forms of Egs. (27) and (28), one can see that the anisotro-
py, interlayer exchange, and M qd fields act together to
reduce the net demagnetization energy 47M;. This can,
in fact, lead to a softening of modes for values of k,
significantly less than 27 M,2.

An anisotropy-induced mode softening is shown in Fig.
11 where the two lowest spin-wave frequencies for a cant-

ed bilayer structure are shown as functions of
h,=2k,(M,). The parameters for this systems are
ga =0.006, N =10, N,=5, H,=0.5 kG, and propagation
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FIG. 11. Instability due to out-of-plane anisotropy. Spin-
wave frequencies for a bilayer system are shown as functions of
an out-of-plane anisotropy field 4,. The applied field is 0.5 kG
so that a is 60°. In plane magnetization for a single thin film be-
comes unstable for 4, =1. Here, the dynamic demagnetization
field and antiferromagnetic exchange interaction lead to a
softening of one spin-wave mode for an anisotropy field
significantly less than 1.
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is in the field direction (¢=0). The in-plane exchange
constant is zero. The higher-frequency mode goes soft at
the k, value where the magnetization would begin tilting
out of the film plane in this applied field, but the lower-
frequency mode goes soft at a much smaller k, value as
described above. As the in-plane exchange constant is in-
creased from zero, the lower frequency mode softens at
larger k, values. The two modes soften at approximately
the same k, value for realistic exchange constant magni-
tudes.

We interpret this softening as an indication that a uni-
form magnetization within the magnetic films is no
longer energetically favorable and that some type of
domainlike structure would be the stable ground state.
In particular, it may be possible to reduce the magnetos-
tatic and antiferromagnetic energies by forming a mag-
netic ground state wherein the magnetizations of the two
films try to align antiparallel in the out-of-plane direc-
tion. This state would involve a rotation of the spin
directions over large distances in order to minimize the
cost of intralayer exchange energy. Although this may be
an uninteresting effect for perfect films with large fer-
romagnetic exchange constants, we note that this insta-
bility may occur in systems composed of antiferromag-
netically coupled ultrathin films with imperfections. This
may also occur in certain easy plane antiferromagnets
where a weak in-plane ferromagnet coupling exists.

VI. NONRECIPROCITY

One of the well-known features of spin waves with di-
polar contributions is that they can be nonreciprocal in
the sense that a reversal of the wave vector does not
necessarily lead to a wave with the same frequency, i.e.,
o(q)#w(—q). This is particularly dramatic for a surface
spin wave on a semi-infinite ferromagnet where a surface
wave exists for some propagation directions but does not
exist when the propagation direction is reversed. In this
section we will show that a great deal can be learned
about the dependence of spin-wave energies in canted
structures on propagation direction through simple sym-
metry considerations.

The basic idea here is that if we can perform an opera-
tion (reflections, rotations, or combinations of these) on
the system and change the wave vector from q to —q but
leave the magnetic system and the applied field un-
changed, then we must have reciprocal behavior in the
frequency. In this case we must have w(q)=w(—q) be-
cause the energy of the excitation cannot be changed by a
symmetry operation. If we cannot perform such an
operation then nonreciprocal behavior is allowed (but not
required).

In particular, we will determine if the frequency of a
spin wave traveling in a canted structure with wave vec-
tor q=(q,,q,) is equivalent to that of a spin wave travel-
ing with wave vector where either g, has been reversed or
q, has been reversed or both g, and ¢, are reversed. To
illustrate how these symmetry arguments work, we first
consider the case of a spin wave traveling perpendicular
to the field in a multilayer with an even number of mag-
netic layers.
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First, we define a geometry as shown in Fig. 12(a). The
applied field is directed into the page in the +z direction.
The magnetization of each film is assumed to be canted
away from the direction of the applied field as in the
ground state of Fig. 2(b). In Fig. 12, we represent the
magnetizations in each film by a component in the field
direction, M,, and a component perpendicular to the
field, M,. The wave vector q is also shown perpendicular
to the magnetization in the +x direction. The ground-
state configuration of the magnetization is assumed to be
symmetric with respect to the midplane of the multilayer.
A simple rotation of 180° about the z axis takes the struc-
ture and the field into themselves but reverses the direc-
tion of q. Thus, the propagation frequency is reciprocal;
ie olq)=w(—q).

Suppose instead that q is directed along the +z direc-
tion. The change g, to —¢q, we need to reflect in the

(a)

(b) X a

FIG. 12. Symmetry operations. The initial spin
configuration for a multilayer is defined in (a). The applied field
is directed into the page and a wave vector q is perpendicular to
the field. In (b) the initial wave vector q was directed opposite
the field and a reflection through the midplane of the page has
been made.
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plane of the paper. The results of this reflection are illus-
trated in Fig. 12(b). The external field H, and the M,
components are left unchanged but M, is reversed. One
could try to get back to the original structure by
reflecting about the midplane of the structure. Such an
operation reverses the positions of the upper and lower
films and then reverses both M, and M, in each film as
well as reversing the applied field. But the resulting
structure is not the same as the original structure. In
fact, we have found no operation which takes g, to —g,
and leaves the structure unchanged when g has a com-
ponent along the z axis. Thus nonreciprocal behavior is
allowed for any direction of propagation which has a
component of the wave vector parallel to the applied
field.

In addition to examining nonreciprocal behavior where
the entire wave vector is reversed, these symmetry argu-
ments can be used to look at situations where only one
component of the wave vector is reversed. The general
results for the structure with an even number of layers
are found in a similar manner and are summarized below.

(1) Propagation symmetries for an even number of lay-
ers:

o(qx,q;)=0(—qy,,q,) , (29)
w(%qu )#a)(qx’ —qz) ) (30)
w(qx’qz)#w(_qx’_qz) M (31)

This nonreciprocal behavior can be seen in Fig. 13(a)
where the spin-wave frequencies are shown as functions
of propagation direction angle ¢. The field % is 0.53 and
there are ten magnetic films in the multilayer. The
ground state for this field is similar to that shown in Fig.
2(a). The lowest-energy modes show a strong nonrecipro-
city in frequency between propagation parallel to the ap-
plied field (¢=0°) and propagation antiparallel to the ap-
plied field (¢=180°). In fact, the frequencies are only re-
ciprocal for propagation perpendicular to the field,
¢=90° and 270°. From the symmetry results presented
above we see that the graph of () versus ¢ should be sym-
metric about $=0° and 180°, and this is confirmed in Fig.
13.

The magnitude of the nonreciprocity depends on the
canting angle ground-state configuration. This is shown
in Fig. 13(b) where the spin-wave frequencies are again
shown as functions of ¢ with 4 =0.8. The average cant-
ing angle is now much smaller than in Fig. 13(a) and the
ground state resembles that of Fig. 2(b). Nonreciprocity
for all propagation directions other than 90° and —90° is
still visible, but the magnitude is less than in Fig. 13(a).

The allowed symmetry operations for multilayers with
an odd number of magnetic layers are different than for
multilayers with an even number of magnetic layers. For
the odd number case, arguments similar to those above
show that the spin-wave frequencies are always recipro-
cal; i.e.,, w(g)=w(—gq) regardless of the direction of gq.
However, reversal of a single component of the wave vec-
tor does not always lead to a mode with the same fre-
quency. The general results are given below.
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FIG. 13. Dependence on propagation direction for an even
number of films. Spin-wave frequencies are shown as functions
of propagation angle ¢. There are ten magnetic films with the
same parameters as in Fig. 8. The applied field 4 is 0.53 in (a).
Note the large differences in frequencies between propagation
parallel to the field (¢=0°) and antiparallel to the field
(¢=180°). The applied field 4 is 0.8 in (b). Here the canting an-
gles are smaller and the nonreciprocities are less pronounced
than in (a).

(2) Propagation symmetries for an odd number of lay-
ers:

0(qy,9,)70(—q,,q,) , (32)
0(q,,q,)7wlq,, —q,) , (33)
olg,,q,)=0(—q,,—q,) . (34)

These relationships mean that Q versus ¢ is not sym-
metric about ¢$=180" and also not symmetric about
$=90° or 270°. However, the spin-wave frequencies are
periodic with period 180°. An example is presented in
Fig. 14 where the spin-wave frequencies for the trilayer
structure of Fig. 11 are shown as functions of ¢. The ap-
plied field 4 is 0.4. We see the frequencies are always re-
ciprocal with respect to propagation direction, i.e., a
change of 180° in ¢ gives the same frequency.

The origin of the nonreciprocity can be understood in
terms of the development presented in this paper. Exam-
ination of g(g;n —n’) in Eq. (14) shows that the dipolar
interaction introduces a g-dependent ““anisotropy” field
into the spin-wave energies. As an example, consider the

Damon-Eshbach mode on a simple ferromagnet. This g-
dependent “‘anisotropy” leads to a large difference in en-
ergy between propagation perpendicular and propagation
parallel to the field direction. The symmetry axes for this
g-dependent “‘anisotropy” are governed by the direction
of propagation and the ground-state configuration of the
magnetization.

Finally, we note that a straightforward application of
effective-medium theory is by its nature unable to
correctly give the nonreciprocity. For example, the
effective-medium system cannot distinguish between sys-
tems with odd numbers of layers and even numbers of
layers.

VII. SUMMARY

The properties of spin waves on antiferromagnetically
coupled magnetic multilayers have been examined assum-
ing the correct stable ground-state orientations of the
magnetization. Spin waves on infinite antiferromagneti-
cally coupled superlattices can be classified as either
acoustic or optic modes in analogy to elastic excitations.
Acoustic modes correspond to magnetic fluctuations
transverse to the applied field and optic modes corre-
spond to magnetic fluctuations in the field direction.
These distinctions are particularly important for light
scattering experiments, since the coupling of incident
light is strongly dependent on geometry.

In finite structures the stable ground states are some-
times quite complex configurations due to surface effects.
Spin-wave modes on finite antiferromagnetically coupled
multilayers have mixed optic and acoustic mode proper-
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ties due to the nonuniform canting of the stable ground
states. Also, in some cases mode amplitudes will be
strongly localized to an outermost film of the multilayer.

Effective medium theory was examined by comparison
to a microscopic discrete model. It was found that
effective-medium theory can only describe two modes
properly: The Damon-Eshbach mode (the longest-
wavelength acoustic mode) and the longest-wavelength
optic mode. Since effective-medium theory does not
properly take interlayer exchange interactions into ac-
count, it is unable to describe any other shorter-
wavelength mode. Furthermore, effective medium does
not accurately predict the frequencies of these two modes
when finite-size effects are considered. Effective-medium
theory is only approximately valid for these two modes
on very large multilayers and for a limited range of exter-
nal applied field strengths.

The energy of the spin-wave modes are strongly
influenced by dipolar interactions at long wavelengths.
The dipolar interactions act as a kind of anisotropy and
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depend on the symmetry of the magnetic system. Sym-
metry arguments show that spin-wave propagation on
canted structures may always be nonreciprocal unless
propagation is perpendicular to the applied field or the
number of magnetic layers in the multilayer is odd.

Finally, it was noted that the antiferromagnetic inter-
layer exchange interaction together with a relatively
small perpendicular anisotropy may destabilize a uniform
ferromagnetic ordering in the films. This effect should be
small for perfect ferromagnetic films with strong in-
tralayer exchange coupling, but may be observable for
multilayers, imperfect films, and some easy plane antifer-
romagnets.
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APPENDIX

The dipole sums of Eq. (3) can be put in rapidly convergent forms using the method of Ref. 15. The sums differ de-
pending on whether the sources are in the same plane, where n =n’, or if the sources are in other planes so that n7n".

For our geometry, the n5n’ sums are

» o B2 VTR
gulan—n)=4T 3 3 —m VA (aD
A" k=—w m=—w Vﬁi+33n
4 0 o P ———— — I T——Z_
gul@n—n)=—"% 3 3 VBB VB (A2)
k=—0w m=—ow
4 o o BZ _ - . 2
gzz(q;n -—n')=~731 2 E ie 2in ni\/ﬁk+ﬁm s (A3)
a’  Zle mimw VBB,
41 © © —2n—n' 2 2
gxy(q;n—n’)=gyx(q;n—n’)=—l3lsgn(n—n') > > Bne 2 l‘/ﬁ"ﬂj’", (A4)
a k=—ow m=—cw
. ® o R TR
gyz(q;n—n’)=gzy(q;n—n’)=—4—77:sgn(n—n’) > > Bie i ”H/ﬁ"w'”, (AS)
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gxz(q;n—n')=gzx(q;n—n’)=—73r > #_;_L_ze 2n M/ﬁk+ﬁm’ (A6)
a k=—o0w m=—w VBk+Bm
where
Bi =1gasing+km, (A7)
B, =1qa cos¢+mi . (A8)
The n =n' sums are
- w cos(kga cosd)(Lqa sing+mm)’K,(2k |Lga sing +m|)
o= 3 3 ’ (A9)
Exx '@ 3a% &, = . | —2cos(kqga sing)(;qa cos¢p+mm)’K,(2k|Lga cosp+mm]) |
167 = © cos(kga cos¢)(+qa sin¢+m77)2K2(2k|%qa sing +mr|)
gyy(q;o): 3 2 2 : 1 2 1 ] (Alo)
3a3 <2, ,, = . |+ coslkqa sing)(1qa cosp+mm) K,(2k|1lga cosp+m|)
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and
167 & - cos(kga sing)(Lga cosp+mm)*K,(2k |Lga cos¢p+mr|) LD
8:2(4:0)= 3a 2 ;_ —2 cos(kqa cos$)(Lqga sing+mm)*K,(2k|1qga sing+m]|)

In Egs. (A9)-(A11), K, is a modified Bessel function of the second kind.
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