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Effect of fractons and magnons on the resistivity of dilute ferromagnets
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Based on the s-d exchange model we investigate the temperature-dependent resistivity arising from the
scattering of electrons off fractons and magnons in dilute Heisenberg ferromagnets on three-dimensional
bond-percolation networks. The results indicate that the contribution of fracton scatterings to the resis-

tivity varies from a T' to a T' dependence as the concentration of bonds approaches the percolation
threshold, while the magnon scattering contributes a resistivity varying as T regardless of the changes
in concentration of bonds.

I. INTRODUCTION

The electrical transport properties in randomly diluted
magnets are a subject of considerable interest. Spatial
disorder in the arrangement of magnetic and nonmagnet-
ic atoms leads to fluctuations of exchange energy, and
consequently to a drastic change in the spectrum of mag-
netic excitations. In this case, one may expect contribu-
tions to the electrical resistivity from spin-dependent
scattering between electrons and magnetic excitations in
addition to the effects due to structural disorder.

Many attempts have been made to find the contribu-
tion to the resistivity due to the scattering of electrons off
magnetic excitations in dilute ferromagnets. ' The tem-
perature dependences of the resistivity of the magnetic
origin are found to fall into two categories, both in
theoretical and experimental investigations: One is a T-
dependent term, ' the other was found to be a T
dependent term. ' ' This difference involves the details of
the interaction between electrons and magnetic excita-
tions, which remains an unresolved problem.

For any ferromagnet at sufFiciently long wavelengths
we may ignore the details of the atomic interactions, and
apply linear spin-wave theory at low temperature. We
then should expect that the long-wavelength magnetic ex-
citations will be conventional spin waves, and this was
confirmed in the initial studies of the spin dynamics. At
shorter wavelengths the inherent randomness of dilute
magnets will manifest itself, and this randomness qualita-
tively changes the nature of the magnetic excitations in
this regime. As we know, the magnetic diluted systems
may be considered as the bond-percolation networks.
Percolation networks appear to be homogeneous at
length scales I. longer than the percolation correlation
length g, and thus support propagating phonons or mag-
nons. For shorter length scales a &L &g (a is the lattice

constant), the random networks exhibit fractal charac-
teristics so that one would expect localizeR excitations
called fractons. ' The theoretical investigation of the
low-energy excitation spectrum for magnetic excitations
on a percolation ferromagnet showed a crossover From
magnons at lower frequencies to fractons at higher fre-
quencies. The experimental evidence of the magnon-
fracton crossover has also been found by Uemura
and Birgeneau' '" in the dilute antiferromagnet
Mn Zn& „F2. Based on this picture, the density of states
was derived for magnon and fracton excitations, "' and
the results have been employed to explain the deviations
from the Bloch T law which has been observed in d.t;-

lute amorphous magnets' anc! the temperature depen-
dence of normal-state resistivity in high-T, cuprates. '

In this paper, we present a comparison of the contribu-
tion from the fracton and magnon scattering to the
temperature-dependent resistivity in a dilute three-
dimensional ferromagnet. It is our intention to take the
effect of the disordered spin coupling into consideration
and to understand the details of the interactions between
the electrons and magnetic excitations in the randomly
diluted ferromagnetic systems.

II. THEORETICAL CALCULATION

We consider a ferromagnetic system with a certain
number of randomly distributive bonds. The interaction
between conduction electrons and magnetic excitations
(magnons and fractons) is assumed to be s-d exchange
coupling. So, the Hamiltonian takes the following form:

t, Ck„Ck„+H
kp

I i(k' —k) R(——g g g e 'S, ot,„Ck„C
l kk' pp'
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where Ck„and Ck„are the creation and annihilation
operators for electrons with wave vector k and spin p, S&

is the localized spin operator residing on site Ri, o. is the
Pauli matrix, I is the s-d exchange parameter, and X is
the number of the lattice sites.

The Heisenberg Hamiltonian Hd is given by,

the probability density,

P( J; ) =p 5(Jj—J)+(1 —p)5( Jj ), (3)

and the concentration of the ferromagnetic bonds is p.
The one-particle retarded Green's function for elec-

trons is defined as follows:

Hd= —g J;,S;.S, .
(Ij)

(2) 6 (k, E)= ( ( Ckt i
Cktt ) ) = [E—

Ek
—X(k,E)]

The random distribution of the bonds is expressed by the
effective exchange-coupling constant J, , which follows

For the second order in I, we obtain the self-energy
X(k, E ) for electrons,

J2
X(k,E)= IS+ —g g ge 'e '((Si ot„.Ck„St o„tCk „)) .

11' k'k" pp'
(5)

We introduce the Dyson-Maleev transformation for the
Heisenberg ferromagnet Hamiltonian Hd,

ai a(S'=ai ai —S, S( =&2Sa( 1—
(6)

Si =&2Sa( .

Then, the Heisenberg Hamiltonian Eq. (2) is changed into

Hd= —g J,"[S +S(a,"a +a, a —2a; a, )

+ —,'a,t(a, a,t —a; a;)a,

+ —,'(a,ta, —a;a )a. a ] .

The expression for the self-energy equation (5) contains
two Green's functions,

((S( Ck. ( Si o„tCk „)) —= Gg, (E)

and

„TCk „)) =Pa (E) . —

Their equation of motion can be calculated as follows:

(E ek )G(i (E—) = (2Si'Ck-& Ck i5a +S( St 5k k, . S( Ck„&Ck.—&5(t, ) +2 g Ji, [(S—(aj aj ) )G(i (E) (S—( ai ai —) )G&, (E) ]
J

(8)

and

ek') ll'(E) ( lS('5k'k" Sl Ck" $ k't511') + g Ij ( t j ) IPll' E) jl'(E)]
J

In order to obtain Eqs. (8) and (9), we have used the
decoupling approximations,

a&a&a&a =ia&a pa&a&

a =X ' ge 'b

I q'I (~ e
q

q

(10)

and

a a a a&=pa a&)a aJ J

It is obvious that we have

(a,ta, ) =(a,ta, ) .

In order to proceed with the calculation, we introduce
the Fourier transformation for operators a& and a&,

Equations (8) and (9) are in the site representation, and
their Fourier transforms are not simple because of the
presence of the randomly distributive bonds. We treat
them in the effective-medium approximation' ' in which
J," is replaced by a uniform coupling constant J(E); J(E)
is chosen in such a way that the scattering produced by
one bond, for which the original coupling constant J is
maintained, is zero on the average. According to Ref. 15,
we obtain J(E) for a cubic lattice,

3J(p —p, ) —EG0(e)+ [3J(p —p, )
—EGD(e)] +8EGD(e)J] '

J(E)=
4
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with

Go(e)= I exp[ (—Z/2+e)x][Io(x)] dx,

where e=E/J(E), p, is the percolation threshold, and
Io(x) is the modified Bessel function of order 0. Thus, we
can take the Fourier transformation of Eqs. (8) and (9).
Consequently, these two equations of motion are changed
into

(E —Ek, )G(q, E)= I 2[F(0) S]fk.+—2S(1+n )]5k,&„

+2ZJ(q, E)(1—y )[S—F(0)]G(q,E), (12)

with

F(0)= (alta& ) = (aoao ) =—g n=1
q

1 iq.s

and

(E c,„—)P(q, E)=MS [S—2F(0)]5 O5k k ~

+ZJ(q, E)[I(0) I (—q) ]P (q, E), (13)

with

I(0)=—gy n, I(q)= —gyz+z nq
1 =1

q q&

From Eq. (5), through Eqs. (12) and (13), we find the self-

energy for electrons,

[2[F(0) S)fk +—2S(1+n )]
X(k, E )

=IS+
E —

Ek +2ZJ(q, E)(1—y )[F(0)—S]

The relaxation rate ~I, of a carrier with momentum k is given by

rk '= —2 ImX(k, E+i5) .

So, we finally obtain

[S—2F(0)] (14)

2 I g I2[F(0) S]fk z+2S(1+nq)]5IE —
Ek z+2ZJ(q, E)(1—yz)[F(0) S]]

q

+2~I S [S—2F (0)]5(E—
Ek ) . (16)

After making use of the Drude formula, we arrive at the
following expression for the resistivity arising from the
scattering of electrons by magnetic excitations,

dependence of the exchange-coupling constant as fol-

lows;

J, -r, r((
p=m*/ne r, (17) -const, r ) g

(19)

where m * is the effective electron mass, n is the concen-
tration of the conduction electrons, and ~ ' is given by

'= Jr„'A(eF)dc', „,
with JV(eF) the density of states of the electrons on the
Fermi surface.

The first term of the expression (16) is the relaxation
rate of electrons scattering with spin Aip, it is due to the
coherent scattering of electrons by spin waves. In the
second term of this expression, the transferred momen-

tum is not coupled to the magnons' momentum, i.e., in

the scattering process electron momentum is not con-
served, so it contributes an incoherent scattering to elec-
trons. At the same time this term does not include any
factor p [the J(q, E) contains p in the first term], i.e., in-

coherent scattering is more essential than coherent
scattering.
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III. NUMERICAL STUDY

For the dilute ferromagnet, dynamics can be intro-
duced by making an assumption concerning the length

FICx. 1. Resistivity vs
~ power of the temperature, which

arises from the scattering of electrons by fractons. The Fermi
energy of the conduction electrons takes the value of 5.0 eV.
Curves {a), (b), and (c) correspond to p —p, =0.1, 0.07, and 0.04.
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where we have used the approximation 1 —
yq =q a /Z

for the cubic lattice. Following the conjecture of Alex-
ander and Orbach we de6ne the fracton dimension d as
d =2D/(2+9), with D the fractal dimension of the net-
work. It is expected that d and D are equal to 1.42 and
2.5, respectively, for a three-dimensional percolation net-
work.

Correspondingly, the magnon density of states is given

X(co)-co" ', (co(co, ), (22)

0
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~z/z (Kz/z)

800 1000

FIG. 2. Resistivity vs —power of the temperature, which
arises from the scattering of electrons by fractons. The Fermi
energy of the conduction electrons takes the value of 5.0 eV.
Curves (a), (b), and (c) correspond to p —p, =0.03, 0.02, and
0.01.

N(co)-co ' (co) co, ) . (23)

As a result, the sum over q in Eq. (16) can be transformed
into an integral according to

where d is the Euclidean dimensionality, and co, is the
crossover frequency of magnons and fractons which is re-
lated to the percolation correlation length g, by co, —g

For frequencies above ~„ the density of states of frac-
tons is given by

The exponent 0 was first introduced in the context of
anomalous diffusion by Csefen, Aharony, and Alex-
ander. ' From the 6 function of Eq. (16), we can see that
the excitation energy of the magnetic excitations (frac-
tons and magnons), which involves the scattering pro-
cesses, is given by 2ZJ(q, E)(1—y )[F(0)—S]. Thus, the
excitation energy of magnons has the form

3

for the magnon excitation, and

D

I 'q 'dq f (sin8) d 8,(2~)~ i/g o

(24)

(25)

A'co=2J(E)[F(0) —S]q a (20)

and the excitation energy of fractons has a different form
according to Eq. (19),

for the fracton excitations, where KD =rr / I (D /2).
The percolation correlation length g exhibits the rela-

tion'

(26)
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FIG. 3. Resistivity vs square temperature at p —p, =0.01,
which arises from the scattering of electrons by fractons. The
Fermi energy of the conduction electrons takes the value of 5.0
eV.

By using Eqs. (16), (17), and (18), we can calculate the
temperature dependences of resistivity due to the scatter-
ing of electrons by magnetic excitations (magnons and
fractons). The results are presented in Figs. 1 —4. In Fig.
3, the resistivity versus square temperature from fracton
scattering at p —p, =0.01 are plotted. It is shown in
Figs. 1, 2, and 3 that as the concentration p of the fer-
romagnetic bonds approaches the percolation threshold
p„ the contribution from fracton scatterings to the resis-
tivity varies from a T to a T term. However, the con-
tribution from magnon scatterings changes very slightly,
which always contributes a T temperature dependence
to the resistivity as shown in Fig. 4. Thus, in a dilute fer-
romagnet the resistivity, due to the scattering by mag-
nons, is proportional to T, rather than to T as in an
ordered ferromagnet. It coincides with the theoretical re-
sult derived by Richter, Wolf, and Goedshe.

From Eq. (26) we can see that the percolation correla-
tion length g increases as p approaches p, . As has been
argued above, on length scales smaller than g both the
Anite clusters and the infinite clusters are self-similar or
exhibit the fractal characteristics. So one would expect
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We point out that at suSciently low temperatures, a
minimum is observed in the p( T) curve for the majority
of metallic glasses which can be described based on the
percolation method. Below this minimum, the resistivi-
ty increases as the temperature is lowered. This phenom-
ena is believed to be dependent on the competition be-
tween several scattering mechanisms in these materi-
als, ' ' and is beyond the scope of this paper.
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FIG. 4. Resistivity vs — power of the temperature, which
arises from the scattering of electrons by magnons. The Fermi
energy of the conduction electrons takes the value of 5.0 eV.
Curves (a), (b), and (c) correspond to p —p, =0.1, 0.05, and 0.01.

that the relative weight of the scattering of electrons by
fractons will become more and more large, and the T-
dependent term in the resistivity will dominate when

p —p, is smaller enough. When the concentration p devi-
ates from the threshold p, (p )p, ), the correlation length
becomes shorter and shorter, and on a longer length
scale, the system is homogeneous. Therefore, the weight
of the scattering to electrons from magnons increases
with the deviation of p from p, . Meanwhile, the contri-
bution from fracton scattering to resistivity also changes
from T dependence to T ones. We may therefore
conclude that the T -dependent term of resistivity only
appears when the concentration of ferromagnetic bonds
approaches the percolation threshold p„otherwise, the
contribution of magnetic origin to the resistivity has
T -dependent term.

IV. CONCLUSION

We have adapted the fracton model to discuss the tem-
perature dependence of resistivity arising from the spin-
dependent scattering of electrons and magnetic excita-
tions in a dilute three-dimensional ferromagnet based on
the bond-percolation network. The dynamics is intro-
duced when each ferromagnetic bond is assigned a scal-
ing law [Eq. (19)]. The appearance of fractal structure at
short length scale induces a crossover from magnon to
fracton dynamics at the percolation correlation length g.

When the concentration of bond p approaches the per-
colation threshold p„we found that the contribution to
resistivity from the scattering of electrons by fractons
varies from a T -dependent term to a T -dependent
term, while the scattering of electrons by magnons con-
tributes a T -dependent term regardless of the changes
of p —p, . It suggests that near the percolation threshold,
one would expect a T -dependent contribution of mag-
netic origin to the resistivity, which arises from the
scattering of electrons off fractons. Otherwise, it would
make a contribution to the resistivity proportional toT, which results from both the magnon and fracton
scatterings.
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