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A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most
important feature is that the dynamics of the exchange of particles between the system and the reservoir
is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to Auc-

tuations in the total number of particles in the system. The system is to be considered in its full struc-
ture, whereas the reservoir is described only in an effective way, as a source of particles characterized by
a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in
solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-
binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a
magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-
valence center), and a two-orbital impurity with interorbital repulsive interactions.

I. INTRODUCTION

Surfaces, local or extended defects, impurities, and
clusters are subjects of great relevance in condensed-
matter physics. They can all be described as relatively
"small" systems embedded or in contact with a larger
body, the bulk of the material that contains them. To
study such systems, even when strictly focusing on their
local properties, interaction with the environment cannot
be meaningfully neglected. One-particle-like
approximations —mean-field theories, the Kohn-Sham
treatment of density-functional theory, or quasiparticles
theories treated in perturbation expansions —are usually
flexible enough to make possible an explicit, albeit labori-
ous study of the defect and the bulk material surrounding
it. However, when many-body correlations become im-
portant these treatments are of little use.

The most widely and successfully used techniques to
study highly correlated electronic materials are based on
three approaches: (l) perturbative methods, of restricted
and/or dubious convergence; (2) ad hoc (variational)
methods, tailored to a particular problem; and (3) small-
cluster approximations. In the last approach, a small sys-
tem with appropriate boundary conditions is considered
to be representative of the larger system. The problem is
then solved by an exact diagonalization of the Hamiltoni-
an in the Hilbert space spanned by all the possible many-
body basis vectors, or by Monte-Carlo simulation tech-
niques. Because of the exponential growth of Hilbert
space with cluster size, the method can in practice handle
only clusters with very few electron orbitals in the cell,
less than, say, 50. It is therefore dificult to conduct real-
istic studies of a defect. , embedded cluster, or surface, in-
cluding in the calculation or simulation a sizable portion
of the bulk.

The method proposed here to study surfaces or defects
in highly correlated electronic materials considers the de-
fect (surface, cluster) —and possibly its immediate

surroundings —as the "system, " and the bulk of the ma-
terial only as a particle reservoir characterized in an
effective way by a small set of parameters. These parame-
ters reAect the information available about the bulk, such
as electron density, magnetization, density of states at the
Fermi level, etc. and are part of the input in the problem,
i.e., the bulk properties are assumed to be known and
well characterized. The system, however, is treated
differently. Its properties are determined including all its
internal degrees of freedom, plus the effective interaction
with the particle reservoir. The most important feature
of this treatment is thus the exchange of particles be-
tween system and reservoir. The total number of parti-
cles in the system is therefore subject to fluctuations,
which can be considerable in a small system.

The approach is very well suited for many problems.
In particular, surfaces can be examined by including only
very few layers, periodic in two dimensions, with vacuum
on one side and attached on the other to a bulk crystal,
the reservoir. Similarly an interface is a two-dimensional
periodic system attached to two different reservoirs, one
on each side. A point defect, an impurity, or a cluster is
an even more natural candidate to be treated by this ap-
proach. It is even possible to study in this way local
properties of three-dimensional homogeneous materials.

The crucial issue of this method is the proper descrip-
tion of the reservoir, and the exchange of particles be-
tween system and reservoir. The goal is to focus only on
the system, where particles enter and exit in a way con-
sistent with Fermi-Dirac statistics. The idea of a "classi-
cal" reservoir and a small quantum system is standard for
bosons, ' where it forms the basis for the Bogoliubov
transformation which describes superAuidity and Bose-
Einstein condensation. In the case of the Bose conden-
sate, the k=O state constitutes the reservoir and all other
k&0 states are the "small" quantum system. Whenever a
particle gets scattered from a k&0 state to the macro-
scopically occupied k=O state, it effectively disappears
from the system of excitations. The creation and annihi-
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lation operators for the k=0 state (reservoir) are replaced
by a classical X' number, a scalar characterized only by
the density of particles in the container. Similar treat-
ments exist for superconductivity, where the "particles"
in the reservoir are Bose-like Cooper pairs, ' and in
theories of quantum dissipation, where the reservoir
consists of phonons.

The procedure, which is adequate for bosons, is not
suitable for fermions. The anticommutation relations of
the creation or annihilation fermion operators create
difficulties which do not exist in the case of bosons. The
present contribution overcomes these drawbacks and
presents a consistent formulation and some applica-
tions. '

The formulation of the general method is presented in
Sec. II. Section III contains some applications: (a) a
tight-binding model for an adsorbate on the surface of a
one-dimensional lattice, (b) Anderson's model of a mag-
netic impurity in a metal, (c) a two-orbital impurity with
interorbital hybridization (intermediate-valence center),
and (d) a two-orbital impurity with interorbital repulsive
interactions. Section IV consists of the conclusions.

II. METHOD

—H, pN, kT—
(2b)

the trace in (2b) is taken over the Hilbert space of the
states of H„and all other symbols have the standard
meaning.

The reservoir defines the chemical potential p, which
in turns determines the average number of particles in the
system, given by the expectation value (X, ). Because 0,
commutes with the fermion-number operator of the sys-
tem, 2V„ its eigenstates are characterized by a given num-
ber of fermions, with no Auctuations in them. Therefore,
even though (2) sums over states with any number of fer-
mions in it (statistical fluctuations), the quantum-
mechanical states involved there have no particle Auctua-
tion whatever. For this approach to be valid one condi-

The exact Hamiltonian for a fermion complex consist-
ing of the (small) system connected to a reseruoir has the
general form

H =H, +H„+H;„, ,

where H, includes operators that refer to the system but
not to the reservoir, H„refers to that part of the Hamil-
tonian related to the reservoir but not to the system, and
H;„, contains interactions and transfers of particles be-
tween system and reservoir. The Hamiltonian (I) com-
pletely defines the dynamics of the problem. All neces-
sary information for the complex is included in the densi-
ty operator, which, to be determined, requires complete
knowledge of the dynamics of the system and the reser-
voir. Because only information about the system is re-
quired, the usual procedure in quantum-statistical
mechanics is to define a density matrix

—(~, —p&, )jkrp=e ' ' /Z,

tion must apply: the Auctuations caused by H;„, in the
number of particles in the system must either be zero (no
particle transfer between reservoir and system) or those
Auctuations must be small compared with the mean num-
ber of particles in the system. Thus %, is a good (or an
approximately good) quantum number, and the only
effect of the reservoir is to control the number of particles
in the system via the chemical potential p.

It is the aim of this contribution to restrict the formal-
ism to the system only, even in those cases in which the
quantum-mechanical particle Auctuations in the system
are of the same order of magnitude of the particle num-
ber X, itself.

The approach presented here is intended mainly for
small systems, where the effects of H;„, are not negligible,
and must be explicitly kept. The most important effect of
H;„, which gives rise to the particle Auctuations in the
system is contained in those terms where the transfer—
hopping, tunneling —of particles between system and
reservoir is explicit. In second quantization such terms
are of the form

H,„,(transfer)= g (t,*c, c„+t;c„c, ),

where the operators c, refer to orbitals within the sys-
I

tern and the operators c„ to orbitals in the reservoir. Asj
usual o. stands for the spin degree of freedom of the parti-
cle. This term cannot be used directly in (2) or equivalent
formulations because it explicitly contains operators
which are connected with the reservoir. It has to be re-
placed by an H,z that has the same effect on the system
but averages out in some way the details of the reservoir.
In principle this is similar to the treatment of bosons, '

where the creation and annihilation operators on the
reservoir are replaced by Ã' . In this sense H;„, would
take the form

(4)

Here the parameters ~; describe the effect of the hopping
between the orbital I', of the system and the reservoir.
They include, in principle, a sum over all the orbitals j of
the reservoir of the hopping factors t, multiplied by a
"classical" average of the fermionic creation and annihi-
lation operators associated with the orbital (j,o ). What
the Hamiltonian (4) describes is the process of creation
and annihilation of particles in various orbitals of the sys-
tem, with strength ~; . fhis term accounts effectively for
the hopping from/to the reservoir. Such a substitution
permits concentrating exclusively on the system. The
reservoir degrees of freedom have been eliminated.

The introduction of H, tt in Eq. (4), however, presents
several difficulties. Fermionic creation and annihilation
operators anticommute among themselves and with the
other fermionic operators —such as those in the system
and in the reservoir. They have been replaced by scalars
that commute with the other scalars and with fermionic
operators. This replacement gives rise to inconsistencies
and undesirable effects. Both for bosons and fermions
this "classical averaging" defines space and spin
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characteristics —and symmetries —of the particles being
transferred between system and reservoir, i.e., the reser-
voir consists of a set of particles, all of them described by
the same one-particle state. Perfectly valid for bosons,
this idea of the reservoir is obviously incompatible with
Fermi statistics: because of the Pauli principle any realis-
tic fermionic reservoir has particles in many different
states and generally with different (both one-particle and
global) symmetries.

The approximation made in Eq. (4) cannot account for
more than one symmetry. For example, if the connection
with the reservoir is through a single orbital of the sys-
tem, H, ff would read

H~ff =7 yc y
+'Tgc

g
+7 )c y

+7 gc g

for spin- —,
' particles. Regardless of the values of ~& and

ri, (5) can be rewritten as
~
(N —n ),P„;n, a„), (7)

one sequence for each possible (one-particle) symmetry of
the transferring particles. Within each sequence —say
spin-up states —there is a unique order in which the
reservoir states get occupied and emptied; in other words,
there is never an exchange of occupation of particles of
the same symmetry within the reservoir; states far away
from the Fermi level never change their occupation num-
ber. Therefore only a few one-particle states (as many as
needed to supply the required number of particles and
particle symmetries, but always very few and always in
the neighborhood of the Fermi level) are relevant.

In a large complex, with Y fermionic states and X fer-
mions, the Hilbert space comprises Y!/[N!( Y N)!]-
states. A small system with v fermionic states may con-
tain from n =0 to n =v electrons, and a total of 2 states
in its Hilbert space. If the states of the complex are
identified by

where the subindex o. indicates a well-defined direction of
the spin —a different quantization axis for the spin degree
of freedom. This transformation means that, whatever
the parameters, particles are created or annihilated in the
system with a single, well-defined spin direction, which
depends on the phases of ~& and ~&. The system does con-
serve the number of particles for the other component of
the spin. In other words, the system is in contact with a
single-spin —a purely ferromagnetic —reservoir of arbi-
trary but we11-defined orientation. This is indeed a patho-
logical and unacceptable property, which is related to the
loss of fermionic character of the particles while being
transferred between the system and the reservoir. It
affects the system by introducing fictitious conservation
of the number of particles with symmetries other than the
one of the reservoir.

A necessary condition is then to keep fermionic con
sistency, i.e., the states of the reservoir, in any of its
forms, must retain fermionic character: they must satisfy
antisymmetry properties with the fermionic states of the
system and among themselves. It is important to stress
that the main object here is to replace the reservoir with
a simple "set of outside parameters, " and that guarantee-
ing fermionic consistency —a requirement —in no way
changes the aim. The formal development that follows
insures fermionic consistency; the main objective has
been already achieved in the introduction —albeit not in
its final form —of H,~ in (4).

Fermionic consistency is obtained if a fermionic reser-
voir is explicitly considered. The only way a reservoir
may contain many fermions is by having many internal
one-particle states, i.e., a rich Hilbert space, with its con-
sequent danger of complications and the possibility of an
intractable problem. The solution proposed here, while
still considering many one-particle states in the reservoir,
is to allow for change in the occupation of these states in
a single, unique, and orderly fashion, compatible with
Fermi statistics. With this aim in mind the reservoir is
assumed to contain (in principle an infinity of) ordered or
hierarchical one-particle fermionic states. States are oc-
cupied and emptied in a set of well-defined sequences—

where the first part

~
(N n), P„—)„„

identifies the state of the reservoir, and the second

~
n, a„)„,. (9)

different a„, and

Y!/[(N n)!( Y —N+n )!]—

different and independent P„. The approximation pro-
posed here projects this enormous Hilbert space onto a
much smaller one; all states with the same n and a„are
projected onto the same new state,

~(N —n ), „a; na„), (10)

i.e., the independent index P„has now been eliminated.
There is a one-to-one correspondence (mapping) between
the eigenstates of H„given by (9), and the relevant (re-
tained) states of H of the complex, given by (10). In other
words the Hilbert space for the complex, given by (7), can
now be mapped onto the Hilbert space of H, . The states
in the now much smaller Hilbert space of the reservoir,

((N —n ),a„)„,,
where not all states with different n„are necessarily
different, can be related, in the usual way, by ordinary
fermion annihilation and creation operators, denoted by
the symbols R; and R, , respectively.

With this mapping the interaction Hamiltonian H, ff
becomes again a clean fermion hopping between orbitals.
Fermionic consistency is guaranteed, since the only
operation done on the full fermionic reservoir is a projec-
tion to a restricted, well-defined set of states. The ap-
proximation essentially means that the transfer to and
from the reservoir takes place only in the neighborhood
of its Fermi level. For the "large and almost shapeless"
reservoir, only the states near the Fermi level matter.

the state of the system, there are, for a given n, altogether

v!/[ n!( v —n )!]
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The interaction term can now be written

H„=H, +H,~,' (12)

it depends only on the degrees of freedom of the system
and the effective interaction parameters ~, . A standard
quantum-statistical-mechanics treatment can now be
used. The average value of any observable has the form
given by

The system-reservoir "hopping" matrix elements
which in principle (if exact solutions were known) can be
variationally defined so as to minimize the error in some
particular observable, are taken here to be parameters
that define a priori the properties of the complex, in par-
ticular the exchange of particles between system and
reservoir.

With this approximation an effective Hamiltonian for
the open system is obtained:

ergy is the same for all orbitals, except for the surface ad-
sorbate (outer site). There is, in addition, a hopping ma-
trix element ( t )

—between nearest neighbors, a constant
throughout the lattice. The hopping matrix element be-
tween the adsorbate and its neighbor is also assumed to
be ( —t ), identical to that between two sites in the lattice.
The Hamiltonian —which does not include
interactions —is given by

H= t g— (c; cj +c c; )+sop no
0

where label 0 indicates the adsorbate orbital, and (i,j )
means nearest-neighbor pairs, including the adsorbate.
Since spin does not play any role in this model, it is
solved for spinless fermions (a simple doubling of the oc-
cupation gives the solution for the two-spin case).

At zero temperature the model is completely charac-
terized by the dimensionless parameter (Eo/t ) and by the
number of electrons per bulk atom nb. The quantity of
interest is the excess charge at the adsorbate,

( A ) =Tr[Apj,
with the density matrix p given by

(13)
5n =np nb (17)

—(H —pN )/kTp=e

where

Z=T [
(Ho, PNs /k—T~—

(14a)

(14b)

It is straightforward to determine the chemical potential
p that corresponds to a specific nb. Since Bloch's
theorem applies in the bulk and the band structure is ana-
lytic in this case,

At zero temperature, ( A ) in (13) reduces to the expecta-
tion value of the quantum-mechanical operator 3 evalu-
ated with the ground state of

G =Hos PNg =Hg +Hgg PN (15)

III. APPLICATIONS

A. Adsorbate on a one-dimensional lattice

A first application of the method is to a problem that
can be solved exactly for the complex, so that the exact
results can be compared with the ones obtained with the
scheme proposed here. The specific problem is that of an
adsorbate on the surface of a one-dimensional lattice. It
consists of a semi-infinite sequence of atoms, equally
spaced, each containing a single orbital. The on-site en-

The chemical potential p is in principle determined by
the reservoir, which thus controls the average number of
particles in the system. It is convenient, however, to con-
sider p an independent variable that controls ( N, ) .
Magnetization of the reservoir can be handled by taking
different chemical potentials for different spins.

The hopping energies ~; are more difficult to estimate.
They can be obtained from bulk characteristics by doing
a calculation on an open (small) system describing the
bulk of the material itself, and fitting the results to known
properties of the bulk. In particular the density of states
at the Fermi level can be obtained in the open system
from (d (N, ) /dp) evaluated at the value p that gives the
correct average number of particles (X, ) in the system.

p=2t sinn(nb —
—, ) . (18)

The use of recursion techniques for the resolvent of the
Hamiltonian yields for Do(s) the density of one-particle
states of the system projected on the adsorbate site:

(4,2,2)»2
Do(E)=

2~ Eo(EO
— )+Et

(19)

Integration of Do(E) from —oo to p yields no and 5n
This quantity is plotted as a function of (Eo/t) in Fig. 1

for nb =0.50, n& =0.35, and nb =0.20 (continuous lines).
A first attempt to approximate this problem in the

scheme described above is to consider only the adsorbate
site as the (open) system. It interacts with a reservoir
provided by the lattice. The only energy parameters
entering the Hamiltonian of this system are cp i and p.
The first one, c,p, is part of H„ the input to the problem.
The chemical potential p is provided by the reservoir,
and is related to nb by (18). That equation also provides a
measure of the band width 4t, i.e., the bulk hopping pa-
rameter t. The effective interaction ~ between system and
reservoir is a strong function of bulk parameters (band-
width, band occupation) as well as of the coupling
(strength of the hopping parameter to, ) between the ad-
sorbate and the lattice. It can be obtained from one addi-
tional piece of information. For example, by fitting 5n to
the exact result for one value of cp, e.g. , op=0. The Hil-
bert space associated to this system is spanned by only
two states, one for the empty and the other for the occu-
pied adsorbate orbital. The solution of the problem
reduces to the diagonalization of a 2X2 matrix of G, Eq.
(15):
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0
(20)

The solution is trivial. The charge transfer 6n can be
computed again as a function of co and compared with
the exact result. The results, which are satisfactory, are
shown in Fig. 1 (dotted lines). Inclusion of particle fiuc-
tuations in a very small system (only one orbital) is
sufhcient to approximate well the 6n versus c.o curve, with
one fitted parameter ~. The solution for a small cluster
not coupled to the reservoir —Eq. (2)—gives for this
graph a step function with the discontinuity at co=p.

The approximation can be improved systematically by
including one or more lattice sites (substrate) in the

0.50

definition of the system. Results are also presented in
Fig. 1 for the open system consisting of the adsorbate
atom and its nearest neighbor (dashed lines). It is solved
by repeating the same procedure as before and diagonal-
izing the G matrix for the two sites, a Hilbert space con-
sisting of four states. Results for larger clusters rapidly
converge to the exact results, especially in the cases of
nb =0.50 and nb =0.35, where the continuous and the
dashed lines are practically indistinguishable.

B. Anderson's impurity model

Anderson's model for a magnetic impurity embedded
in a metal is the next application, an example of a many-
body Hamiltonian. The model describes the impurity
atom with a localized orbital (labeled 0) with an on-site
Coulomb repulsion U and hybridized to extended, un-
correlated states of a reservoir (the metal host). The
Hamiltonian has the form'

0.25—

0.00—

H=eo(no&+no& )+ Uno&no~+ g E(k)ak ak
ko.

g (Vokco k + Vokak co ),

kyar

(21)

-0.25—

-0.50

0.35—

0.10—

-0
~ 15—

-0.40

0.50—

0.25—

0.00—

=0.20

where Vok is the hybridization strength, the operators
co (co ) refer to the localized impurity state, the opera-
tors ak (ak ) correspond to the extended band states of
the metallic host, U is the localized-state Coulomb in-
teraction, and e(k) describes the metal band structure.
This model was solved initially by Anderson in the
mean-field approximation' and subsequently in other
ways. " In all cases there is a critical value of the interac-
tion U above which a localized magnetic moment devel-
ops. The magnetic moment, when present, is now known
to be screened at low temperatures by the conduction
electrons (the Kondo effect). '

The physics of this model can be correctly described by
the scheme presented here. The localized orbital is con-
sidered to be the open system. The metallic band is the
reservoir, and the hybridization term becomes the cou-
pling term. Three parameters characterize this problem:
U internal to the system, p defined for the system by the
reservoir, and ~ the effective system-reservoir interaction
(modified hybridization).

-0.25
-1 0 1

H, =Eo(no& +no& )+ Unot no&,

H, fr= g (r*co Ro +PRO co ) .

(22a)

(22b)

FIG. 1. Comparison between the exact calculation and the
open systems for an adsorbate on a noninteracting one-
dimensional surface. The plots are of the excess number of par-
ticles at the adsorbate 5n as a function of the adsorbate on-site
energy co in units of the bulk hopping parameter t for (a) a half-
filled band nb=0. 50, (b) nb=0. 35, and (c) nb=0. 20. The pa-
rameter ~ fits the 6n of the exact calculation at co=0. Full lines
are for the exact results; dotted lines are for an open system con-
sisting only of the adsorbate site; dashed lines are for an open
system which includes the adsorbate atom and the site immedi-
ately next to it. For nb =0.50 and nb =0.35 the two-site system
and the exact results are barely distinguishable.

0

0

(Eo—P)
0

7

0
0

U+2(EO —p)

(23)

For the particular case (no) = 1 the chemical potential p
is equal to (Eo+ —,'U). For this occupation there is a
particle-hole symmetry that allows the reduction of the

This open problem can be solved exactly by a diagonali-
zation of the 4X4 matrix for G=H, +H,z

—pN„given
by
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for the particle fluctuation,

bno=(no) —(no) =(no)(1 —(no))+2(no&no& ),
(25)

bno=32r [U +64' +U(U +64' )' ] (26)

for ( no ) = 1; and the magnetic moment

mo —g (cog S~ o coo ) (27)

0.5

0.0—

-0.5—

l

-2.0

0.75—

8 0.50—

0.25—

0.00

r~

r
r

I
I

I
I

I
I

I
I

I
I
I
I

0.4—

0.2—

0.0
0 2 10

FIG. 2. The results of the calculation for the Anderson im-

purity model. Plotted as a function of the impurity (system)
on-site interaction U, in units of the system-reservoir (impurity-
host) hopping parameter v., are (a) the total energy of the system
E (measured from its value at infinite U, E ); (b) the magnitude
of the magnetic moment at the impurity ~mo~; and (c) the iiuc-
tuations in the number of particles at the impurity site
Ano =—(no) —(no)'. Full lines are the exact results of the
open-system calculation; dotted lines are for the symmetry-
conserving Hartree-Fock solution; dashed lines are for the unre-
stricted (broken-spin-symmetry) Hartree-Fock solution of the
same problem —the 4X4 problem discussed in the text. Note
that the full lines give the best energy and no magnetic moment.

matrix to be diagonalized (for the ground state) to a 2 X2.
It easily yields the following results: for the energy,

E= —' [U+( U +647. )
~

]
~

where S ~ are the standard Pauli matrices, is zero for all
three components. (In other words, there is no magnetic
moment in the ground state. )

Values of E, ~mo~, and b,no, given by Eqs. (24), (27),
and (25), respectively, are shown in full lines in Fig. 2. As
a didactical exercise, also shown in Fig. 2 are the solu-
tions of the Hamiltonian (22) in the restricted
(symmetry-conserving, dotted lines) and unrestricted
(broken-spin-symmetry, dashed lines) Hartree-Fock ap-
proximations. The latter is qualitatively identical to
Anderson's Hartree-Fock solution' of the problem.

Comparison of the three sets of curves gives a clear ap-
preciation of the advantages of the present method. Par-
ticle Auctuations are built into the model from the start.
Large local fluctuations are necessary to minimize the
band-energy term; small (zero) local ffuctuations are
necessary to minimize interaction energy. In the original
problem, treated in the Hartree-Fock approximation, the
best compromise is achieved by breaking spin symmetry
and thus creating a local magnetic moment. In the
present approach, on the other hand, the system, as op-
posed to the complex, is allowed to exhibit particle Auc-
tuations, governed by the medium through Eq. (22b). It
has therefore more flexibility to compromise between the
opposing effects —band energy (22b), center of gravity
effects [(22a), first term], and interaction energy [(22),
second term]. These can be accomplished without
artificially producing a magnetic moment, and within the
very restricted, small Hilbert space of the system.

It should be emphasized that the appearance of a spin
singlet, i.e., a state with zero magnetic moment, is a
consequence of the participation of the reservoir through
its fermionic character, as described in this particular ex-
ample by H, s. of Eq. (22b). The fermions in the vicinity
of the Fermi level of the reservoir —identified by the an-
nihilation (creation) operators R,. (R; )—are coupled to
the particle in the system and produce a singlet state.
That is, in simplified terms, the physics that governs the
ground state of the Kondo Hamiltonian.

H =( k)(not+not )+ Uno&not

+g(V*c, co +Vco c, ), (28a)

C. Hybridized two-orbital
(iutermediate-valence) impurity

An intermediate-valence impurity' ' is characterized
by two types of electron orbitals: one of the extended
type, where band effects are dominant, and a second one,
localized and dominated by the strong Coulomb repul-
sion. A hybridization between them results in "an inter-
mediate valence. *' For the present purposes the system is
taken to consist of one orbital of each type, their hybridi-
zation and the (finite-strength) Coulomb interaction be-
tween electrons in the localized state, i.e., a localized
state that does not permit double occupation. The reser-
voir is the conduction band of the host metal, and the
transfer of particles to and from the system can only
occur through the (system) extended state. '4

The Hamiltonian is given by
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no~ n &~. ,+no& + Unotno&+ 8'H =( b—. )(not +no& not +S

(29a)

)R +7R J~C]~ e(~*c,eff (29b)
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a function of the one-electron energy difference 6 for
N, =1.5 and for various values of W. The unit of energy
is taken to be ~. It should be noted that application of
pressure to a material changes, in general, all parameters;
however, while the energy difference 5 tends to be nor-
mally very sensitive to pressure, the parameters ~ and W
are not, and the total charge of the impurity X, remains
essentially unchanged. ' ' Therefore Fig. 4 is, in a sense,
the plot of the change in the valence of the impurity as a
function of (increasing or decreasing) pressure.

It can be seen that there are two values of 6,
b„(W, ~)= W' —A, ~( W, r),
b,,2( W, ~) = —(2r/3' )

(30)

IV. CONCLUSIONS

A method has been proposed for treating a quantum
system that exchanges fermions with a reservoir. The
system is treated with its full quantum-mechanical struc-
ture, whereas the reservoir —a source and sink of

+ [ W —(4W~/3' )+(16' /3)]', (31)

such that the occupation (no ) is 0 for b, ~ 6, &
and is 1

for A~A, 2. It varies continuously between 0 and 1 for
b,2. A singular point occurs only at

N, =N„;,=1.5, W= W„;,=(4r/3' )=2.3094~, where a
discontinuous jump from 0 to 1 at
b, &

= b,,2
= b,„;,—:(2w/3' ~

) appears.
It should be noted that in the regime where (no) is

neither 0 nor 1, there is an abrupt change in the number
of particles in the system with chemical potential, i.e., the
quantity (BN, /r))M) at constant b, W, and w has an infinite
value. In other words, there is an effective infinite density
of one-electron states, which, in common one-electron
language, would correspond to an accumulation of states
at the Fermi level.

fermions —is characterized by only a few parameters, as
few as possible, but compatible with Fermi-Dirac statis-
tics and with the nature of the problem under study.
There is a one-particle transfer term in the Hamiltonian,
H,z, with strength ~, which allows hopping between or-
bitals of the system and states of the reservoir.

The scheme has been applied successfully to a variety
of problems. The results are very satisfying, since they
reproduce, with a minimum of numerical effort, results
for local properties found much more laboriously by oth-
er techniques. The quantitative agreement is also satis-
factory, since convergence with system size seems to be
very rapid.

Possible applications of the method to real problems
and model Hamiltonians are obviously many: surfaces,
defects, layers, heterostructures, etc. In particular, high-
ly correlated and disordered solids and liquids seem to be
ideal candidates. It should be remarked, however, that
the appeal of the approach is mainly for very smal/ sys-
tems, since the complexity of the problem increases —as
in the case of all many-body problems —exponentially
with the number of orbitals involved in the system. Ad-
ditional symmetry imposed on the problem, e.g. , point
symmetry, periodicity in one, two, or three dimensions,
may reduce the order of the relevant secular equation.
But, in any case, the method should prove useful for very
small systems embedded in an arbitrarily large reservoir.
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