
PHYSICAL REVIEW B VOLUME 47, NUMBER 18 1 MAY 1993-II

Microscopic model for the two-phonon Raman spectra of alkaii haiides
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The second-order Raman-scattering (SORS) cross section of alkali halides has been evaluated by using
the Buckingham expansion for the induced polarizability. This ab initio approach leads to a microscopic
expression of the SORS cross section without free parameters. The first two nonzero contributions of
the expansion, namely, the dipole-induced dipole (DID) coming from the first-order dressed polarizabili-
ty and the BTQ (second-dipole hyperpolarizability X dipole propagator X effective charge) coming
from the second-dipole —quadrupole polarizability, have been considered. The short-range contribution
to the induced polarizability coming from the electronic overlap has not been included in the present
work. The SORS spectra are expressed in terms of the dynamical quantities of the crystal (eigenvectors
and eigenfrequencies) and in terms of some bare ionic susceptibilities, namely, the ions bare polarizabili-
ties o.+ and a and the second-dipole —quadrupole bare polarizabilities 8+ and 8 . As an example the
results are shown in the case of KBr. Considerations on the long-range nature of the DID spectrum and
on the short-range nature of the BTQ spectrum are made. The relative weights of the two contributions
to the SORS in the whole class of alkali halides are also discussed.

I. INTRODUCTION

In the last decades many theoretical and experimental
works' ' have been devoted to the study of the second-
order Raman-scattering (SORS) spectra from alkali
halides, as well as from other cubic crystals. Indeed, for
such materials the first-order Raman scattering vanishes
because atoms are centers of inversion symmetry and the
spectra show only features coming from the SORS.

In the literature, the SORS has always been considered
as an image of the two-phonon joint density of states.
This statement is in some way true, since the most
relevant features of the two-phonon joint density of states
are indeed evident in SORS spectra. These features have
been assigned to couples of phonons coming from high-
symmetry points of the first Brillouin zone (BZ), even if
no quantitative agreement has been found between the
shape of the two-phonon joint density of states and the
SORS spectra. At the present stage it is clear that in or-
der to have a full and satisfactory explanation of this
spectral shape, a detailed knowledge of the microscopic
scattering mechanisms is required.

It is well known that the expression for the Raman-
scattering intensity is given in terms of the space-time
Fourier transform of the correlation function of the mi-
croscopic polarizability of the crystal. The time fIuctua-
tions of this tensor are therefore needed to calculate the
Raman-scattering spectra. As indicated by Born and
Bradburn, ' whenever the frequency of the exciting radia-
tion is much less than the lowest electronic transition fre-
quency, the crystal polarizability can be expanded in a
power series of the atomic displacements, which in turn
can be expressed in terms of phonon coordinates. In par-
ticular, in dealing with SORS, the quantities involved in
determining the spectral shape are the second-order
derivatives of the crystal polarizability with respect to the
atomic coordinates (a fourth-rank tensor) and a suitable
combination of four phonon field operator correlation
functions.

Hence the problem of calculating SORS splits in two
parts: (i) the determination of the phonon properties (ei-
genvalues and eigenfrequencies) and (ii) the determination
of the effects which all couples of phonons have in modu-
lating the lattice polarizability.

At the present time, with the help of computers, a huge
number of dynamical models have been developed. The
one most used for alkali halides is the shell model (SM),
that allows one to perform lattice dynamics calculations
which show very good agreement with the experimental
data. Since a very large bibliography on the subject is
available' we will not go into further details.

If on one side the solution of the dynamical problem is
well established in the current literature, on the other
side, the calculation of the Raman tensor is much more
intriguing. At this time, a reliable microscopic theory
does not exist that will predict the relative values of the
various tensor elements as well as the absolute spectral
intensities.

Since the early seventies, an approach based on the
Buckingham expansion for the effective atomic polari-
zability has been successfully used for the quantitative
calculation of the Raman spectral shape of gases and
liquids. Within this approach the macroscopic polari-
zability of the system is expressed as the sum of the
atomic-efFective polarizabilities, which in turn are the
sums of the bare (or in vacua) atomic polarizabilities plus
a collision-induced term. This last term depends on the
relative distance between all the atoms of the system and
is expressed via the multipolar expansion of the local
electric fields. The main underlying hypothesis in this ap-
proach is that the electronic wave functions of the system
are so well localized around the scattering entities (ions in
the present case), that they can be considered as isolated
in the zero-order approximation, and the effect of all the
surrounding entities can be treated as an electromagnetic
perturbation.

This scheme has been applied to crystalline systems
and, as far as SORS is concerned, it has been used by
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Werthamer and co-workers ' for calculating the spec-
tral shape in the case of rare-gas crystals. In these works
the authors consider the crystals of He, Ne, and Ar as be-
ing composed of point polarizable atoms and consider
only the leading term in the Buckingham expansion, i.e.,
the dipole-induced dipole (DID) term. In dealing with
the DID contribution to the effective atomic polarizabili-
ty, two main approximations have been used in those pa-
pers, i.e., the exchanged wave vector was considered
negligible and the self-consistent equation for the effective
atomic polarizability was truncated at the first order. In
the following we will discuss the consequences of these
approximations.

To our knowledge, the application of the Buckingham
expansion to other systems has been adopted only by
Mahan and Subaswamy on alkali halides. In their
work, these authors take into account the contribution at
the SORS as coming from the second hyperpolarizability
and from the second-dipole —quadrupole polarizability (y
and B, respectively, in the Buckingham notations). The
reason for this choice is clearly explained by the authors.
In the limit that only first derivatives of the local electric
field are taken into account only the B terms contribute
to SORS. On the other hand, the DID terms will partici-
pate in SORS if we include second derivatives of the local
electric field.

In this paper we propose a microscopic model for the
calculation of the SORS spectra in alkali halides, which
accounts for both the DID and the second-
dipole —quadrupole polarizability contributions. The
model is described by BTQ, the tensor product of the
second-dipole hyperpolarizability B, the dipole propaga-
tor T, and the effective charge Q.

Our model adopts the Born-Bradburn separation of the
polarizability from the dynamical problem, together with
the Buckingham expansion for the effective atomic polar-
izability. The leading terms of the multipolar expansion
are retained, and the resulting self-consistent equation for
the effective polarizability is rigorously solved, overcom-
ing the generally employed first-order approximation.
Moreover, it will be shown that the effects of neglecting
the finite value for the wave vector exchanged by the ra-
diation in the scattering process are not negligible, and
therefore the expression for the SORS cross section will
be calculated taking into account the ~q~ value, even if
small.

In Sec. II the expression for the SORS cross section is
derived following this scheme and in Sec. III we will dis-
cuss, as an example, the results for the KBr SORS spec-
tral shape showing the effects of the various approxima-
tions when introduced.

II. THEORY

A. Scattering equation

We will indicate with (8 o /Bco BQ)r the cross section
for light scattering in a given "scattering configuration"
r;

0
CO BQ r

CO; COf g I t3 s(co, q)m nfim ns .
aPy6

The scattering configuration I =(6', m, kk f) is defined
by the polarization unit vector fi' (m), and the wave vector
k; (kf), of the incident (scattered) radiation. The axes of
the reference frame are chosen to be coincident with the
crystallographic axes of the cubic crystal. Moreover
co=ref —co;, with co, =c ~k, ~

and cof =c ~kf ~, is the Raman
shift and q=kf —k, is the exchanged wave vector. The
terms I &rs(co, q) are the elements of the scattering tensor
which are the space-time Fourier transform of the macro-
scopic polarizability density tensor correlation functions.

tizs(co, q)= f dt e' ' Jdridrze2+N

X Hp r)t H~ r20

(2)

R' (t)=r' +u' (t)=x'+a +u' (t)

where u' (t ) is the displacement from the equilibrium po-
sition r', x' individuates the lth cell, and a is the basis
vector for the A,th entity in the unit cell. By expanding
the effective atomic polarizability ir'&(t) in a series of
atomic displacements and by writing the atomic displace-
ments in terms of phonons, Eq. (2) becomes

If the system is composed of entities (say atoms, ions, or
molecules) whose eigenfunctions are localized on a di-
mension much smaller than the wavelength of the in-
cident light, it is useful to carry out the microscopic
description of the scattering process by writing the mac-
roscopic polarizability tensor in terms of local properties
of each entity, i.e.,

II &(r, t)= g ~'~&(t)5[r —R'~(t)] .
liE

In Eq. (3), ir'„&(t ) is the "effective" polarizability tensor of
the entity A, in the Ith unit cell (A, = 1,2, . . . , r, with r be-
ing the number of entities belonging to the basis of the
crystal, and l =1, . . . , X) and R (t ) is the instantaneous
position of the (lA, ) entity. The latter quantity can be
written as

2

I & (co,q)= g gF k(co, q)X &(k, q; jJ')y s(
—k, —q; jj'),16%

where the coupling amplitude g &(k, q; jj') is defined as

g &(k, q; jj')= g Ql/M M, g e„(P~j k)ee(v~ j'q —k)' 'P"&„&(k,q)
pv gO
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F,,'k(co, q)=[co, (k)coj'(q —k)] I5[co+co,(k)+co, (k q—)]n(k, j)n(k —q j'}
+5[co+co (k) —co. (k —q)]n(k, j)[n(k —q, j')+1]
+5[co—co (k)+co'(k —q)][n(k, j)+1]n(k—q, j')
+5[co—coj(k) —col (k —q) ][n (k,j)+ 1 ][n (k —q, j')+ 1]J,

where n (k,j) is the Bose PoPulation factor for the (k,j ) mode. In Eq. (6) ' 'Pl'p„()(k, q) is defined as

(2)ppv (k ) ~ i(k q/—2) (x " x"—) ~ 0(g2 OA. /g mph'
nv ~ iq/2 (x .&+x" ), q —~e

mn

moreover co, (k) and e„(p~jk) are, respectively, the eigen-
values and the eigenvectors for the (k,j) mode, and [ ]
indicates that the term included in the brackets is taken
in the equilibrium position u (t ) =0.

Equation (5) is an "easy to read" result for the two-
phonon Raman-scattering intensity. Indeed, it states that
there are contributions to the scattered intensity from all
the couples of phonons (j,k) or (j',k') for which
k+ k'+ q =0, and that this contribution is proportional
to the inverse of the phonons' frequency, to a suitable
thermal population factor, and to the square of the cou-
Pling amPlitude y p(k, q; jj').

The coupling amplitude is in turn written [see Eqs.
(6)—(8)] in terms of the eigenvectors of the system,
e()M~ jk), and the efficiency through which the displaced
atoms modulate the appropriate spatial Fourier com-
ponent of the crystal polarizability i.e., ' 'P "pys (k, q).

If we take the q=0 limit of Eq. (5), the equations of
Hardy and Karo are easily recovered by identifying the
term P p„e(n —m ~)Mv) in Eq. (12) of Ref. 10 with the
quantity g,k [() i'rplB t„i"Bu"e].

It is worth noting that in our expression we let q&0.
The reason for keeping a finite value for the exchanged
light wave vector will be clear as we will go further in the
calculations.

In order to give a microscopical description of the
phenomenon we are dealing with, we need to evaluate the
quantities ' ' P"

py(skq }which is the goal of the follow-
ing sections.

B. Effective polarizability

0 A, A, A. A, A.

Pa l ap~ ap, y 0& +ap + 5ap &

rapys ir (5ap5yp+5ay5ps+5as5py)

B p yp=B [ ', (5 y5ps+5 s5—p ) ——,'5 p5 s] .

(10)

The local electric field "felt" by each entity is given by
Ia,. r'~

the sum of the incident laser field 6' =6'Oe ' and by
the field propagating from all the other (effective) mul-
tipoles of the system, i.e.,

where higher-order effective multipole contributions have
been neglected. In this equation the quantities a, P, r,

, and B are electrical "bare" properties (susceptibility
tensors); more precisely a p is the polarizability, P p and

y &z& are the first and the second hyperpolarizabilities,
and 3 & z and B & & are the first and second dipole-
quadrupole polarizabilities, respectively. An explicit ex-
pression for these susceptibilities in terms of electronic
wave functions can be found in Ref. 23.

This description takes into account only the elec-
tromagnetic disturbance to the isolated entities and it
completely neglects the contribution to the effective di-
pole moments coming from both electronic overlap and
exchange effects. This implies that all the previous quan-
tities are time independent. If electronic overlap and ex-
change effects are to be introduced, this can be done sepa-
rately (see Ref. 45).

In the case of atoms or ions (as in our crystal), we can
reduce the terms appearing in Eq. (9). Indeed, for spheri-
cally symmetric entities, it results in the following:

In condensed systems, different approaches have been
used to write an explicit expression for the effective atom-
ic polarizability. For dielectric materials (or in any case
for all condensed systems, where the lowest electronic ab-
sorption frequency is much bigger than fico; ), the
Buckingham-like series have been widely used. In this
formulation, one starts writing the effective instantaneous
dipole moment on a given (l, X) entity in terms of the lo-
cal electric fields E' acting on it.

P- ='&'-+ X ~'pE p +
P Py

ElA, gli. + y T(1) [Rli(t )
Rl'). '(t )]gA,

'

1'A, '

+ g g T' '[R' (t) —R' (t)]P,' + .
P 1'A, '

here Q is the charge of the ions of species A, and the ten-
sor T'"). . . (R) is the n-pole electric-field propagator,

1 n

given by

+ 1 g i. Ei)E(i.E').+ 1 g A) V El)
Py

T'"' . (R)=( —1)"V' . . .V. .
1

(12)

I ElkV El) +
Py6

(9)
Equations (9)—(12) provide a complete description of the
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electric fields inside a crystal if the electrical susceptibili-
ties of the various ions are well-defined quantities, i.e., if
the electronic wave functions of different entities do not
overlap, which is the approximation we are working
with.

From Eq. (9), the effective ionic polarizability, which
enters into the light-scattering intensity expression, can
be calculated as

g-lA,

a@~I ]c,=o
(13)

By inserting Eqs. (11) and (9) in (13), retaining only the
leading terms and keeping in mind that

~ k .( IA, I'A, ')
e ' one obtains

(
IA, lk,

)~"(t)=~'6 +~'y y T'"[R"(t)—R"(t)]e ' ~"(t)+ gy—', g T"'[&"(t)—R"(t)]Q'
r I'A' ' r6 . l'

X g T,'"[R' (t ) —R' (t ) ]Q T(2) [Rlk( t. ) Rl k
( t. ) ]Qie

5e 1'A, '
(14)

This equation states that in systems composed of isotro-
pic scattering particles (atoms or ions), the effective po-
larizability is mainly given by the sum of three terms,
beyond the bare polarizability e 6 &.

The first one represents the dipole-induced dipole con-
tribution (aTa or DID). This term, which is the only
nonvanishing one in systems composed of neutral atoms
(Q =0), is always present in dense systems and is re-
sponsible for the appearance of the Lorenz-Lorentz rela-
tion. As is evident from Eq. (14), the DID contribution
to the effective polarizability is defined through a self-
consistent equation.

In the first-order DID approximation (which has been
considered by many authors ) the term ~'&(t) in the
second term on the right-hand side of Eq. (14) is replaced
by n 6r&. This approximation leads directly to a simple
expression for m'&. In a recent paper it has been shown
that in perfect crystals, the self-consistent DID equation
can be explicitly solved without any approximation.
Throughout this paper we will adopt the same procedure
in order to solve the problem without any approximation.
In Sec. III we will show what sort of effects the rigorous

result has on both the spectral shape and intensity of the
scattered light, when compared with that of the first-
order approximation.

One of the two terms left in Eq. (14) depends on the
second hyperpolarizability y (yTQ) and is called the
charge-induced dipole (CID). ' As already pointed out
by Mahan et al. in cubic crystals this term gives no
contribution to the SORS due to the vanishing value of
both static electric fields and electric-field gradients at the
lattice sites.

This is not true for the last term in Eq. (14), the BTQ
term, which gives a contribution depending on the third
spatial derivative of the static electric fields, which is a
nonvanishing quantity. This last term has already been
treated by Mahan et al. A comparison of the relative
intensities of DID and BTQ contributions will be per-
formed in the last section.

C. Summary of the theoretical results for the DID case

If one deals with the self-consistent equation for ~'&(t )

in the DID framework, writing Eq. (14) as

IA. I'A, '
)

vr &(t)=a 5 &+a g g T~ ~[R (t) —R (t)]n &(t)e
r I'A'

after straightforward but lengthy algebra, the quantities ' 'P"&„(k,sq) are

' 'P" (k )= ' 'P~ (k 0)

with

' 'Pgp„s(k, 0)~DtD= a"a [' 'B"~„s(k)+—' 'B"pqg(k)]+5„pa a"[' 'B"p„g(0)+' 'B ~p„g(0)] (17)
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and

' '8" (k)=' 'A" (k)aggO apso
A. y (3)A pi, (k)(1)pi v (k 0)

r

In Eq. (18) '"'A ",, (k) are lattice sums defined by

D. Contribution from the BTQ term

Following Mahan and Subbaswamy in dealing with
the BTQ term one must consider as a starting equation
the following approximation to Eq. (14):

D. (r ) y 82, y T(2) [Rl) (t )
Rl'2. '(r )]QI.

'

6e 1'A, '

(n) A pv (k) ~ T(n)
(

IA. I'2.') lk (r . —r )

a, a„~~ a, - . a„&
ll'

(19)

(21)

by using the expression B p & for the case of spherical
particles [Eq. (10)] and remembering that
g T' )[R(t)]=0,oneobtains

+ g. a& g (2) A P2. (k )(1)PA, (k 0)
y

(20)

and '"P"p„(k,O) is given by the self-consistent equation

("P~ (k 0)=")A~
apg ~ ap7l

77 ~(r ) = —'8~ / Q~ T( ) [R ~(r) —Rl ~ (())] .
I'A. '

(22)

Since Eq. (22) is a closed equation, one can then easily
perform the second derivative and the calculation of
' 'P"p„g(k, O), defined in Eq. (8), which in this case leads
to

' 'P"p g(k&0)~gTg=[8"Q'/2 ' 'A~@„g(k)+8'Q"/2' 'A ~p„g(k)] —&„+[8 Q"/2' 'A lp„g(0)+8 "Q~/2' 'A "p g(0)] .

(23)

Equation (23) can be easily compared with Eq. (17) which
gives the same quantity for the DID case. Indeed, by
substituting BQ /2 w—ith a a, the two equations ap-
pear identical once the q=0 limit has been considered for
the DID case.

In the following we will consider

pr)g(k 0) k) p pgg(k 0) DID

+k(2)p".;„g(k,O) I», (24)

and we will compute the spectra alternatively with g, = 1,
$2=0 (DID spectrum), with $, =0, $2=1 (BTQ spec-
trum), and with gi =$2= 1 (total spectrum).

III. DISCUSSION

To compute the SORS spectra from Eqs. (16)—(20) and
(23) one needs the values of a+, a, 8+, 8, Q+, and
Q; namely, the bare polarizabilities, the bare second-
dipole —quadrupole polarizabilities, and the effective
charges of both ions. These values are summarized in
Table I for a large class of alkali halide crystals, as de-
rived from current literature.

The values for the effective charges Q+= —Q are
those employed in the shell model calculations, where
Q+ was used as a free parameter.

The whole cell polarizability a=a++a values are
determined from the measured dielectric constant at opti-
cal frequencies, making use of the Lorentz-Lorenz rela-
tion. As far as the separate anions and cations polariza-
bilities are concerned, no direct experimental determina-
tion is possible. However, many indirect measure-

ments as well as theoretical calculations have
been performed. The values we report in Table I are
those taken from Ref. 40.

To our knowledge no experimental determination of
B+ and B is available so that in Table I we reported
only some theoretical predictions. ' Exhaustive work
on the calculation of the B tensor in the entire class of al-
kali halides was made by Johnson et al. ' using the
spherical model approximation in the framework of the
time-dependent local-density approximation (TDLDA).
It is worthwhile to note that the values of the second-
dipole —quadrupole polarizability reported in Table I are
three times smaller with respect to those computed in

Ref. 41 because of the different definition of the B ten-
sor. "

Let us now discuss the results of our calculations.
Roughly speaking, i.e., considering only the effect of the
first neighbors in the induction of polarizability, the in-
tensity of the BTQ contribution to the light scattering is
determined by the factor (8+Q /2a +8 Q+/2a ),
where a is the nearest-neighbor distance. At the same
level of approximation, the intensity of the DID contri-
bution is determined by

(a a /a +a a+/a ) =(2a a+/a )

As can be seen from Table I, B is always negligible with
respect to B; therefore the value of the ratio
(4a+a /8 Q+) when squared gives a rough estimate of
the relative intensity of the DID to the BTQ contribu-
tion. This quantity is reported in the last column in
Table I. As can be seen, the BTQ term is predominant in
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the spectra of lithium and sodium halides while the DID
term is the major one responsible for the potassium and
rubidium halides. The two terms have, however, compa-
rable relevance (the ratios are not greater than two) in the
NaF, NaC1, KBr, and KI alkali halides.

We expect that these systems, where the contributions
of DID and BTQ terms have comparable intensity,
should show the most interesting feature in the Raman
spectra. As an example, and in order to clarify the dis-
cussion, we have numerically calculated the spectral
shape for a KBr crystal. The shell model parameters
used to calculate the dynamics are taken from Ref. 20.
Both dynamic quantities and light-scattering spectra have
been calculated, sampling the irreducible Brillouin zone
(which for the symmetry of the Raman-scattering tensor
is —,

' of the full zone) over a grid of 10000 points.
The spectra reported here refer to the VV polarization

with the exchanged q lying in the xy plane and have been
calculated at T=300 K. Only the Stokes' side has been
shown in the figures.

The spectral shape arising from the DID contribution
(i.e., gz=O) is represented in Fig. 1 (solid line spectrum).
The calculation of this contribution deserves some com-
ment.

(i) The finite (even if small) value of the wave vector ex-
changed by the radiation makes the results of the com-
plete theory somewhat different from that obtained con-
sidering q=O in the scattering equation [Eq. (2)j. Indeed,
the finite value of q is responsible for the presence of the
local-field factor, which in this case comes directly in the
scattering equations without any a priori assumption.
The local-field factor by itself, being frequency indepen-
dent, does not modify the spectral shape but only its in-
tensity. We will see that the finite-q value also influences

4 I I I I I I 1 I

I

I I I I 1

7=300 K

X(ZZ)Y
KBr

0
0 100 200

WAVE NUMBER/ (cm )

I

300

FIG. 1. Calculated DID contribution to SORS for KBr in
the x[zz]y configuration (T=300 K, Stokes' side). The open
circles represent the first-order approximation, while the solid
line represents results from the complete calculation.

the spectral shape if the DID resummation is performed.
(ii) In the present work, the DID eff'ect has been taken

into account solving the self-consistent equations, thus
overcoming the generally employed first-order approxi-
mation in calculating the polarizability tensor com-
ponents. This approach gives rise to a spectral shape
which looks slightly different from that calculated in a
first-order approximation. Indeed, the expression for the
quantity ' 'P ~f3„s(k,q) in the first-order approximation
results in

TABLE I. Calculated polarizabilities and hyperpolarizabilities (TDLDA) for alkali halide crystals from Ref. 40 and effective

charges employed in the shell model calculations from Ref. 32.

Crystal

(+ —)

o.+

(A') (A )

B+

(A /e)

B

(A /e) (e)

LiF
LiC1
LiBr
LiI

0.032
0.032
0.032
0.032

0.848
2.81
3.86
5.67

1.15x10 '
1.17x10 '
1.17x 10-'
1.17x 10-'

0.47
2.64
4.46
8.34

0.902
1

1

1

0.256
0.136
0.111
0.087

NaF
NaC1
NaBr
NaI

0.158
0.158
0.158
0.159

1.13
3.26
4.40
6.37

0.016
0.016
0.016
0.016

0.91
3.98
6.40

11.55

0.907
0.89
1

0.89

0.865
0.582
0.434
0.394

KF
KC1
KBr
KI

0.839
0.838
0.838
0.838

1.28
3.50
4.66
6.68

0.21
0.21
0.21
0.21

1.27
4.93
7.63

13.43

0.961
0.82
0.965
0.92

3.52
2.90
2.12
1.81

RbF
RbC1
RbBr
RbI

1.39
1.39
1.39
1.38

1.38
3.68
4.89
6.95

0.54
0.54
0.53
0.53

1.55
5.75
8.88

15.27

1

0.79
0.79
0.87

4.95
4.50
3.88
2.89
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' 'P"p„(k,O)=cz"a [' '2 "p„(k)+'"'3 ~p„(k)]
—s„.y ~'a~["'~ '.g„,(o)+(4'a ~~„,(o)],

(25)

4 I I I I

I

I I I

T=300 K

X(ZZ)Y
KBr

I

I

I I I

which looks quite different from Eq. (17) because of rela-
tion (18). In other words, DID resummation implies a
different spectral shape with respect to the first-order ap-
proximation, but only if the finite q value is considered.

To show quantitatively the effect of resummation, the
DID contribution calculated in the first-order approxi-
mation is also shown in Fig. 1 (open circles) for a com-
parison with the results of the complete theory (solid
line). The first-order DID contribution reported in Fig. 1

has been ad hoc, multiplied for the local-field factor.
The spectral shape arising from the BTQ contribution

alone (g, =0) is shown in Fig. 2. Its computation, if com-
pared with the computation of the full DID contribution,
is quite simple because of the absence of self-consistency.
The field factor here plays only the role of a multiplica-
tive quantity, without any inAuence on the spe" tral
shape.

A quantitative comparison of Figs. 1 and 2 shows that
there is a marked difference between the DID and BTQ
spectral shapes. This can be explained by considering the
difference in the spatial range involved in the DID and
BTQ polarizability induction mechanism. In order to
clarify this point, we report in Fig. 3(a) the spectrum
from the BTQ term (open circles) together with the same
spectrum calculated considering only nearest-neighbor
(NN) polarizability interactions (solid line). As can be
seen, the BTQ contribution is almost completely deter-
mined from the NN ions. Roughly speaking, each of the
12 next-nearest-neighbor (NNN) contributions to the
spectral intensity is [B Q I(+2a ) ] while the 6 NN
contributions read (B Q+la ) . Thus the intensity ra-
tio between the entire contribution coming from the NN
and NNN will be
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FICr. 3. (a) Calculated BTQ contribution to SORS for KBr in
the x[zz]y configuration (T=300 K, Stokes' side). The solid
line is the contribution from the nearest neighbors alone while
the spectrum obtained considering the interactions at all dis-
tances is shown in open circles. (b) The same as in (a) but for
the DID case. '
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FICx. 2. BTQ contribution to SORS for KBr in the x[zz]y
configuration ( T=300 K, Stokes' side). Complete calculation.

FIO. 4. Calculated SORS for K13r in the x [zz ]y
configuration (T=300 K, Stokes' side). Full BTQ+DID spec-
trurn obtained using the electrical values reported in Table I.
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10

=2 =0.06, (26)

i.e., in the BTQ term, the NNN contribution is only 6%
of the whole scattered intensity. The situation is quite
different for the DID term. In this case, each of the
(6+6) couples of NN ions will contribute to
(a+a /a ), while the 12 bromine-bromine NNN cou-
ples contribute to [(a ) /(/2a ) ] (the potassium-
potassium contribution is negligible because
a+/a =0.2). The relative intensity ratio is therefore

10

=0.75,25
25

(27)

i.e., the contributions of the NNN and NN ions in the
DID term are of the same order of magnitude. This re-
sult is emphasized in Fig. 3(b), where the full DID (open
circles) is compared with the NN contribution (solid
line). The difference between the DID and BTQ spectral
shapes can therefore be explained in view of the different
dynamics involved, which are essentially those of the NN
in the BTQ and of NN plus NNN in the DID spectra.

In Fig. 4 the total spectrum obtained by Eq. (24) is
shown. As can be seen by comparing Figs. 1 (solid line)
and 2 with Fig. 4, the full SORS spectrum can be quite
well represented as the sum of the two contributions.
This means that BTQ and DID cross terms are found to
be quite negligible. The spectrum in Fig. 4 can be quanti-
tatively compared very well with the experimental results
reported in Ref. 8.

Last but not least, a comment has to be made on the
elastic (co=0) contribution to the spectra. This contribu-
tion obviously comes from couples of phonons (j,k;jk')
belonging to the same branch, which satisfy the condition
co~(k)=u~(q —k'). In the framework of a perfect har-
monic lattice theory, such a contribution is a 6 function

(see all the figures). In real spectra this elastic contribu-
tion will be broadened by the finite lifetime of the excita-
tions involved due to crystal anharmonicity. This peak is
isolated from the remaining spectrum because of its
higher intensity with respect to the other contributions.
For the harmonic spectrum BTQ+DID (Fig. 4) the ratio
of the intensity of the elastic peak to the integrated inten-
sity of the remaining spectrum is 0.184. This characteris-
tic of the spectra can be employed to measure a mean
anharmonicity of the crystals at various temperatures.

IV. CONCLUDING REMARKS

In this paper a microscopic model has been developed
to compute in the harmonic approximation, the SORS
spectral shape and intensity for alkali halide crystals.

The main source of the SORS in this class of systems
has been considered to be the effective ionic polarizability
modulation due to all couples of phonons accomplishing
the energy-momentum conservation rule.

Following the Buckingham expansion of the effective
ionic polarizability, the leading terms which give rise to
SORS spectra have been identified in the DID and the
BTQ terms. The BTQ contributions are found to be
dominated from the first neighbor relative anion-cation
dynamics, while in the DID term both NN anion-cation
and NNN cation-cation relative dynamics appear at
about the same extent. No electric overlap or exchange
effects have been introduced, which will probably not be
a good approximation for the heavier atoms, similarly to
what happens in rare-gas crystals. "

The spectral shape of the SORS are predicted to be
strongly dependent on the ratio between B Q+ and the
ionic polarizabilities product ++a . A quantitative
analysis of the experimental spectral shape can therefore
be a way to measure the 8 values, which up to now are
only theoretically evaluated. Experiments are in progress
to check our theoretical predictions quantitatively.
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