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This report examines transport through networks in which transport across each bond in the network

requires exceeding a microscopic threshold potential 5 V; '". In particular, we examine the macroscopic
gradient VV '" at which transport begins, as a function of the distribution of microscopic thresholds

hV; '". Applications of this "minimal path" or "breakdown" problem include electrical conduction

through networks of diodes and the How of Bingham plastics through porous media. Two simple models

are examined, including a solution for V V '" for a Bethe- (or Cayley-) tree network. One simple model,

based on taking the average of AV; '" among the percolation-threshold fraction of low-AV; '" bonds,

agrees remarkably well with both the Bethe-tree results and with the Monte Carlo studies for square and

cubic networks. However, the Bethe-tree model shows that the minimal path samples the low end of this

fraction most heavily. Doing so, it is aided by the existence of bonds with 5 V;
'" just above the value at

the percolation threshold. Evidently the minimal path occasionally passes through these high-AV; '"

bonds in order to access large clusters of low-6 V;
'" bonds.

I. INTRODUCTION

Percolation theory is the study of transport through
networks and inhomogeneous media. ' In conventional
bond percolation, a bond in a network is either open,
with probability p, or closed, independent of the potential
gradient AV across the network. The percolation thresh-
old, p„is the minimum value of p for which open bonds
form a continuous path spanning an infinite network. In
the flow of electrical current through random networks
of diodes, or the flow of a Bingham plastic through ran-
dom networks of tubes, however, a bond i is neither open
nor closed intrinsically, but it is open if the potential drop
across that bond 5 V; exceeds some randomly assigned
threshold value 6 V, '". Transport across the network as
a whole occurs if the macroscopic VV exceeds some
threshold V V '". Related "breakdown" problems in-
clude conductivity and the onset of superconductivity in
composites exhibiting a threshold voltage, fracturing of
composite media, dielectric breakdown, elasticity of pil-
ings with varying radii, ballistic particle deposition, the
frontier of the Eden cluster, and directed polymers at
zero temperature.

Several authors have discussed the "minimal path"
problem that defines the onset of transport in such a net-
work and the magnitude of transport for VV) VV '".
Roux, Hanson, and G-uyon and Roux and Herrmann
present Monte Carlo results for conductivity as a func-
tion of macroscopic V V for transport in square networks
exhibiting a distribution of AV,-

'" values, with the net-
work tilted at a 45' angle to the direction of flow.
Sahimi presents both an effective-medium solution and
Monte Carlo results for square and cubic networks. All
of these results were applied only to a distribution of
b, V,

'" that is uniform on the interval (0,1), however. In
contrast, Stinchcombe, Duxbury, and Shukla' provide
analytical and numerical solutions for the minimum VV

for transport on a Bethe (or Cayley) tree with b, V;
'" tak-

ing only the extreme values on this interval, i.e., 0 and 1.
Roux et al. present an analytical solution for the onset
of transport in a hierarchical diamond lattice. Yortsos"
and de Gennes' consider the flow of Bingham plastics
and foams in porous media. Adler and Brenner' discuss
the flow of a Bingham plastic in a uniform fractal net-
work. None of these studies have focused on how the dis-
tribution of 6 V,

'" values affects V V '".
Related theoretical studies examine the shorting out of

insulating bonds in an electrical network with p initially
less than p„' ' or the "burnout" of conducting bonds
for p initially greater than p, . '"'

There is an important difference between models in

which breakdown occurs sequentially and irreversibly'
and the minimal-path case examined here. The former
can exhibit a size effect, in which, as the system size ap-
proaches infinity, the macroscopic V V '" reflects the
minimum value of AV, '". In this case, the early local
breakdown initiates a cascade effect that quickly disrupts
the entire network. In our minimal path problem, how-
ever, no local transport (analogous to breakdown in the
other models) occurs until a path for transport can form
across the entire network. Therefore V V '" reflects a
finite portion of the 6 V,

'" distribution.
Here we present two models for VV '". The first is an

extremely simple, approximate approach for any network
for which the bond distribution AV, -

'" and the percola-
tion threshold are known. The second is a generalization
of the solution of Stinchcombe, Duxbury, and Shukla'
for a Bethe tree. Comparing these models illuminates the
relation between the AV, '" distribution, network struc-
ture, and V V '", a topic unaddressed in earlier studies.

Our interest is motivated by the flow of foam through
porous media, ' ' which exhibits a threshold
phenomenon similar to that of a Bingham plastic in net-
works of tubes. For Bingham plastics, the potential V
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corresponds to pressure, and AV,. '", the minimum pres-
sure difference for Aow between pores, depends on the
yield stress of the Quid and on tube radius.

Foams of a fixed texture (bubble size) roughly approxi-
mate Bingham plastics in that the surface tension on indi-
vidual films in the foams gives the foams an effective yield
stress in porous media. This yield stress traps up to
75 —99% of the foam in place in the pore space of rock
even as injected foam travels through the remaining frac-
tion of the pore space under massive applied pressure gra-
dients. ' The pore-size distribution of the rock evident-
ly plays an important part in determining the fraction of
the pore space through which foam Aows. In bead packs,
for instance, in which the pore-size distribution (and
therefore the values of b. V; '") would be expected to be
relatively uniform, a slight disturbance can completely al-
ter the path along which foam Aows.

The Bingham model only roughly approximates Aow-

ing foams, in which the yield stress is focused at the
discrete locations of the liquid films and not spread even-
ly across the Quid. However, the Bingham model exactly
describes mobilization of a stationary foam in which
liquid films occupy a fraction of the pore throats. '
(Pore throats are the bonds or "tubes" in the pore net-
work that link the nodes, called pore bodies. ) In this
case, the blocked bonds are assigned a finite threshold
AV; '" according to the pore-throat radius; for the un-
blocked bonds, AV, '"=0. In this case the minimum
pressure gradient to begin displacing these films defines
the onset of "foam generation" in the porous medium.

A brief preliminary report of this work appeared ear-
lier.

II. SIMPLE PERCOLATION MODEL

The first model we present is a simple application of
percolation concepts to the threshold for Aow. In con-
ventional percolation, a fraction of bonds equal to the
percolation threshold p, is sufficient to form a path for
transport through the network. ' lf one assumes that the
minimal path randomly samples the percolation-
threshold fraction of bonds with the lowest AV; '", then
V V '" is the average value of 6 V,

'" in this fraction:

V'V '"-(p, —p)' . (3)

g Vmln 0 375
2 2
Z Z2

where Z is network coordination number, ' while the
simple-percolation model (1) predicts

P Vmin — g Vmind g Vmin /( I /2 )
—0 25

1 /2

where we have applied the fact that p, = l/2 both for
square networks' and for EMA (Ref. 35) with Z =4.

The Monte Carlo studies of Roux, Hanson, and
Guyon and Roux and Herrmann found V V '"=0.22 to
0.23 for square networks tilted at a 45' angle to the direc-
tion of Aow. For the tilted networks, these studies as-
sumed the projection of a bond on the direction of Aow

was one unit in length. Sahimi's Monte Carlo study
gives V V '"=0.29 for a square network aligned with the
Aow.

Table I summarizes these values along with similar re-
sults for the simple cubic network. The simple percola-
tion model comes closer to the Monte Carlo results than
does EMA. The simple percolation model cannot predict
the rate of transport for V V & V V '", however.

Sahimi points out that one expects VV '" to be lower
for a tilted square network than one aligned with the
How. For the tilted network, two bonds at each node are

TABLE I. Predicted values of VV '" for networks with
6 V;

'" uniform on the interval (0,1).

Model g dmin

Square network (Z =4)

This simple percolation model compares remarkably
well to Sahimi's effective-medium approximation (EMA)
and to Monte Carlo studies of two-dimensional (2D) and
3D square and simple cubic networks. ' ' These studies
assumed a bond-threshold distribution

po(gVmin) 1 0 ~gVmin( 1

(4)—0 g Vmill )
For this distribution, Sahimi's EMA predicts

P Vmin —( g Vmin )I P

—f P Vmin o(g Vmin)d gVmin/

where p (hV; '") is the probability distribution for bond
thresholds 6 V,

'" and 6 V, is given by
AV

p, = f p (AV; '")db, V;
'" . (2)

In (1) we have assumed for simplicity that each bond is
one unit in length. We previously used (1) and (2) in es-
timating the minimum pressure gradient for Aow of
foams through pore networks.

For the limiting case where 6V;
'" takes only values of

either 0 or 1, (1) and (2) indicate that 7' V '"=0 if
p =-p (0)~p, and V'V '"=[(p, —p)/p, ] if p (p, . For
the scaling region ofp near below p„this implies

Sahimi EMA'
Simple percolation model
Monte Carlo studies

Roux et al. '
Sahimi'
Roux and Herrmann (1987)"

Simple cubic network (Z =6)

Sahimi EMA'
Simple percolation model'
Sahimi Monte Carlo study'

'Reference 8.
Using p, =0.5 (Ref. 1).

'Square network tilted at 45' angle.
"Reference 4.
'Reference 9.
'Using p, =0.2492 (Ref. 1).

0.375
0.25

0.227
0.29
0.22

0.278
0.125

-0.17
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aligned equally with the Aow, giving in effect two equal
choices for the path at each node. In a square network
aligned with the Aow, however, only one bond points
with the fIow; therefore one must more frequently choose
between a high-6 V;

'" bond aligned with the How or a
lower-6 V;

'" bond that does not point in the direction of
Aow. The issue of tortuosity —balancing minimal path
length with minimizing the individual AV; '" values in
the path —was not addressed explicitly in any of these
Monte Carlo studies. Presumably, the relatively uniform
and compact hV; '" distribution (4) assumed in these
studies favors minimizing path length in most cases. For
instance, Roux, Hanson, and Guyon found virtually the
same values of V'V '" for directed and unrestricted per-
colation on their tilted square network. Clearly a short
path, required in directed percolation, was close to the
unrestricted minimal path.

The close agreement between the simple percolation
model and the Monte Carlo studies may refIect two er-
rors in the model that partially cancel each other: First,
the simple percolation model assumes the path randomly
samples the percolation-threshold fraction of low-AV; '"

bonds (1), whereas the path may sample the low end of
this fraction more heavily. This error tends to make the
model overestimate VV '". Second, the simple percola-
tion model does not account for tortuosity, the need to
occasionally increase path length in order to minimize
overall hV. This error tends to make the model underes-
timate V'V '".

The Bethe-tree model introduced in the next section
corrects the first of these errors, but not the second.

III. BETHE-TREE MODEL: DERIVATION OF 7V

The simplest branched network is the Bethe (or Cay-
ley) tree, ' illustrated in Fig. 1. For the Bethe tree there
are Z bonds joined at each node (Z =4 in Fig. 1), but
there is only one pathway between any two points. This

FIG. 1. Fragment of radius 4 from a Bethe tree of coordina-
tion number Z =4. One branch is highlighted.

property a11ows one to compute analytical formulas for
the Bethe tree for properties that are approximated by
EMA or must be estimated by Monte Carlo studies for
two- and three-dimensional networks. ' Here we define a
single node as the center of a finite fragment of an infinite
network and define the "radius" of the fragment as the
number of bonds between the center and the edge (Fig. 1).
We further define a "branch" of a fragment to be the set
of all bonds forming paths between the center, through
one of its Z connected bonds, to the edge. For a branch
of radius n, the total potential diff'erence required for
transport 6 V '"—= n V'V '" is the smallest value of
XA V,

'" for any path from the center to the edge.
Our approach represents a generalization of that Stin-

chcombe, Duxbury, and Shukla' applied to the binary
case where AV, '" takes only values of 0 or 1. For that
case, Stinchcombe, Duxbury, and Shukla showed that,
for p =—p (0) just below p„

q Vmin (p, —p)/p,

1+in(Z —2) —ln +0 ln ln
pc p

pc

pc

pc p

(p, —p)

as p approaches p, . The scaling exponent of (7) thus
matches that of the simple percolation model (3), but, as
shown below, the simple percolation model substantially
overestimates the value of VV '" for p near below p, .
Further from the percolation threshold, (7) suggests an
apparent scaling exponent

d(lnVV '")

d[ln(p, —p)] 1+in(Z —2) —ln[(p, —p )/p, ]

Our approach, described below, is also similar to an ap-
proach Roux et al. developed for the minimal path in a
hierarchical diamond network.

One can derive a recursion formula for computing the
probability distribution p„for b, V '"(n) for a Bethe-tree

X [1 P„,(x')] ]dx', — (9)

where p„(b, V '")—:probability density function for
[b, V '"(n)] and

P„(x)—= f "p„(x')dx' .

The derivation of (9) is illustrated in Fig. 2. It begins
with p„,(b, V '"), the probability distribution for
hV '"(n —1) for a branch of length (n —1) from the

branch of radius n from the probability distribution p„
for b, V '"(n —1) for a Bethe-tree branch of radius (n —1)
andp (AV, '"):

p„(AV '")=f [p (AV, '"—x')(Z —1)p„,(x')
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FIG. 2, Schematic derivation of Eq. (9).

center of a Bethe-tree fragment (e.g. , the highlighted
branch in Fig. 1). 6 V '"(n —1) is the minimum thresh-
old for any path from point 8 through point C to the
edge (D) in Fig. 2, while b, V '"(n) is the minimum
threshold for any path from point A through point B to
the edge (D). Given p„ I(b, V '"), the probability of a
given value of b, V '"(n) is the joint probability, integrat-
ed over all values of x', that (a) the first bond of the
branch (i.e., from A to B has b, V, '"=(AV '"—x') and
(b) the lowest-threshold path from there to the edge, from
among the (Z —1) alternatives, has threshold x'. This
second probability, in turn, is (Z —1) times the probabili-
ty that (c) a given branch (for instance, BCD) has
b, V '"(n —1)=x' and (d) all of the (Z —2) alternatives
have b, V '" & x'. The factor (Z —1) accounts for the fact
that the lowest-threshold path from point B to the edge
could pass through any of the (Z —1) alternatives (C',
C", etc.).

The macroscopic minimum potential gradient for
transport V'V '" corresponds to the limit of (AV '"In) as
n ~ ~. (Again, for simplicity, we assume that bonds are
one unit in length. ) Evaluating the integral in (9) is nu-
merically intensive and introduces small errors that could
accumulate as n increases. Therefore, for computational
purposes it is convenient to approximate the continuous
variable AV; '" with a rescaled discrete variable j that
takes on1y integer values, 0 j & ~. For this case the in-
tegral in (9) is replaced by a summation

p„(j)=gp (j i)I [1 P—„,(i —1)]z—
i=0

a) 0. I 0

0.08—

min
I n=25 n=50

0.06—
CI—0.04-
CL

0.02—

b, V '"(n —1), an event of zero probability if b, V,
'" is a

continuous variable. There is no accumulating error in
recursively evaluating the summation in (10) comparable
to that introduced in numerically evaluating the integral
in (9). Therefore we have used (10) in the results present-
ed here.

The behavior we observe with (10) mimics that ob-
served by Stinchcombe, Duxbury, and Shukla' for rela-
tively small values of n and a binary AV '" distribution.
Figure 3 shows the two types of behavior we have ob-
served. Both cases were computed for discrete AV; '"
and b, V '", and in both cases Z =5. In Fig. 3(a), 6 V,.

'"
takes integer values between 0 and 9, each with probabili-
ty 0.1. In Fig. 3(b), b, V,

'" takes values 0 (with probabili-
ty 0.26) or 1 (with probability 0.74). In both cases, for
convenience we plot the discrete variable 6 V '" as
though continuous.

As n ~~, one of two events occurs. Either p„(b,V '")

attains a constant shape and moves towards increasing
5V '" at a constant rate with increasing n, or it attains a
constant shape anchored to a finite probability of a zero
threshold for the network as a whole. The constant
shape of p„(hV '") means that the variance of the
p„(b,V '") approaches a constant value as n~oo. This
in turn implies that the variance of the probability distri-
bution for V V '"=(6V '"in) approaches zero as n ~~;
in other words, all realizations of VV '" approach the
average value as n —+ ~. This further means that our al-
gorithms (9) and (10), based on the threshold for fiow of
one branch of a Bethe tree as shown in Fig. 2, applies to
the entire Bethe tree as well. V V '"=AV '"/n ap-
proaches zero for large n, as in Fig. 3(b), if p (0) +p, —
i.e., if there is a sufficiently large fraction of bonds with

where

I

P, (i) =—g p„(k)
Jc =0

—
[ I —P„,(i)] (10)

b)

0.00
0

0.8—

10 20 30
&ymin

y mill

I

40 50

and x, 6V '", and V V '" correspond to i, j, and j/n, re-
spectively. The derivation of (10) is as follows: The prob-
ability that the minimum threshold is j for a path of
length n is the product of the probabilities that the first
bond has threshold (j —i) and that the rest of the path
has threshold i. This latter probability is the difference
between the probabilities that all (Z —1) paths from there
to the edge have threshold greater than (i —1) and that
all (Z —1) paths have threshold greater than i The.
dN'erent form of (10) compared to (9) refiects the finite
probability that two branches have the same value of

C:

E 0.6

0.4

0.2

0.0 I I I I

0 1 2 3 4 5 6 7 8 910
&ymin

FIG, 3. Two types of behavior of Bethe-tree model with in-

creasing n.
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zero threshold to form a zero-threshold path across an
infinite network. In any case, the constant or zero value
of (hV '"In) attained as n ~~ is the asymptotic value
VV '" for large networks.

The unchanging shape of p„(b,V '") as n increases sug-
gests an analogy between the recursion formulas (9) and
(10) and "self-sharpening" partial differential equations,
like the Buckley-Leveret t equation for Aow through
porous media, ' that give rise to propagating fronts of

permanent form. Stinchcombe, Duxbury, and Shukla'
assumed this sort of behavior in deriving their scaling re-
sult (8) for p near below p, . The development of such an
unchanging front, with constant velocity VV '", as n in-
creases, implies that as n ~ ~

p„(AV '")=p„,(b, V '"—VV '") . (11)

Substituting p„,(b, V '"—VV '") for p„(b,V '") in (9)
gives

0= —p„,(b. V '" VV '")+—f [p (b, V '" x')(Z —l—)p„,(x')[1 P„,(x')—] ]dx'(n co) .
0

If one defines

Vmin V Vminn +C

with C an arbitrary constant, and lets

p„(x)=limp„,(x+VV '"n+C) (n~~),

(12)

(13)

(14)

then (12) implies

0= —p„(x—VV '")+f [p (x —x')(Z —1)p (x')[1—P (x')] ]dx' .
0

(15)

+fp„,(j —k —1) . (16)

Then substituting p„ i(j —VV '") for p„(j),and p (j)
for p„ i(j), into (10) gives an analog to (15)

0=(1 f)p (j —k)+ fp „—(j —k —1)
J—gp (j —i)[[1—P„(i—1)]

i =0

—[1—P (i)] (17)

Here P is the integral ofp, as P„is the integral of p„
in (9).

The unknown scalar VV '" and function P„(x)can be
determined from (15) using, for instance, finite-difFerence
or finite-element integration schemes; one needs initial
guesses for both V V '" and P (x), and one must fix one
value of the function P„(x)[equivalent to setting C in
(13)] arbitrarily.

Roux et al. derive roughly similar approach for the
hierarchical diamond lattice. There, each recursion dou-
bles the length of the network. They derive a recursive
formula for VV '" and show that a single integral equa-
tion describes the asymptotic shape of a rescaled p (x)
for a wide class of functions p ( b, V; '").

A somewhat more complex formula than (15) applies
when VV, '" takes only integer values as in (10). The
complication arises because VV '" may be a fraction,
while p (j), p„(j),and P„(j)are defined only at integer
values of j. Therefore, if the integer portion of V V '" is k
and the fractional part is f, with 0~f + 1, we approxi-
mate p„,(j —VV '") by a linear interpolation between
the values at the nearest integer coordinates [i.e., at
(j —k) and at (j —k —1)].

p„ i(j —VV '")=(1 f)p„,(j —k)—

I

where

lf j varies from 0 to some large integer N, then (17)
represents a set of (N+1) nonlinear algebraic equations
to be solved for unknown scalar V V '"=—k +f and vector
P (j). One element of the vector P (j) (preferably near
the middle of the vector) may be set arbitrarily.
Newton-Raphson or some similar scheme may be used to
solve this equation set given an initial guess of V V '" and
P (j). One should select a value of N large enough that
P (j) approaches zero for small values of j and 1 for
large values of j, in order to minimize numerical artifacts
introduced by excluding the infinite range of j possible in
principle as n ~ ~.

Equation (17) provides an independent check on the
numerical accuracy of the solution to the recursion Eq.
(10). Questions of numerical accuracy are addressed in
the following section.

IV. NUMERICAL ACCURACY OF SOLUTIONS
FOR BETHE TREE

The first source of numerical error is the possible accu-
mulation of roundoff errors in recursively evaluating (10)
for large n. Such a roundoff error would become evident
through probability functions that no longer sum to 1 as
n increases. We found, however, that the calculations
were "stable, " i.e., the sum over j of p, (j) equaled 1 to
within approximately the machine roundoff error for all
calculations regardless of the magnitude of n. In other
words, roundoff errors in solving (10) did not accumulate
and grow as n increased.

We performed these calculations on both Vax 6000 and



11 820 W. R. ROSSEN AND C. K. MAMUN 47

CDC 170/750 computers. For these machines, the in-
herent roundoff error c. was roughly 0.7X10 ' . In other
words, the smallest positive number the computer could
subtract from 1 and get a number less than 1 was c.

There was a significant roundoff problem that was sub-
sequently eliminated. If p, )p (0))p, /2, then the func-
tion p„(j)would remain anchored at zero as in Fig. 3(b)
as n ~ ~; that is, p„(0)remained finite and positive as
n ~ oo. This behavior was expected only if p (0))p, .
To see the source of the artifact, consider a case where,
after some recursions, p„(0)=E. From (10),

p„+i(0)=p (0)I1—[1—E(Z —1)]J

1.37

1.36-

1.35
0

20

p=O

IO /n

-p (0)(Z —1)E=Ep (0)/p, , (18)

since, for the Bethe tree, p, =l/(Z —1). ' If
p (0)/p, )0.5, p„+&(0)decreases by less than half from
p„(0),and the machine rounded p„+,(0) up to its small-
est positive number (i.e., back to E); if p (0)/p, &0.5, the
machine rounded p„+&(0)down to zero. One could avoid
this false rounding of p„+&(0)up to a constant positive
number by requiring that any p„(j) be reduced to zero if
p„(j) is less than some threshold E* ) E and if p„(j—1) is
zero. This eliminated the artifact. Subsequent solutions
did not change as the value of c' was varied by several
orders of magnitude above the machine roundoff error c.

To determine VV '" from the vector p„(j),we first
determined the mean p,„ofthe distribution p„(j) for each
value of n, and then determined dp„/dn from a fifth-
order polynomial fit to p, using consecutive values of n.
For most cases a virtually constant dp„/dn was obtained
within a few tens of recursions.

For discrete distributions 6 V;
'" and 5 V '", however,

the function p„(j) cannot form a strictly unchanging
front and move with a constant velocity as n increases;
the shape and velocity are distorted by the underlying
discrete coordinate grid of integer values of j. This
means that instead of taking an absolutely constant value,
VV '" jI'uctuates about a constant value as n ~ co, with
the period of the oscillation approximating the number of
recursions required to advance the front one integer grid
point. Stinchcombe, Duxbury, and Shukla' did not ob-
serve these oscillations, possibly because their numerical
results were limited to relatively large values of (p, —p)
and small values of n. To estimate the underlying con-
stant velocity of the front, we plotted dp„/dn values as a
function of 1/n and determined the mean and width of
the oscillations. For most cases, the stable oscillations set
in at practicable values of n and the oscillations were
small. However, for p (0) very near p„the period of the
oscillations became so large (because V V '" was so small)
that tens of thousands of recursions were required to
traverse one period in the oscillation. Typically
dp„/dn =VV '" decreased as 1/n decreased, then began
to Auctuate about a constant value as 1/n ~0. An exam-
ple is shown at the top of Fig. 4. Here Z =3 and bonds
have either VV, '"=0, with probability p (0)=p, or
AV; '"=1. For Z =3 the percolation threshold on a
Bethe tree is 0.5. Therefore, for p =0.495 (p„dp„/dn
oscillates about a positive value of V V '" as n ~ ~. For

0
0

I I

4 6

IO /n
40

FIG. 4. Trends of dp„/dn with n for binary bond-threshold
distribution and Z =3.

p (0) )p, (not shown), dp„/dn rapidly approaches zero
at finite n. As shown at the bottom of Fig. 4, for
p (0)=0.5=p„dp„/dn approaches zero asymptotically
as I/n ~0. As noted, for p (0) &p„dp„ldnoscillates
about a fixed value as n~oo; we report here only cases
where the oscillation had stabilized within the number of
recursions tested.

Fortunately, given the uncertainty in V V '" deter-
mined recursively using (10) due to the oscillations in
dp„/dn, (17) gives an independent estimate of VV
Equation (17) also refiects the discrete grid in j imposed
on the problem [cf. (16)]. In this case, distortions to be-
havior imposed by (16) should manifest themselves in
differences between cases run with different values for the
one element of P (j) that is set arbitrarily. These
differences refiect different frontal positions of P on the
underlying coordinate grid. We found, however, excel-
lent agreement both between the solutions using (10) and
(17) and using (17) with different values for this element.

The oscillations of dp, /dn as n approaches infinity
does not appear to violate the assumption that V V '" ap-
proaches a "thermodynamic limit, " as used by Stin-
chcombe, Duxbury, and Shukla' to derive (7). Though
dp„/dn, the derivative of b, V '"(n), oscillates, the mag-
nitude of these fluctuations in V V '"=6 V '"/n ap-
proaches zero as n ~~.

Surprisingly, however, our numerical results do not fit
(8) for the case of binary b. V, '". Table II shows apparent
exponents fitted to log-log plots of VV '" and (p, —p)
such as Fig. 5 for several values of Z. The exponents are
all a little greater than 1, in agreement with (8). Howev-
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er, (8) suggests that the apparent exponent should depend
on Z, whereas our results for all values of Z had nearly
the same apparent exponent. Figure 6 shows the residu-
als from the fit of the apparent scaling exponent for
Z =9, a typical case. The various data shown for each
value of (p, —p) include the results using the recursion
formula (10) and using (17) with several different values
of the arbitrary datum in the vector P (j). There is a
systematic trend to the residuals, with a distinct non-
linearity for (p, —p) less than about 10, in agreement
with (8). However, the fit to the linear portion for

(p, —p) ~ 10 gives virtually the same exponent, 1.1212,
as the fit over the entire interval (Table II). Equation (8)
indicates that the apparent exponent should vary more
strongly with (p, —p). We do not know the cause of these
apparent discrepancies.

V. RESULTS

Figure 7 compares the two models for V'V '" presented
here for a log-normal distribution of 6 V, '":

p (AV; '")=(2~a' ) '~2exp
( In+ Vmin ]nQ Vmin )2

1

g Vmin
l

(19)
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where o.* and ink V,
'" are model parameters. This log-

normal distribution for 6 V,
'" corresponds to a log-

normal distribution of pore-throat sizes, which control
the minimum pressure gradient for Aow of a Bingham
plastic in a porous medium. In the case shown in Fig. 7,
with o. =1.15, 95% of the distribution lies within a fac-
tor of 10 of the logarithmic mean value AV, '" =15; the
arithmetic mean value is 24.5. The two models compared
in Fig. 7 are a Bethe tree with Z =5 and the simple per-
colation model with p, assumed to be 0.25 as for the
Bethe tree. For consistency we used a discrete approxi-
mation to the continuous 6 V,

'" distribution for compu-
tations involving both models. This distribution is illus-
trated by the discrete points in Fig. 7. In principle, this
distribution should extend to AV; '"~~; in practice we
truncated the distribution at a single large value of

6 V, '", i.e., 100, and lumped the cumulative remainder of
the tail of the distribution at this value. This truncation
had no effect on the results, because the onset of trans-
port is dominated by small values of AV, '".

We cannot compare published Monte Carlo re-
sults ' ' or Sahimi's EMA directly to these predictions
because all these studies focused on a uniform 6 V,

'" dis-
tribution.

The computed value of V V '" for the Bethe tree is
about 25% lower than the simple-percolation-model esti-
mate. The solution for the Bethe-tree model differs from
the simple percolation model in two ways: (1) The simple
percolation model assumes that the path for the onset of
Aow samples randomly from the percolation-threshold
fraction of bonds with lowest AV, '", whereas the path
may in fact sample more heavily from the lowest-hV, -

'"

values. (2) The Bethe-tree solution allows the path for
the onset of flow to sample an occasional bond with a
large 6 V;

'" if it can thereby access a large cluster of low-

hV, '" bonds and reduce the overall VV '". The two
differences are related, in that freedom to pass through an
occasional large-6 V;

'" bond may allow access to a large
cluster of small-6 V;

'" bonds.
To distinguish between these mechanisms we deter-

mined 7' V '" for several bond-threshold distributions
that differ in (a) the skewness of the low end of the 6 V;

'"

distribution and (b) the existence of values of b V;
'" just

above the percolation-threshold value b, V, (2). All of the

Apparent
exponent Range of (p, —p)

TABLE II. Apparent exponent for scaling of V'V '" with
(p, —p) for binary distribution of 6 V; '".

10 '-=

10'10'
. I

10'
~ ~ . ~ I

10' 10' 10'

FICz. 5. Predicted V'V '" for binary AV, '" distribution.

3
5
6
9

11
17
21

1.1203
1.1219
1.125
1.1222
1.1215
1.1214
1.1215

1X10 2 —2X10 4

5X10 —2X10
8X10 '-5X10-'
8 X10-'-5X10-'
1.5X10 '-5X10 '
1.25 X 10-'-5 X 10-'
5X10 —5X10



11 822 W. R. ROSSEN AND C. K. MAMUN 47

l5

0
tX:

x$
L
6$

-2
CO

M

CO

~~ 4N

tX:

~ ~~ ~ ~ I
~ ~

CI ~

e

-4 -2

iog „(p,- p)

FIG. 6. Residuals from fit to scaling equation for Z =9.

distributions we tested comprise only integer values of
AV '" and V'V '". The six distributions we tested forl

Z =5 are illustrated in Fig. 8; we tested a similar set of
six cases for Z =11. For each value of Z, we tested three
types of 6 V;

'" distribution: a uniform distribution, and
two log-normal distributions (19) with, respectively,
o'=1 and o.*=0.25. In all cases, the values of AV, '"

from 1 to 10 comprise exactly the percolation-threshold
fraction of the entire distribution (10% for Z =11 and
25% for Z =5), and the portion of the distribution with
AV, '")50 is lumped into the fraction at AV; '"=50.
For each of the three types of 6 V;

'" distribution, we test-
ed also a similar distribution truncated just above the

percolation threshold, with the remaining fraction
lumped at AV; '"=50.

The simple percolation model predicts that
VV '"=(b,V; '")p, the average of b. VP'" for
b, V;

'" + b, V, IEqs. (1) and (2)]. Therefore the simple-
percolation estimate of 6V '" is unaffected by truncating
the 6 V,

'" distribution above 6 V, . For the uniform
AV; '" distributions, regardless of the value of Z, the
simple-percolation estimate of V V '" is 5.5, because
(b, V, '") is the average of the integers between 1 and 10.
For the other distributions the simple-percolation esti-
mate is higher, because the 6 V;

'" distributions are
grouped closer to the percolation-threshold cutoff be-
tween 6 V,

'"= 10 and 11 (Fig. 8).
Values of V'V '" computed for the Bethe tree with

these AV, '" distributions are summarized in Table III
and Fig. 9. These results show that 7'V '" rejects (1)
( b, V,

'" )z, the average value of b. V,
'" for 6 VP'" ~ b, V,

IEqs. (1) and (2)], (2) the existence of a tail of low-&V, . '"

values well below (b, V, '"), and (3) the existence of
AV, '" values just above AV, . The simple-percolation
model rejects only the first of these trends.

The Bethe-tree model also follows the first trend:
VV '" is indeed larger for the cases where (AV, '") is
larger. There are subtler trends, however, that are made
clear by rescaling the values of VV '". Since the total
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FIG. 7. Network models for V'V '".

FIG. 8. Sample bond-threshold distribution functions for
Z =5. (a) Uniform; (b) log-normal, o.*= l; (cj log-normal,
o. =0.25. Open symbols: truncated distribution.
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Case description
Simple percolation Bethe
model, {bVP'")~ tree

Rescaled
Bethe
tree

Z=5
Uniform
Same, truncated
Log-normal, o. = 1

Same, truncated
Log-normal, o.*=0.25
Same, truncated

5.500
5.500
6.385
6.385
9.084
9.084

4.211
4.929
5.230
5.928
8.420
8.990

4.211
4.929
4.096
4.945
3.157
5.167

Z =11
Uniform
Same, truncated
Log-normal, o.*= 1

Same, truncated
Log-normal, o. =0.25
Same, truncated

5.500
5.500
7.012
7.012
9.332
9.332

4.213
4.853
5.781
6.544
8.675
9.252

4.213
4.853
3.736
4.830
2.688
5.157

threshold for transport is a simple addition of the bond
thresholds along the minimal path, any rescaling of the
b. VP'" distribution to I aAV; '"+b I, with a )0, similarly
rescales the resulting value of V V '" without changing
the structure of the minimal path. Therefore, for com-

Truncated Distribution

10 10

8 8'
c 6
E
CL

0
1

6

4-
~~AN»

2

1 2 3

10 10

8 8

C

0

lj~

0
1 2

Simple Percolation Model~ Bethe Tree+ Rescaled Bethe Tree

FIG. 9. Effect of bond-threshold distribution on macroscopic
threshold for flow. Case 1: uniform distribution. 2: log-
normal, o.*=l. 3: log-normal, o.*=0.25.

TABLE III. Effect of bond-threshold distribution on VV '"

for Bethe-tree network. In all cases, percolation-threshold frac-
tion includes integer elements in interval 1 ~6V; '" ~10. (For
Z =5, percolation threshold is 0.25; for Z =11,0.10.) The por-
tion of distribution with 6 V; '")50 is lumped into fraction with
AV; '"=50.

g Vmin

parison of the 5 V;
'" distributions, we have rescaled our

results so that (1) the percolation threshold for each dis-
tribution remains at 10.5 (midway between b V; '"=10
and 11) and (2) ( b. V; '")z =5.5 in all cases as for the uni-
form distributions. This rescaled result is entitled "re-
scaled Bethe tree" in Fig. 9. It reveals the efFect of skew-
ness in the low end of the 6 V,

'" distribution, and in par-
ticular the effect of a tail of very low values of AV; '".
Except for truncated distributions, the rescaled Bethe-
tree results show a trend opposite to that of the simple
percolation model: The rescaled Bethe tree VV '" is
smaller for cases in which the simple-percolation estimate
is larger. The rescaled Bethe-tree result allows compar-
isons on the basis of (1) the same percolation-threshold
value b, V, and (2) the same average value of b, V;

'" for
the portion of the distribution below AV„i.e., the same
value of ( 5 V,

'" )
Consider the case of Z =5 and a log-normal 6 V,

'" dis-
tribution with o.*=0.25 [Fig. 8(c)]. The percolation-
threshold value of AV; '", AV„ is between 10 and 11.
The average 6 V;

'" value for 6 V,
'" less than 6V„

(b, VP'"), is 9.084, which is the simple-percolation esti-
mate of V V '" (Table III). There exists a finite fraction of
bonds with AV; '" as low as 1, however, well below
(b, V; '") . The minimal path on the Bethe tree accesses
these bonds more heavily than predicted by the simple
percolation model, producing a lower value of VV '",
8.420. Rescaling to eliminate the e6'ects of the higher
value of (b, V; '") for this distribution gives a value of
V'V '", 3.157, much lower than for the other distribu-
tions. Accessing the low end of the AV,-

'" distribution
most heavily evidently requires a large fraction of bonds
with AV, '" just above AV, . In the truncated distribu-
tion, where all such bonds have extremely large AV; '",
skewness in the tail of the hV; '" distribution has little
eFect on the rescaled Bethe-tree result (Fig. 9): It just
isn't worth it to pass through high-6 V;

'" bonds to access
clusters of bonds with low AV; '". Hence the Bethe tree
V V '" is closer to the simple-percolation estimate.

To summarize, the minimal path does not sample the
percolation-threshold fraction of small-6 V,

'" values ran-
domly: It samples the low end of this distribution most
heavily. As a result, the Bethe tree V'V '" is lower than
the simple-percolation estimate in all cases tested. The
minimal path samples the low end of the 6 V;

'" distribu-
tion most heavily, however, when there are (1) a tail ex-
tending to extremely low values of b, V,

'" and (2) a
significant fraction of bonds with AV, '" just above the
percolation-threshold value 6 V, . Evidently, the path
passes through an occasional bond with 5 V;

'")6 V, to
access clusters of bonds with low values of 6 V; '".

Our limited results for the Bethe tree do not show a
consistent trend with coordination number Z, except as
identified by the simple percolation model [Eqs. (1) and
(2)]: Because the percolation threshold is lower with
1arger Z, AV '" depends on a smaller fraction of the
overall 6 V;

'" distribution with increasing Z.
Sample results for the limiting case in which AV; '"

takes only values of 0 (with probability p) and 1 are
shown in Fig. 5. The distinction between the Bethe tree
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and simple percolation models is marked as p approaches
p„even though the simple percolation model matches
the asymptotic scaling exponent of the Bethe tree [Eqs.
(3) and (7)]. This represents the extreme case of a skewed
distribution of 6 V;

'" values, since one can form a nearly
complete path for transport from bonds with 6 V;

'"

values infinitely smaller than the rest of the distribution.
For Z =5 and (p, —p ) =0.01, the Bethe-tree model gives
VV '"=1/175, seven times lower than the simple per-
colation model. The differences increase as p approaches
Pc.

None of the models examined here include the effect of
"tortuosity" in the critical path for How, in that every
path leads directly across the network. The macroscopic
threshold for transport VV '" would of course be larger
for real 2D and 3D networks because at each node the
critical path must choose between the lowest-threshold
bond, which may or may not lead in the overall direction
of the path, and the most direct path, which may or may
not include the lowest-threshold bonds. In both models
studied here, every alternative path leads directly across
the network. It would be valuable to identify the compet-
ing effects of path length and bond-threshold distribution
on the formation and structure of the minimal path in fu-
ture studies.

VI. SUMMARY

We compare two models for the onset of transport
through a network with a randomly assigned threshold

for transport in each of the bonds. Neither of the models
we have presented accounts for tortuosity.

We present two solutions for the minimal path in a
Bethe tree: one a recursive method and one a direct
method that relies on the attainment of an unchanging
shape in the function hV '"(n). The two methods give
good agreement on the value of the potential gradient
V'V '" at which transport begins. A simple percolation
model, in which the minimal path samples randomly
from the percolation-threshold fraction of bonds with low
microscopic thresholds, also performs remarkably well.
This success may reAect in part canceling effects of two
artifacts in the model: lack of tortuosity and lack of Aexi-
bility to select low-threshold bonds. The Bethe-tree esti-
mate of V V '" is much lower than for the other models if
(1) the distribution of bond thresholds b. V,

'" has a tail of
very low values and (2) there is a significant fraction of
bonds with AV, '" just above the value at the percolation
threshold.
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