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We have studied the electronic structure of higher-order rational approximants to the icosahedral
Al-Zn-Mg quasicrystal and of related crystalline, liquid, and amorphous phases. For the crystalline
phases, self-consistent calculations using the linear muffin-tin orbital (LMTO) method have been
performed, and the electronic structure of the higher-order approximants (with up to 12380 atoms
in the periodically repeated cell) and of the amorphous and liquid alloys has been calculated using the
recursion method and a tight-binding LMTO method. Structure-induced pseudogaps at the Fermi
level are predicted for the stable Frank-Kasper phase and for the higher-order approximants to the
quasicrystal, but also for the amorphous alloy and some crystalline compounds. Hence, we conclude
that although the pseudogap is a generic property of the quasicrystal, it is not a specific property
distinguishing the quasiperiodic from the periodic or aperiodic phases. Crystalline, quasicrystalline,
and amorphous alloys have to be considered as Hume-Rothery phases with a varying degree of

band-gap stabilization.

I. INTRODUCTION

The discovery of quasicrystals,! i.e., of structures
that possess perfect orientational, but only quasiperiodic
translational long-range order, has raised many interest-
ing questions. Are the electronic states in quasicrystals
extended (like in crystals) or localized (like in amor-
phous materials)? The lack of translational periodicity
means that Bloch’s theorem is not applicable and that
localized states may exist. On the other hand, one of
the characteristic properties of quasicrystals besides their
quasiperiodicity is the existence of a uniform distribution
of local environments. For example, the Penrose lattice
is quasiperiodic and self-similar (Penrose local isomor-
phism), and this means that for any local arrangement
of diameter d, there exists a duplicate within a distance
2d (Conway’s theorem?). The consequence is that even
if an exponentially localized wave packet exists within a
region of a diameter d, it can transfer to a region with
the same structure within a distance 2d, assisted by the
overlapping tails of the wave functions. Conway’s the-
orem suggests the existence of propagating states. In
essence, this scenario has been confirmed by investiga-
tions of the eigenstates of very simple model Hamilto-
nians on one- and two-dimensional quasilattices.3=¢ It
was found that most eigenstates are critical, i.e., neither
extended nor localized, and that the power-law decay of
the eigenstates is caused by competition between nonpe-
riodicity and self-similarity. However, it has been also
shown”® that propagating eigenstates (i.e., states with a
well-defined wave vector) can exist in a vicinity of cer-
tain quasiperiodically distributed points in wave-number
space? (the I' points of the quasilattice) and that strictly
localized eigenstates associated with certain highly de-
generate eigenvalues may exist.!°

A second open question is why nature should prefer
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quasiperiodic to periodic order. There is, of course, the
possibility of entropic stabilization, but there is suffi-
cient evidence that perfectly ordered quasicrystals exist!!
and there are also many indications that the stabil-
ity of quasicrystals is intimately related to their elec-
tronic structure.'2~16 The stoichiometry of many qua-
sicrystalline phases appears to be governed by a Hume-
Rothery-type rule, placing the Fermi level into a mini-
mum of the electronic density of states. Theoretical argu-
ments in favor of an electronically driven Hume-Rothery
mechanism for stabilizing quasicrystals are based on
nearly-free-electron theory and on electronic structure
calculations for the lowest-order crystalline approximants
to the quasicrystalline phases. One should also remem-
ber that Hume-Rothery-type arguments have also been
brought forward for the stability (or rather metastabil-
ity) of glassy materials!?'18 so that the question arises as
to the differences in the Hume-Rothery stabilization of
crystalline, quasicrystalline, and amorphous phases.

The third major problem relating to the electronic
properties of quasicrystals is the explanation of their un-
usual transport properties.!® Stable quasicrystals have
semimetallic transport properties characterized by a high
resistivity, a negative temperature coefficient of the resis-
tivity, and strong temperature and composition depen-
dences of the Hall coeficient and the thermopower. The
unusual electronic properties of the ordered quasicrys-
tals have been attributed to icosahedral symmetry which
provides a unique structure factor for the Fermi-surface
Brillouin-zone interactions. On the other hand, the disor-
dered quasicrystals possess more metallic-glass-like trans-
port properties.

The purpose of our present paper is to present the re-
sults of systematic investigations of the electronic prop-
erties of icosahedral alloys of the Frank-Kasper (Al-Zn-
Mg) type and related amorphous and liquid alloys. In
one dimension, the calculation of the electronic spec-
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trum may be based on the real-space renormalization
transformation of the Hamiltonian, owing to the scal-
ing transformation of the quasilattice.34 In two dimen-
sions the exact renormalization procedure is possible only
for a few specific Hamiltonians.?° The alternative is to
use the “commensurate” approximation. A quasiperi-
odic lattice can be constructed by projecting a “strip” of
a six-dimensional lattice onto a three-dimensional physi-
cal space. If we replace in the icosahedral basis of the
space perpendicular to the physical space the golden
mean 7 = (1 4+ v/5)/2 by a rational approximation
Tn = Fpy1/F, (where the F, are Fibonacci numbers),
n = 0,1,2..., we obtain a hierarchy of periodic Pen-
rose lattices, converging to the quasiperiodic structure.
These periodic lattices are the rational approximants of
the quasilattice. The length of their period increases with
increasing order of the approximant.

The three-dimensional (3D) Penrose lattices form the
basic framework (the quasi-Bravais lattice) for the icosa-
hedral quasicrystals.?! 23 In a real quasicrystal, the
quasiperiodically repeated units (the Penrose tiles) have
to be decorated with atoms. The construction of the
decoration is facilitated by the fact that in some cases
a low-order approximant to the quasicrystal is a known
crystalline phase. For example, the crystal structure?4
of the Frank-Kasper phase (Al,Zn)49Mgs, is the n = 1,
71 = 1/1 approximant to the Al-Zn-Mg quasicrystal.?®

In the commensurate approximation for the calcula-
tion of the electronic structure, the quasiperiodic lattice
is replaced by the periodic lattices of the rational ap-
proximants. For the periodic lattices conventional band-
structure methods may be used. The justification for
using the commensurate approximation derives from the
fact that not only the scattering intensities calculated
for the higher-order approximants converge rapidly to
that measured for the icosahedral phase,®?6 but also
the electronic transport properties converge quickly in
the series of the approximants. A particularly striking
example is provided by the icosahedral phases in the
(Al,Gaj;)-Zn-Mg system.?” Quasicrystals are formed
over the entire range 0 < z < 1. The quasicrystal
with £ = 0 is thermodynamically stable upon heat-
ing almost to the melting point. Quasicrystals with
02<xx<05,06<z<0.7 and 0.7 <z < 1.0 trans-
form into the orthorhombic (3/2 —2/1—2/1) and the cu-
bic (2/1-2/1—-2/1) and (1/1—1/1—1/1) approximants,
respectively.?” 2% It has been shown that the electric re-
sistivity of the (1/1 — 1/1 — 1/1) approximant is about
70% of that of the quasicrystal and that the resistivi-
ties of the (2/1 —2/1 —2/1) and (3/2 — 2/1 — 2/1) ap-
proximants are nearly equal to that of the quasicrystal.
Even more important, electronic specific-heat measure-
ments have shown that the electronic density of states at
the Fermi level for the three approximants remains essen-
tially unchanged compared to that of the corresponding
quasicrystal.30

However, even for the rational approximants, the cal-
culation of the electronic structure remains a formidable
task. Using the most efficient computer codes [such
as, for example, the linear muffin-tin orbital method
in the atomic-sphere approximation3! (LMTO-ASA)],
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the self-consistent electronic structure can be obtained
only for the lowest-order approximants with typically
< 100 inequivalent sites (which are often identical with
stable crystalline structures). Such calculations have
been performed for a-AlMn,33 R-AICuLi, Aly3Fe4,34 and
(Al,Zn)49Zn32;'® all are (1/1) approximants to the corre-
sponding quasicrystals. Hence the challenge is to extend
the electronic structure calculations to the higher-order
approximants.

In this paper we present calculations of the electronic
structure of the (2/1), (3/2), and (5/3) approximants of
the Al-ZnMg quasicrystals with 688, 2920, and 12380
atomic sites in the periodically repeated cell. Our cal-
culations are based on the tight-binding (TB) variant
of the LMTO method3%36 and the real-space recursion
technique37:3® for the calculation of projected densities
of state. Our results show that the density-of-states
(DOS) minimum at the Fermi energy exists not only for
the Frank-Kasper phase, but is a generic property of all
higher-order approximants and hence probably also of
the quasicrystal. The calculation of the Bloch spectral
functions (i.e., of the densities of states projected onto
states with a fixed wave vector) allows us to elucidate
the quasiperiodic dispersion relations for the electronic
states and the mechanism for the formation of a pseudo-
gap at the Fermi energy. We also find that the dispersion
relations are nearly stationary close to the Fermi edge,
leading to a very low Fermi velocity. The combination
of both results—reduced density of states at Er (and
hence a reduced number of carriers) and reduced Fermi
velocity—goes a long way towards an explanation of the
unusual transport properties of quasicrystals.

In addition to the investigation of the quasicrystalline
phase, we calculate the electronic properties of the corre-
sponding liquid and amorphous phases. We find that
even in the complete absence of translational period-
icity, the existence of a sharp first diffraction peak in
the static structure factor leads to a shallow structure-
induced DOS minimum at the Fermi energy. However,
the amorphous phase receives much less band-gap sta-
bilization than the quasicrystalline phase. This explains
its lower stability. Dispersion relations are well defined
only in the long-wavelength limit; for larger momentum
transfer, the energy—wave-vector relation is quickly ran-
domized.

In Sec. II we review very briefly the construction of the
structure models for the rational approximants and the
molecular-dynamics simulations of the liquid and amor-
phous phases. Section III presents the technical details
of the TB-LMTO calculations of the electronic structure.
The results for the rational approximants and for the
liquid and amorphous phases are presented in Sec. IV.
The Hume-Rothery mechanism for the stability of the
quasicrystal is discussed in Sec. VI, and we conclude in
Sec. VII.

II. STRUCTURAL MODELING
A. Construction of quasilattice

The 3D Penrose lattice can be generated by the pro-
jection method.3940 The projection method is based on
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projecting a “strip” of a six-dimensional (6D) hypercubic
lattice Lg onto the 3D physical space E3. The strip is de-
fined by extending a unit cube in Lg parallel to E3. The
orientation of F3 is defined in such a way that the pro-
jection of a star of orthogonal basis vectors in Lg forms
an icosahedral basis in E3, e; = C(0,1,7)+cyclic per-
mutations (c.p.), { = 1,2,3, and e; = C(0, -1, 7)+c.p.,
l =4,5,6, where 7 is the golden mean and C is a constant
normalizing the basis vectors to unity. The projection of
the 6D unit cube onto a 3D space E4 perpendicular to
E3 is a rhombic triacontahedron, the acceptance domain
for vertices of the quasilattice. A vertex of Lg belongs to
the quasilattice only if its projection onto Ej falls into
the acceptance domain.

The lattice of the crystalline approximants is obtained
if in the icosahedral basis in E3, €/, = C’(0, —7, —1)+c.p.,
l =1,2,3, and &', = C'(0,7,1)+c.p., | = 4,5,6, the
golden mean 7 is replaced by a rational number 7, =
F,+1/F,, where the F, are Fibonacci numbers, Fy = 0,
Fy =1, and F,41 = F,, + F,,_1. The icosahedral basis in
E3 is unchanged. The lattice created by this projection
is a periodic Penrose lattice (PPL). It can be viewed as a
tiling of two kinds of golden rhombohedra: prolate (PR)
and oblate (OR) ones. The lattice has cubic symmetry.
We denote the approximants by Fj,4+1/F,, the pair of
Fibonacci numbers corresponding to the approximation
T, to the golden mean 7.

B. Decoration of quasilattice by atoms

For the icosahedral alloys of the Al-Zn-Mg class the
Penrose tiling is decorated as proposed by Henley and
Elser.?® In addition to the PR’s and OR’s a rhombic do-
decahedron (RD) consisting of two PR’s and two OR’’s is
proposed as a composite structural unit. In the Henley-
Elser decoration Al(Zn) atoms occupy all vertices and
the midpoints of all edges of the structural units. Two
Mg atoms are placed along the trigonal axis in each PR,
including the PR’s inside the RD. A special decoration
is proposed for the fourfold vertex inside a RD: Four Mg
atoms are placed on the edges originating from the four-
fold vertex. Altogether eight Mg atoms inside a RD form
a slightly distorted hexagonal bipyramid. The distribu-
tion of the Al and Zn sites over possible lattice sites is
assumed to be random. We constructed the following
structural models of Al-Zn-Mg quasicrystalline approxi-
mants: 1/1, 2/1, 3/2, and 5/3 with 162, 688, 2920, and
12380 atoms in the unit cell, respectively. For more de-
tails we refer the reader to Ref. 26.

C. Molecular-dynamics annealing of idealized
structural models

We relaxed our idealized quasicrystalline structures
using a molecular-dynamics (MD) annealing at room
temperature. Interatomic forces were calculated using
pseudopotential perturbation theory. We used the opti-
mized orthogonal-plane-wave-based pseudopotential4l:42
and the Ichimaru-Utsumi*® local-field corrections to the
dielectric function. For simplicity the ternary alloy
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(Al,Zn)Mg is treated as a quasibinary system (details
are given in Ref. 26).

The MD simulations were performed for the 1/1 to
5/3 approximants, i.e., for ensembles with N=162 to
N=12380 particles in a periodically repeated cubic box.
The simulations were performed in the microcanonical
ensemble; temperature was controlled by a scaling of the
velocities. The Newtonian equations of motions have
been integrated using a fourth-order predictor-corrector
algorithm in the Nordsieck formulation,** with a time
increment of At = 0.5 x 10715 5. For the lowest-order
approximant, the potential was truncated at the largest
distance compatible with the minimum image conven-
tion, Reut ~ 7.00 A. For the larger models, the cutoff was
extended to Reyy ~ 11.50 A. Between 5000 time steps (for
the largest model) and 20000 time steps (for the small-
est model) were used for production runs. The struc-
ture was controlled by calculating partial pair-correlation
functions, bond-angle distributions, and bond-angle cor-
relation functions.

Figure 1 shows the powder-diffraction data for series of
rational approximants compared with the experimental
data?® for the Frank-Kasper phase (= 1/1 approximant)
and the quasicrystal. In the series of higher-order approx-
imants, the scattering intensity converges rapidly to that
measured for the ¢ phase. The same conclusion results
from a comparison of the pair-correlation functions.2?6

In a quasicrystal, any atom is found in a very large
number of different environments (at least if the range

§ FKphase
“ 1/1  relaxed
1o R RIT L
211
| l i P
3/2
h L l
5/3
I L l Jl " 1
§ é § i phase

26 (deg)

FIG. 1. X-ray powder diffraction patterns for the 1/1,
2/1, 3/2, and 5/3 rational approximants of (Al,Zn)Mg, com-
pared with observed scattering intensities of the Frank-Kasper
and the icosahedral phases (Ref. 45).
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of interaction is extended far enough). Hence the inter-
atomic forces will lead to a displacive modulation of the
idealized models. A modulated tiling is a quasiperiodic
structure in which the positions of the atoms can be de-
scribed as positions in a tiling and displacements such
that the displacement field has the same symmetry as
the tiling itself (or, more precisely, the displacement field
has Fourier components belonging to the Fourier module
of the tiling®). The results of the molecular-dynamics
relaxations show that for a series of higher-order crys-
talline approximants the displacements induced by real-
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FIG. 2. Projection of the nonrelaxed structure of the 5/3

approximant on the (z,y) plane (a) and a projection of the
same model after the relaxation (b).
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istic interatomic forces conserves the symmetry of the
model and improves the agreement with the observed
pair-correlation functions and diffraction patterns com-
pared to earlier modeling studies based on idealized tiling
models. The effect of the relaxation on the structure of
5/3 approximant is demonstrated in Fig. 2. Part (a) of
the figure shows a projection of the ideal structure on the
(z,y) plane, part (b) the same projection for the relaxed
model. It is demonstrated that the displacive modulation
of the lattice conserves the symmetry.

D. Molecular-dynamics simulations of liquid and
amorphous phases

The structural models of liquid and amorphous Al-Zn-
Mg phases were prepared using molecular-dynamics sim-
ulation. We used the 3/2 approximant (2920 atoms in the
cubic cell) as the initial configuration, heated the system
up to 2000 K, and equilibrated over 5000 time steps. The
pair-correlation function and structure factor exhibit the
form typical for liquids. In order to obtain a model of
the amorphous phase the system was quenched in 30 000
time steps to 300 K. This corresponds to a cooling rate
of about 1014 Ks=!. The total (neutron weighted) struc-
ture factors S(k) of the liquid and amorphous alloys are
shown in Fig. 3. The important point is the existence of
a sharp first diffraction peak at |K,| = 27 /d, where d is
an average nearest-neighbor distance. The amplitude of
this peak is a measure for the short-range order existing
in the liquid or glassy phase.

III. TB-LMTO RECURSION CALCULATION OF
THE ELECTRONIC STRUCTURE

On present computers fully self-consistent band-
structure calculations are feasible for elementary cells
with up to 100 atomic sites. Hence even the 2/1 ap-
proximant cannot be treated using k-space techniques.
However, the electronic density of states for larger sys-
tems can be calculated in r space using more approxi-
mate methods, such as the recursion technique.37:3% The
recursion method is applicable to any Hamiltonian which
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FIG. 3. Structure factors S(k) for liquid (T=2000 K,

dashed line) and amorphous (T=300 K, solid line) Al-Zn-Mg
phases.
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is quadratic in the dynamical variables. The calculation
of the electronic structure using the recursion method
may be conveniently carried out by transforming from
the basis of linear muffin-tin orbitals (LMTO) to a tight-
binding (TB) representation.35:36:47

A. TB-LMTO formalism

The two-center tight-binding Hamiltonian in the
Léwdin orthonormal representation may be written3%:36
as (a superscript v defines quantities calculated in a
nearly orthonormal basis)

HY = e, + 1", (1)

where €, is the reference energy for the linearization of
the MTO’s with the quantum number v, where v = nim
is a shorthand notation for the principal, angular mo-
mentum, and magnetic quantum number. The Hamilto-
nian (1) is accurate up to second order in (E —¢€,). The
Hamiltonian matrix AY may be determined from the ex-
pansion (a superscript o defines quantities calculated in
the screened, most localized TB basis)

h’Y__—_ha_haoaha+haoahaoaha__..’ (2)

where 0% is an overlap parameter and where the Hamil-
tonian h® satisfies the relation

® = ¢, + h* = c* + Vd*S*Vde, (3)

where ¢® and d* are diagonal matrices of screened po-
tential parameters describing the center of gravity and
the width of each band, respectively, and S® is a ma-
trix of screened structure constants determined by the
screening constants «. H® is accurate to first order in
(E — €,). The screened structure constants are given in
terms of conventional LMTO structure constants S° by
the relation
S = 8%1 — aS%)L. (4)
Values of the screening constants providing the most
localized structure constants were found from numerical
studies3®36 as o = (0.34848,0.053030,0.010714) for s,
p, and d orbitals. When the potential parameters C =
¢¥, A = d7, and v are known, the screened potential
parameters c®, d%, and the overlap parameters 0® can be
obtained using the expression3!:47

Coe (& 1/2—Oé—7—1+a—’y(c“’—e)
e’ —¢€, \d T ooxdy T d v
(5)

B. Recursion calculation of density of states and
spectral functions

The recursion method is a real-space method for the
calculation of a diagonal element of the Green’s function;
the imaginary part of this matrix element gives the den-
sity of states ny(E) projected on an arbitrarily chosen
state |¢),
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ny(E) =~ ~Tm(@|(E +i0* — H) [y, (6)

If the state |9) is represented in a TB basis by a vector

v,R
’LLO s

o™ ~ exp(ib,R), (7)

where 6, r are uniformly distributed random numbers
from the interval [0,27), the resulting density of states
is the total density of states, n(E). A possible statistical
error introduced by this random sampling may be mini-
mized by averaging over several randomly phased vectors.
If the state |¢) represented by a vector uS‘R is chosen as
a plane wave propagating in a direction k,

up® ~ exp(ikR), (8)

the resulting projected density of states is the Bloch spec-
tral function f(k, E).

From the numerical point of view the recursion method
is essentially a method for transforming a symmetric ma-
trix into a tridiagonal form. The Green’s function and
the projected density of states may be expressed in a
continued-fraction representation. The continued frac-
tion may be terminated at a level LL < N much smaller
than the dimension N of the Hamiltonian matrix. The
information about the spectrum of Hamiltonian eigen-
values contained in the first LL recursion coefficients is
equivalent to the information contained in 2L L moments
of the spectrum. For most of the applications LL ~ 20—
50 is sufficient and a smooth density of states or spectral
function may be obtained using a proper terminator.3”
Increasing the number of recursion levels LL over a cer-
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FIG. 4. Electronic density of states of the C15 Laves
phases for different compositions: (a) ZnaMg, (b) AlZnzMga,
and (c) Al;Mg.
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tain limit does not improve the resolution as problems
with boundary conditions arise.

IV. ELECTRONIC STRUCTURE OF
CRYSTALLINE ALLOYS AND OF
THE RATIONAL APPROXIMANTS

In the following section we describe the results of
self-consistent k-space LMTO-ASA calculations for the
crystalline Frank-Kasper phase (Al,Zn)4Mgss and for
the closely related Laves phases ZnoMg, AlZnzMgs,, and
Al,Mg and r-space TB-LMTO recursion calculations for
the higher-order rational approximants.

A. Laves phase

The most simple crystal structure related to the atomic
arrangment in the icosahedral (Al,Zn)Mg phase is the cu-
bic C15 (MgCus-type) Laves phase.*® The rhombohedral
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unit cell of the C'15 structure is just a slightly distorted
PR, decorated as proposed by Henley and Elser.?5 For the
C15 structure the electronic eigenvalues were calculated
self-consistently at 505 k points in the irreducible part of
the Brillouin zone. The density of states was calculated
using the linear tetrahedron method.4°

The calculations have been performed for the compo-
sitions ZnyMg, AlZngMg,, and Al,Mg. For Zn,Mg the
Fermi level falls into a deep minimum of the DOS in-
duced by a strong Bragg peak of the C15 lattice (Fig. 4).
Upon substitution of Zn by Al, the general form of the
DOS is unchanged, but the Fermi level is shifted into a
region of higher DOS with increasing band filling. Ex-
perimentally, Zn,Mg forms a stable phase crystallizing in
the C14 (MgZna-type) Laves phase. The C'14 and C15
structures are only different stacking variants of the same
basic layers.4® C14-MgZn, has also a deep DOS mini-
mum at Er (see Ref. 50), the relative stability of different
Laves stacking variants may be related to the band-filling
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Hume-Rothery-type argument.51:52 As the possible Laves
phase stacking variants have identical first-, second-, and
third-neighbor shells, the first four moments of the DOS
are equal. According to a theorem of Ducastelle and
Cyrot-Lackmann,®® the structural energy difference be-
tween two structures whose first m moments of the DOS
are equal has at least (m — 1) moments between the end
points of an empty and a full band. This leads to the os-
cillatory dependence of phase stability on the band filling
(for more detailed discussion, see Ref. 52). With grad-
ual substitution of Zn by Al, the overall structure of the
valence band is unchanged (except close to the bottom
of the band where the s-d hybridization causes a broad-
ening of the bandwidth in Zn,Mg over the free-electron
value, whereas the width in Al,Mg is almost exactly free-
electron-like). With increasing band filling, the Fermi
level is shifted out of the structure-induced minimum, so
that a mixed (Al,Zn)2Mg Laves phase and a hypothetical
Al,Mg phase receive only very little band-gap stabiliza-
tion.

B. Frank-Kasper phase

The electronic eigenvalues for the Frank-Kasper phase
Al;3Zn3esMgss (the 1/1 approximant of the ¢ phase) were
calculated using the LMTO-ASA method. The bec sym-
metry of this approximant allows one to reduce the num-
ber of atoms to 81 atoms in the primitive cell. For the
electronic structure calculations, the Al atoms are placed
on the vertices, the Zn atoms on the midedge positions
of all structural units.?®> This decoration leads to an ap-
proximately correct chemical composition of the Frank-
Kasper phase. The Henley-Elser decoration defines a
set of idealized atomic coordinates. The MD relaxation
changes the coordinates without breaking the symme-
try of the lattice. The relaxed coordinates are in good
agreement with those measured by Bergman, Waugh,
and Pauling.?* Details of the crystallographic description
for idealized, relaxed, and observed structures are given
in Ref. 26.

We used 55 k points in the irreducible wedge of the
Brillouin zone. The integration over the Brillouin zone
and the calculation of the density of states was performed
using the tetrahedron method. The position of the refer-
ence energies €, was determined from the zero-moment
condition.3? The potential parameters C, A, and v were
determined self-consistently for each atomic site.

The self-consistent DOS of the Frank-Kasper phase is
shown in Fig. 5; part (b) refers to the ideal structure,
part (a) to the MD relaxed lattice where each atom sits
in the equilibrium position. The dominant feature of the
DOS is the sharp peak of Zn 3d states near the bot-
tom of the band. At the Fermi energy, the DOS shows
a broad, deep minimum induced by the closely spaced
(631), (710)+(550), and (640) reciprocal-lattice vectors
of the cubic Frank-Kasper phase. We note that these
lattice vectors correspond to the (111101) Bragg reflec-
tion of the icosahedral phase (cf. Fig. 1). The calculated
DOS at the Fermi energy is n(Er) = 0.17 states/(eV
atom), it is significantly lower than the free-electron
DOS [n(Er) = 0.36 states/(eV atom)] and also some-
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FIG. 6. Electronic dispersion relations of the Al-Zn-Mg
Frank-Kasper phase calculated along the I'-X direction.
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FIG. 7. (a) Electronic density of states for the 1/1 approx-

imant calculated using the k-space LMTO method for 55 k
points and using the r-space TB-LMTO and recursion meth-
ods (smooth curve). (b) Electronic density of states for 1/1
(dotted curve), 2/1 (dashed curve), 3/2 (dot-dashed curve),
and 5/3 (solid curve) crystalline approximants (with 162, 688,
2920, and 12380 atoms, respectively), calculated using the
real-space TB-LMTO recursion method.



11 802

what lower than the experimental values of Graebner and
Chen®* [n(Er) = 0.30 states/(eV atom)] and of Mizutani
et al.?” [n(EF) = 0.33 states/(eV atom)]. The difference
probably has to be attributed to the Al(Zn) substitu-
tional disorder in the real Frank-Kasper phase that has
been neglected in our calculation.

The global shape of the DOS may be described as a
free-electron-like parabolic band modulated by the van
Hove singularities of the complex crystal structure. Stud-
ies of the electronic spectrum of 1D and 2D models of
quasicrystals®—5 show that the spectrum is singular con-
tinuous. The spiky structure of the DOS of the 1/1
approximant calculated using the supercell LMTO-ASA
method allows us to conjecture that the DOS for 3D infi-
nite quasicrystals will be strongly structured, though not
necessarily singular continuous. The spiky character of
the spectrum seems to be also experimentally confirmed:
The transport properties of quasicrystalline samples are
extremely sensitive to their composition and hence to the
position of the Fermi level.’® In Figs. 5(a) and 5(b) we
compare the DOS’s calculated on the idealized and on
the relaxed Frank-Kasper lattice. The atomic relaxation
affects the electronic structure only at a local level. In the
idealized structure, there are six short Mg-Mg distances
in the cubic cell. These short distances are the vertex-
to-vertex distances in the hexagonal bipyramid inside the
rhombic dodecahedra. These short distances generate lo-
calized states centered in the short bonds, at energies far
below the bottom of the valence band [(E— Er) = —24.7
eV]. For these states convergence could be reached only
by fixing the reference energy ¢, close to the Fermi level.
Relaxation causes an elongation of the hexagonal bipyra-
mid, and the relaxed Mg-Mg distances are of the proper
length. No localized states below the bottom of the va-
lence band exist in the relaxed Frank-Kasper phase. The
relevant DOS close to the Fermi energy is hardly affected,
except for a slight shift of the DOS minimum to lower en-
ergies. This shift expresses the effect of an energetically
more favorable arrangement of the ions, n(Er) = 0.17
states/(eV atom), for both the ideal and relaxed struc-
ture.

Figure 6 shows the dispersion relations for the elec-
tronic eigenvalues along the I'-X direction. All bands
show only very weak dispersion. At the zone bound-
ary, the spectrum is quasicontinuous, but relatively broad
symmetry-induced gaps exist at the I" point. Close to the
Fermi energy these gaps extend from I' to the Brillouin-
zone boundary.

C. Higher-order approximants

The basis for the construction of the TB Hamiltonian
for the higher-order approximants is the self-consistent
LMTO-ASA supercell calculation for the crystalline 1/1
approximant. We transfer the potential parameters ob-
tained from the supercell calculation for the 1/1 approx-
imant to the larger approximants in the following way:
We take the average of the potential parameters over
equivalent sites. We consider three different sites: ver-
tex positions occupied by Al atoms, midedge positions
occupied by Zn atoms, and Mg positions inside prolate
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FIG. 8. Comparison of the DOS of the 5/3 approximant
to quasicrystalline Al-Zn-Mg phase (solid line) with the pho-
toemission results (dots) (after Ref. 57).

rhombohedra and inside rhombic dodecahedra. For the
sake of simplicity we did not distinguish between differ-
ent Mg positions inside the rhombic dodecahedron. We
verified for the 1/1 approximant that the averaging of the
potential parameters had negligible effect on the resulting
density of states. Atomic sites in the larger approximants
were decorated by the averaged potential parameters.

The screened structure constants were calculated us-
ing Eq. (4) by matrix inversion for each atomic site. The
structure constants were calculated including all neigh-
bors within a sphere of radius Rcyt = 2.7Rws (Rws is
the Wigner-Seitz radius). The expansion (2) was trun-
cated at the third order. Using a second-order expansion
only led to an insufficient accuracy of the DOS around
Er. We verified that using a fourth-order expansion in
Eq. (2) improved the DOS only negligibly in the region
of interest.

We calculated the density of states and the spectral
function for the entire sequence of approximants start-
ing from the 1/1 to the 5/3 approximant. We combined
27 and 8 elementary cells to a supercell for the 1/1 and
2/1 approximants, respectively. The density of states

_ 80
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£ 40
20
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0
0 20 40 60 80
k  (units of 2n/d)
FIG. 9. Diffraction pattern for the 5/3 approximant to

i-Al-Zn-Mg in a plane perpendicular to a twofold axis. The
direction of the twofold, threefold, and fivefold symmetry axes
is marked. The wave vector |k| is given in units of (27/d),
where d is the period of the approximant, d = 59.82 A.
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was calculated using the Gaussian quadrature®® from 50

recursion levels.

The Bloch spectral function was cal-

culated by the Luchini-Nex terminator®” using 40 exact
recursion levels. The finite size of the supercell limits the
number of recursion levels. The truncation of the contin-
ued fraction at a finite level leads to a finite resolution of

the calculated
width of ~ 10
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DOS. For 50 recursion levels and a band-
eV, the estimated resolution is ~ 0.2 eV.

(a)

80

20

40

(units of 2n/d)

60

|

-

80

l

&\@‘ i

\

\
—
o

G-

i

i
(

{\g |

=Y

<

S

ey

I
W

A

I

1]

11 803

As a consequence the spiky fine structure of the DOS is

smoothed out.

1. Density of states

The comparison of DOS of the 1/1 approximant cal-
culated using the self-consistent LMTO-ASA method
with that calculated by the TB-LMTO recursion method

FIG. 10. Bloch spectral function f(k, E)
calculated using the recursive method for
wave vectors pointing along (a) a twofold and
(b) a fivefold (b) axis. The wave vector |k| is
given in units of (27 /d), where d is the period
of the approximant.
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[Fig. 7(a)] shows that the recursion method reproduces
the overall structure of DOS very well. The fine structure
is, of course, not reproduced in the recursion results. Par-
ticularly interesting is the behavior of the DOS around
the Fermi level. We observe here a deep minimum in the
DOS for all approximants [Fig. 7(b)]. The fact that the
calculated DOS converges very rapidly in the sequence of
the rational approximants suggests that this DOS mini-
mum (or “pseudogap”) is a generic property not only of
the rational approximants, but also of the quasicrystal.
As we have already mentioned in the Introduction, the
rapid convergence of the electronic properties (DOS at
the Fermi level, resistivity, thermopower) of the approx-
imant crystals to the value found in the quasicrystal has
also been confirmed experimentally.3%:58 The existence
of the DOS minimum is also confirmed by photoemision
spectroscopy. Figure 8 compares the calculated DOS for
the 5/3 approximant with the photoemission results of
Tanaka.’® The form of the valence band and the depth
of the pseudogap are in good agreement with the x-ray-
photoemission-spectroscopy (XPS) spectrum. The ap-
pearent position of the Zn 3d band in the photoemission
intensity is shifted to higher binding energy relative to
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the position observed in the DOS. This effect is well un-
derstood in terms of the screened self-interaction of the
hole in the narrow 3d band (cf. Ref. 50 for a more detailed
discussion).

The origin of the DOS minimum is often discussed in
terms of a Fermi-surface—Brillouin-zone interaction. We
think that this argument does not consider the essential
effect of quasiperiodicity: Icosahedral symmetry allows
for a more spherical Brillouin zone, and the intersection
of a spherical Fermi surface with a nearly spherical Bril-
louin zone can lead to a disappearence of a large part
of the nearly-free-electron Fermi surface. However, this
argument assumes that the higher zones may be (at least
approximately) folded down in k space. Hence the ar-
gument accounts for the effect of icosahedral symmetry,
but ignores the influence of quasiperiodicity. This can
be explored only if we investigate the energy-momentum
relation in an extended region of k space.

2. Bloch spectral functions and quasiperiodic
dispersion relations

It has been pointed out® that for each hypercubic 6D
lattice Lg, there exists a 6D reciprocal lattice. A 3D
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reciprocal lattice for the quasicrystal is defined by a pro-
jection of this 6D reciprocal lattice on 3D space. Special
points of the 3D reciprocal quasilattice are projections of
high-symmetry points of the 6D reciprocal lattice of the
hypercubic crystal. Special points are characterized by
a generalized structure factor.® Of particular interest are
the I" points, i.e., the projections of the (000000) points
of the hypercubic lattice reciprocal to Lg. In this case the
generalized structure factor reduces to the conventional
structure factor.

Figure 9 shows the calculated diffraction pattern for
the 5/3 approximant to i-AlZnMg in a plane perpendic-
ular to a twofold axis and containing twofold, threefold,
and fivefold symmetry axes. The size of each diffraction
spot is scaled with the calculated intensity. The most in-
tense diffraction peaks are the dominant I' points of the
quasilattice. In principle, the I" points are distributed
densely in k space. However, only a discrete set of points
has a sufficiently large spectral weight.

Figure 10 shows the Bloch spectral functions f(k, E),
calculated using the recursive method for wave vectors
pointing along the twofold and fivefold symmetry direc-
tions. For a crystal, a §-function peak in the spectral
function defines an eigenvalue for the given k vector. As
translational symmetry is broken, the spectral function
of a quasicrystal is a smooth curve (again with a finite
resolution arising from the truncation of the continued
fraction). A peak in f(k,E) at the energy Ej repre-
sents an approrimate eigenstate with a wave vector k
and energy Ey. The width of the peak is inversely pro-
portional to the lifetime of the state. We find from Fig.
10 that the spectral functions of the Al-Zn-Mg quasicrys-
tal consists of a dispersionless (i.e., k-independent) peak
near E = —8 eV representing the localized Zn 3d or-
bitals [the peaks in Figs. 10(a) and 10(b) are truncated
above the value 0.04] and a sequence of parabolic bands
originating from a discrete set of k points (the I points
of the reciprocal quasilattice). Electronic dispersion re-
lations defined in terms of peaks in the Bloch spectral
functions are drawn in Fig. 11. Every I" point is the ori-
gin of a nearly parabolic (s,p) valence band (note that
there are also I' points off the symmetry axis giving rise
to shifted parabolic bands). The amplitude of the peak
in the spectral function depends on the weight of the I
point. For comparison, the parabolic dispersion relations
of a quasiperiodic nearly-free-electron model are shown.
The existence of sharp peaks in the Bloch spectral func-
tions shows that propagating electronic states exist in the
vicinity of the quasiperiodic I' points.

The difference from the extended zone scheme of a
crystal is that in the icosahedral phase the T points are
distributed quasiperiodically; hence, the electronic dis-
persion relations are also quasiperiodic. Close to the
Fermi energy we find a series of highly degenerate free-
electron states at quasiperiodically spaced wave vectors.
The planes normal to these wave vectors define the ana-
log of a Brillouin zone in the extended zone scheme of
a crystal. Because of the icosahedral symmetry, these
“quasi-Brillouin-zones” have many faces and are nearly
isotropic. The electron-ion interaction lifts the degener-
acy of the free-electron states and leads to the formation
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of a pseudogap confined between two bands with almost
no dispersion. The important point is that the pseudo-
gap is found at all wave vectors. The comparison of the
results calculated for the twofold and fivefold directions
shows that at low energies the dispersion relations are
isotropic and that the pseudogap exists in all symmetry
directions. Hence the Fermi velocity of the electrons will
be low, independent of the direction in which the elec-
trons propagate.

V. ELECTRONIC STRUCTURE OF LIQUID AND
AMORPHOUS ALLOYS

The origin of the pseudogap at the Fermi level may
be better understood if we compare the DOS of an ap-
proximant to the quasicrystal with the DOS of related
aperiodic phases. In Fig. 12 we compare the DOS of
the 3/2 approximant to a Al-Zn-Mg quasicrystal, with
the DOS of the same system in liquid and amorphous
phases. We note that the 3/2 approximant in the Al-
Zn-Mg system was recently observed experimentally.60
The preparation of the structural models of liquid and
amorphous systems is described in Sec. IID. The DOS
was calculated using the TB-LMTO recursion method.
The energy scales in Fig. 12 are aligned to match the
bottom of the valence band. We find an almost perfect
parabolic free-electron band for liquid Al-Zn-Mg, while
for the amorphous phase a shallow minimum around the
Fermi level is predicted. As the systems have the same
chemical composition, it is evident that the origin of the
pseudogap at the Fermi level in the DOS of the approx-
imant to the quasicrystal and obviously also the shallow
minimum around the Fermi level on the DOS of amor-
phous phase have no chemical origin, but they are struc-
ture induced.

The comparison of the corresponding Bloch spectral
functions is presented in Fig. 13. While for the spec-
tral function of the liquid only one free-electron-like s, p
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FIG. 12. Comparison of the DOS of the 3/2 approximant

to i-Al-Zn-Mg (solid line) with the DOS of the same system in
the liquid (dotted line) and amorphous (dashed line) phases.
The energy scales are aligned to match the bottom of the
bands. The Fermi level is marked by vertical line segments.
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parabolic band with origin at k = 0 is seen [Fig. 13(a)],
for the amorphous phase a weak indication for a second
parabolic band with the origin at k = K, is observed
[Fig. 13(b)]. This band is induced by the first peak in the
structure static factor at |Kp|. It is sharper and higher
for the amorphous phase than for the liquid phase (see
Fig. 3). The shallow minimum of the DOS at the Fermi
level of the amorphous phase is induced by the same
mechanism as the pseudogap at E in the crystalline and
quasicrystalline phases. The sharp first peak in the static
structure factor acts like a smeared-out reciprocal-lattice
vector. Hence there exists a low-intensity parabolic band

(a)

(units of 2m/d)

k|

(b)

(units of 2n/d)

k|

\
—
o)l

FIG. 13.

J. HAFNER AND M. KRAJCI 47

originating from |k| = |K,|, and the two free-electron
bands are degenerate at |k| = |K,/2|. Lifting of the
degeneracy leads to the formation of a shallow isotropic
pseudogap.

VI. HUME-ROTHERY MECHANISM FOR THE
STABILITY OF QUASICRYSTALS

Our results show that structure-induced pseudogaps
in the electronic DOS at the Fermi level exist in rational
approximants to quasicrystals, but also in related crys-
talline and amorphous alloys. Hence we are led to con-

E-EfF (eV)

Bloch spectral functions f(k, E) for (a) the liquid, (b) the amorphous phase, and (c) the 3/2 approximant along

a twofold axis. The wave vector |k| is given in units of (27/d), where d is the period of the 3/2 approximant, d = 36.97 A.
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clude that although existence of a pseudogap is probably
a generic property of quasicrystals, but is not a specific
property that distinguishes quasiperiodic from periodic
or aperiodic alloys. The problem is a quantitative rather
than qualitative one.

The stabilization effect of the pseudogap at the Fermi
level in the DOS may be estimated from the compari-
son of the total energies of an approximant to the qua-
sicrystal with the amorphous phase. Such a compari-
son is physically meaningful as the Al-Zn-Mg quasicrys-
tal is prepared by the rapid quenching technology and
hence the competing phase to the icosahedral phase is
just the amorphous phase. The difference in total en-
ergies of the systems may be calculated using the local
force theorem.! Both systems have the same chemical
composition and the same volume, and therefore the dif-
ference in the total energies may be well approximated
by the difference in one-electron energies. We find that
the energy of the 3/2 approximant is lower by AU = 27
meV /atom.

We find no evidence for a deepening of the pseudo-
gap with an increasing period of the approximant. For
the Al-Zn-Mg alloys such a deepening is not to be ex-
pected, since the Frank-Kasper phase (the 1/1 approxi-
mant) and also the recently observed 3/2 approximant5°
are stable phases, whereas the quasiperiodic alloys are
only metastable. Very recently the electronic proper-
ties of the stable Al-Cu-Li and Al-Cu-Fe quasicrystals
and their body-centered-cubic and rhombohedral 1/1
approximants have been studied by nuclear magnetic
resonance.%? For i-Al-Cu-Li a small deepening of the
pseudogap compared to the approximant was found. For
the approximant, the result is in agreement with theo-
retical predictions.3* For the higher-order approximants,
the electronic structure has still to be calculated. After
recent progress in the modeling of the atomic structure,®3
such calculations appear to be feasible.

(Continued).

Our results shed more light on the role of a Hume-
Rothery mechanism for the stability of quasicrystals. For
metastable phases such as i-AlZnMg, the electronic en-
ergy of the quasicrystalline and the approximant phases
are nearly equal. In such a case it might be the entropy of
the disordered quasicrystal which dips the balance in the
free energy in favor of the quasicrystalline state. For the
stable quasicrystals, an energetic stabilization appears to
be possible.

VII. CONCLUSIONS

We have presented an investigation of the electronic
structure of rational approximants to a quasicrystal and
of related alloys. The example chosen for our study is
the Al-Zn-Mg system. We have demonstrated that prop-
agating electronic states (i.e., states with a well-defined
energy—wave-vector relation) exist close to the I' points of
the reciprocal quasilattice. We have shown that pseudo-
gaps at the Fermi energy are truly a generic property of
rational approximants approaching the quasicrystalline
structure very closely. Highly degenerate free-electron
states at the Fermi level were found. The pseudogaps
are formed by lifting the degeneracy of these states. Our
study extends and confirms arguments in favor of an elec-
tronically driven stability of quasicrystals formulated in
terms of pseudogaps in the electronic density of states
induced by “quasi-Brillouin-zone” —Fermi-surface interac-
tions. We have also shown that a quasiperiodic general-
ization of a nearly-free-electron approximation is appro-
priate for s, p-bonded quasicrystals such as Al-Zn-Mg.

Our results may be relevant also in the discussion of the
unusual transport properties of quasicrystals. For sta-
ble quasicrystals semimetallic transport properties char-
acterized by high resistivity and strong temperature and
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composition dependencies of the thermopower and Hall
coefficient were experimentally observed.?8 In our calcu-
lations we found that the dispersion relation E(k) for
states close to the Fermi level is almost independent of
k. The Fermi velocity vp = |0E(k)/0k| at E = Ep is
therefore very low. From the approximate relation for
the conductivity, o = e27n(Er)v% /3, where 7 is a relax-
ation time, it follows that for low Fermi velocity vy and
low density of states at Fermi level n(Er) the conductiv-
ity is also low. The strong temperature and composition
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dependences of the thermopower and the Hall coefficient
may be attributed to the spiky character of the spectrum.
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