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A class of NMR relaxation mechanisms is considered which is characterized by molecular reorienta-
tions mediated by translational displacements. This particularly refers to systems in which molecules are
confined to disordered structures determining the local preferential orientations of the incorporated mol-
ecules and providing translational degrees of freedom with a certain reduced dimensionality. Examples
are solvent molecules adsorbed on surfaces of macromolecules, particle aggregates, or porous media.
The orientation correlation function of molecules diffusing along such confining structures therefore
does not only reflect the molecular dynamics but also the structural properties of the system. An orien-
tational structure factor is introduced analogous to the structure factor of scattering theory. A number
of typical model situations is treated. Experimental relaxation data of the hydration shells of lipid bi-
layers, proteins, and silica fine-particle aggregates are considered for comparison. The main measuring
technique was field-cycling NMR relaxation spectroscopy permitting the record of frequency depen-
dences over many decades. The data for hydrated proteins can perfectly be described by an equiparti-
tion of surface wave numbers in a certain range defined by the dimensions of the protein and, on the oth-
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er hand, of the water molecules.

I. INTRODUCTION

The purpose of this work is to investigate effects of
structural confinements to molecular reorientations and
the consequences for nuclear magnetic relaxation. Sol-
vent molecules adsorbed and diffusing on surfaces are of
particular interest. Typical examples are water molecules
in hydration layers of proteins!? or silica fine particles.>*
For a review of some chemical problems related to disor-
dered surfaces of catalysts, macromolecules, and colloidal
aggregates see Ref. 5.

Using the NMR field-gradient method,® water diffusion
coefficients in an order of magnitude characteristic for
liquids were measured in the above-mentioned systems
even when the water concentration was less than the sat-
uration value of the hydration shells or when the so-
called free water was frozen, i.e., when the hydration wa-
ter was the only liquid phase.>*7 A correspondingly
high translational mobility therefore must be attributed
to molecules in the hydration shells. (Note that systems
without free space are considered so that no vapor phase
enhancement of translational diffusion®~1° could contrib-
ute.)

On the other hand, orientational correlation times
longer than those in bulk water by at least 6 orders of
magnitude have been concluded from deuteron as well as
proton relaxation experiments.">!'"13 The measuring
technique was predominantly field-cycling NMR relaxa-
tion spectroscopy.!* The interpretation'? of these results
was that the orientation correlation of water molecules
decays partly as a consequence of translational displace-
ments along the rugged and/or curved surface relative to
which the adsorbed molecules have a certain preferential
orientation.

Fast but anisotropic rotational fluctuations about the
local orientation axis are certainly not excluded in such

4

systems. However, such motions are expected to leave a
finite residual orientation correlation in the long-time
limit. It is this residual correlation which is of interest
here. It decays further down to zero by much slower “re-
orientations mediated by translational displacements”
(RMTD).

This translational diffusion process is not to be con-
fused with relaxation by internuclear distance variation
often referred to as ‘“‘translational diffusion mechanism”
of NMR relaxation.!>'® Here we are dealing with the in-
tramolecular part of the interactions of deuterons or pro-
tons which is relevant for quadrupolar coupling generally
and for dipolar coupling in the low-frequency limit when
the molecules are already displaced translationally.

Relaxation by RMTD is the combined consequence of
the proper dynamics of molecular motion and the struc-
ture of the confining medium. The information of the
latter will be represented in the form of an ‘““orientational
structure factor” in analogy to the structure factor of
scattering theory.

II. ORIENTATION CORRELATION FUNCTION
FOR THE RMTD MECHANISM

Nuclear magnetic relaxation is determined by the auto-
correlation function of quantities F'"(68,¢)=F'"(Q)
characterizing the dependence of the relevant spin in-
teractions on the orientation € expressed in spherical
coordinates 6 and ¢ with respect to the external magnetic
field. For dipolar as well as for quadrupolar couplings
these functions are proportional to spherical harmonics
of order 2:16

Fm(Q)=fyim(Q), (1)
where m =0,1,2 and F'""*=F("™_ The factor f
characterizes the type and the strength of the coupling.
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In the case of dipolar interaction it is a function of the
distance of the interacting spins. As we are dealing with
intramolecular interactions depending solely on the
orientation, f is taken as a constant for dipolar and qua-
drupolar couplings as well.

The displacement is r(¢), where »(0)=0. The orienta-
tions at these positions are Q(¢) and Q(0), respectively.
The reduced autocorrelation function G (t) decaying
from the initial value G(0)=1 to G () is defined as

_(F"™{QO0)}F "™ {Q(1)])

G(t)= , 2
(1) (F™y (2)

(Y5 {Q,} Y5 ™ {Q,]} >=<—fP(Q,,Qf,z)Y;W(Q,.)Y;””(Q,)d%)
Q

1
4T
1

11789

where the brackets indicate ensemble averages. The re-
sidual correlation in the long-time limit is then

_ [(Fimy |2
(|Fm2y -
With Eq. (1) we have

G() (3)

Yo Yy m Q) )

G (1)
Yy |?)
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The numerator on the right-hand side can be rewritten as

i

=—— [(P(Q,Q,0Y(Q)q Y™ (Q,)dQ, , 5)

T

where P((;,Q,t) is the conditional probability density
that the final orientation is Q ,=Q(¢) after a time ¢ if the
initial orientation was Q; =Q(0).

This probability can be analyzed in terms of the
RMTD process:

P(Q,0.,0= [ ®(Q,Q,0)¥(r,1)d"r, (6)

where the integration is carried out over the whole topo-
logically z dimensional r space (z =1, 2, or 3). W(r,?) is
the diffusion profile, i.e., the probability density that a
particle is displaced by a distance r in the topological
space in a time interval t. ®(Q;,Q/,r) represents the
probability density that the orientation changes from (;
to 2, in a distance r.

Note that the formal prerequisite of Eq. (6) is the sto-
chastic independence of the orientation at a position r
and the displacement to this position. ¥(r,?) is indepen-
dent of the orientations of the molecule, at the initial as
well as at the final position. The orientations at different
positions are a matter of the surface structure alone and
are linked by the function ®( Q;,Q4,1).

Using the expansion in terms of spherical harmonics

D(Q;,Qp1)= 3 T} (0¥ (Q)) 7
I'm'

with the initial condition
<I>(Q,-,Qf,0)=5(Q,»—Qf)
=3 Yl(f'"')(Q,-)Y,(f’”')(Q/) , (8)
I',m’

we find
Ty (0)=Y,""(Q,) . 9)

The coefficients of the above expansion thus can be ex-
pressed as

Lpm(O)= Y17 (08, ) (10)
where g ,,.(0). Inserting Eq. (10) in Eq. (7) gives

[
O(Q;,Q.,0)=3 Y. " (Q) Y (Q,)gp () . (11)
lI',m'

With Egs. (4), (5), (6), and (11) we immediately obtain the
orientation correlation function

1
G(t)=———5 W (DW(r,t)d T . (12)
vy L&

This concept refers specifically to the low-frequency
part of the fluctuations, i.e., typically to frequencies
v <<10'© Hz. There are other degrees of rotational free-
dom expected to be relevant at fluctuation rates typical
for low-molecular liquids ( > 10'°s™!). What can be stud-
ied by the field-cycling technique and what refers to the
surface structure is the decay of the residual correlation
left over by such fast, but restricted reorientations at high
frequencies. The consequence is that the low-frequency
part of the reorientations of the diffusing molecules is
slaved to their displacements.

III. THE ORIENTATIONAL STRUCTURE FACTOR

The diffusion profile W(r,?) depends, in principle, on
the dimensionality z and on the validity of the Einstein
relation for normal diffusion

(r?)=2zDr , (13)

where D is the diffusion coefficient. In this case the solu-
tion of the diffusion equation is given by the Gaussian
probability density

\P(r’t):_‘__l____?e*ﬂ/étDt (14)
(4wDt)*/
where the integral over the whole space is

Jwr,nar=1.
The Gaussian function can be represented by the spa-
tial Fourier transform

e—r2/4Dz: (mDt)*"* fe—Dtkzeik-rdzk (15)
o
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where k is the wave vector. The integral covers the
whole z-dimensional k space. The orientation correlation
function for normal diffusion can then be written as

)= [ S(k)e % a%k (16)
with the orientational structure factor
- 1 .
Sk)y=——""—— (r)e’®Td? . (17
2Z7T< ‘Y(zm)|2> ng,m

The integral covers the whole topologically z-dimensional
r space in which the translational diffusion takes place.

Let us now define the radial orientation structure fac-
tor

=(S(k))B(k) (18)

with B(k)=1, 27k, and 47k? for the topologically one-,
two-, and three-dimensional space, respectively, in which
the diffusion process takes place. The average refers to
all directions of the wave vector. The orientation correla-
tion function thus can be expressed as

G()= [ "S(k)e P*dk . (19)
0
The corresponding spectral density is given by
T@)=2 [ "G (t)cos(wt)dt
=["s (20)
f 1+a)27'2
where
1
= . 21
Tk pk?

The spin-lattice relaxation rates 1/7 and 1/T, in the
laboratory and rotating frames of reference, respectively,
are given by'®!7

2
LB 3 (1 DUFD2) [ I(0g) +49(20,)]
T, 4
(22)
1 wo |3
IR SR il 422 (D)2
T, o Y2+ 1)(|FD?)
X [392w,)+57(wy)+29(20,)] , (23)

where we have assumed dipolar interaction, i.e.,
FW=g3sin0cosO exp(i¢) with a,0,¢ the spherical
coordinates of the effective internuclear vector. y is the
gyromagnetic ratio, 7 is Planck’s constant divided by 2,
U is the magnetic-field constant. wy=yB, and w; =y B,
are the circular Larmor frequencies in the external field
B and the rotating radio-frequency field B, respectively.

J(w) [Eq. (20)] has the form of a convolution integral
so that the orientational structure factor can be deduced
from field-cycling data of the spin-lattice relaxation rate.
The orientational structure factor can, in principle, be
obtained by numerical deconvolution of the experimental
T, dispersion.

RAINER KIMMICH AND HANS WERNER WEBER 47

A. Delta structure factor: Application to the
“ripple phase” of lipid bilayers

Assume a topologically two-dimensional surface undu-
lated in one direction according to a wave vector k.
Molecules confined to this space will be reoriented by dis-
placements along k,. The orientational structure factor is
then

S(k)=a,8(k—k,)+a,5(k) (24)

with a; +a,=1. The orientation correlation function for
this structure factor and for normal diffusion decays ex-
ponentially according to
—Dtk}
G(t)=a,e °+a, . (25)
A practical situation where a 8 structure factor is ex-
pected to be relevant is water adsorbed on lipid bilayers

-300 -400
(b)
-500 -600
(c)
-300 -400

ppm

FIG. 1. Deuteron spectra of heavy water adsorbed on di-
palmitoyllecithin bilayers in (a) the liquid crystalline (L,)
phase, (b) the ripple (Pg) phase, and (c) the gel (Lg) phase.
The water content was 24% D,0 b.w. The quadrupole splitting
of the spectra (a) and (c) are explained by the preferential orien-
tation of the water molecules on the bilayer surfaces. These are
more or less plane in these phases so that translational displace-
ments are not connected with reorientations in the first instance.
This is in contrast to the ripple phase (b) where, as a conse-
quence, the quadrupole splitting collapses.
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in the so-called ripple phase.!® In this phase the topologi-
cally two-dimensional surfaces of the bilayers are undu-
lating with a definite wavelength of about 140 A while the
gel and the liquid crystalline phases appearing below
34.5°C and above 42 °C, respectively, show smooth sur-
faces. The undulating orientations of D,O molecules are
demonstrated by the deuteron quadrupole splitting aver-
aged out by the translational diffusion process along the
ripple surfaces in contrast to the other two phases (Fig.
1). Preliminary deuteron relaxation dispersion studies
confirm this interpretation.

B. Gaussian structure factor

Instead of a single wave vector characterizing the sur-
face structure we assume now a Gaussian distribution of
the magnitude about a certain average value k,. The ra-
dial orientation structure factor is then given by

- _ 2 0,2
S(k)=V2/(mad)e FoTk /20 (26)
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FIG. 2. (a) Orientation correlation function and (b) recipro-
cal intensity function for a Gaussian structure factor. The
curves have been calculated on the basis of Eq. (27) and its nu-
merical Fourier transform. The indicated limits correspond to
Egs. (30)-(33). The reciprocal intensity function essentially
reflects the expected T'; dispersion.

11791

The corresponding orientation correlation function is
G (=[S (ke P*dk
0

1 —k2Dt/(1+20D1)
> 1,5 € .
(1+20%D1)'?

This function is characterized by two correlation times:

27)

To=(k3D)7", (28)
T,=(20%D)" ! . (29)
The decay becomes exponential in the limit ¢ <<,
G(me /T (30)
and
—k3/(20) 12
G(t)=e (15/1) (31

in the opposite limit. The corresponding frequency
dependences are determined by the intensity function ob-
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FIG. 3. (a) Orientation correlation function and (b) recipro-
cal intensity function for an equipartition of wave numbers.
The curves have been calculated on the basis of Eq. (35) and its
numerical Fourier transform. The reciprocal intensity function
essentially predicts the expected T'; dispersion.
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tained as the Fourier transform of G (t),

Horm— it 1 (32)
~—— U oor, <<
R o
and
2 2
Jryme O amr, s0)? if o, >>1 . (33)

Figures 2(a) and 2(b) show the numerically evaluated
functions G (¢) and 1/J(w), respectively.

C. Equipartition of wave numbers:
Comparison with protein hydration water data

The case of equipartition of wave numbers corresponds
to a purely stochastic distribution of orientations in a cer-
tain wave-number range. The upper and lower cutoff
magnitude values are designated by k, and k;, respective-
ly. Assuming molecules diffusing on a topologically two-
dimensional surface and a “white” distribution of wave
numbers independent of the direction suggests a radial
orientation structure factor

e
W 25 % D0 T=291 K

e T e T
10° 10¢ 108 108 107 10°

FIG. 4. Representative frequency dependence of the deu-
teron spin-lattice relaxation time, 7'}, of heavy water adsorbed
on bovine serum albumin (BSA) at 291 K. (Data are from Ref.
1.) The water content (25% b.w.) is somewhat below the satura-
tion concentration of the hydration shells, but safely above the
percolation threshold (Ref. 4) of 15% b.w. The solid line
represents the reciprocal intensity function (times an arbitrary
proportionality factor) which was calculated by numerically
Fourier transforming Eq. (35) for an equipartition of wave num-
bers [compare Fig. 3(b)]. The crossover from the low-frequency
plateau for wt; <<1 to the square-root slope at intermediate fre-
quencies, 7; !<<w<<T,!, corresponds to the experimental
finding. From the fitted value 7,=1.6X 107> s and the transla-
tional water diffusion coefficient measured to be (Ref. 4)
D =2X10"!"! m?/s, one estimates a lower cutoff wavelength of
110 A which corresponds well to half of the mean circumfer-
ence of a BSA molecule. At high frequencies the influence of lo-
cal but restricted rotational diffusion of the water molecules be-
comes visible (Ref. 1) (Only the residual orientation correlation
left over by this process was considered in this treatment of the
low-frequency T'; dispersion.)
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st— | ax Fhsksk,,

0 otherwise , (34)

where Ak =k, —k;. The orientation correlation function
is then

G(0)= [ “S (ke P*dk

- —ZAl—k\/w/(Dt)[erf( VDik,)—erf(VDIk)], (35)

—~ —x? . .
where erf(x)=(2/\/7r)f3e *“dx' is the error function.
The decay of the orientation correlation function is
characterized by three correlation times given by

T, =(k2D)" !, (36)
m=(kfD)"!, (37)
ma=[(Ak)2D]" L. (38)

Figures 3(a) and 3(b) show the numerically evaluated
functions G(¢) and 1/J(w). The proportionality
1/J(@)<w'? in the intermediate-frequency range is
characteristic for this type of orientational structure fac-
tor. It corresponds particularly close to the T, disper-
sion observed with water deuterons adsorbed on protein
surfaces. Figure 4 shows a representative data set.!

IV. DISCUSSION

A nuclear magnetic relaxation process has been con-
sidered owing to molecular reorientations mediated by
translational displacements. In other words, reorienta-
tions are slaved to translations. An orientational struc-
ture factor has been introduced permitting the separation
of the structural information of the confining system
from the dynamics of the molecules diffusing on it. This
is a formalism generally suitable for this class of relaxa-
tion mechanisms.

A number of different orientational structure factors
has been suggested. The features specific to the diverse
systems considered here deserve a more detailed analysis
of the data then was appropriate in the frame of the
present work. This will be the objective of a forthcoming
paper.!® The aim was rather to demonstrate that the
RMTD mechanism is of general importance for the re-
laxation of molecules confined in systems with a disor-
dered surface structure.

Diffusion along surfaces is a phenomenon reducing the
dimensionality of the transport process.?’ This may ex-
plain the amazing efficiency in biological systems where
reactions are known to be extremely fast in spite of the
limitation by diffusion. The study of surface guided
transport therefore is of particular interest. The RMTD
mechanism of NMR relaxation spectroscopy is a concept
providing the basis for corresponding interpretations.

The hydration layers discussed above form topological-
ly two-dimensional spaces. An example for a topological-
ly one-dimensional space is considered in context with
“reptation,” i.e., a polymer diffusing along its own con-
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tour.?! Experimental evidence thereof is also provided by
field-cycling NMR relaxation spectroscopy.?>?* Finally,
the three-dimensional case can be imagined with liquid
crystals, where the diffusion connects positions with
different director orientations.

In the above cases a normal diffusion behavior within
the topological space was assumed so that Eq. (13) is val-
id. In other words, the topological space is considered to
be homogeneous. The displacement r is measured in the
(curvilinear) coordinates of the topological space, and the
displacement probability density W(r,z) has a Gaussian
character.

On the other hand, a deviation from Gaussian proba-
bility densities is expected if the topological connectivity
of the surface is incomplete so that a kind of percolation
cluster is approached. This situation may arise if the cov-
erage of surfaces by the diffusing molecules is incom-
ple:te,4 for instance. Diffusion tends then to be anomalous
in length scales within the correlation length of the clus-
ters.>*~26 For fractal percolation clusters in particular,
i.e., self-similar structures, the time dependence of the
mean-square displacement is given by a power law

(r2>=at2/(2+6) (6>0) , (39)

where 2+ 0O is the anomalous diffusion exponent (some-
times denoted as d,)) and « is a constant (being equal to
2zD if ©=0).

If the displacements along the surface are measured in
the Euclidean rather than in the topological space, and if
the surface forms a three-dimensional object which can-
not be approached by a plane, the probability density
WY(r,?) also implies the principal accessibility of the posi-
tion r, i.e., to the geometry of the object. By contrast, the
solutions of the normal diffusion equation are valid under
the assumption that any position can be reached without
structural restriction.

Diffusion on a fractal object requires a generalization
of the diffusion equation leading to a modified probability
density for displacements r in a time z. Approaches of
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that kind were reported in Refs. 27 and 28, for instance.
The consequence is the appearance of “stretched Gauss-
ian” probability densities, where the fractal dimension
plays a crucial role. In a pore fractal, for instance, the
displacement of molecules in the pores are expected to be
characterized by a non-Gaussian probability density
Y(r,t) which is determined by the fractal structure of the
pores. Deviations from normal diffusion behavior have
also been found in gelatin networks using dynamic light
scattering.?’

In such cases, r refers to the Euclidean space. The
function g, ,,(r) given in Eq. (12) can be defined with the
same probabilistic meaning as with normal diffusion. An
orientation structure factor suitable for anomalous
diffusion thus can be introduced analogously to Eq. (17).
The problem is, however, to analyze the non-Gaussian
function W(r,t) similarly to Eq. (15). A corresponding
treatment is, in principle, possible but would be beyond
the scope of the present paper.

The process considered in this study has a time-scale
aspect: The prerequisite for the introduction of the
orientational structure factor is the restriction of local re-
orientations, that is, the interaction of the medium with
the molecules prevents complete reorientation by fast lo-
cal fluctuations. Hence, a residual orientation correlation
remains which can decay further down via the RMTD
mechanism. Note that the spin couplings can be both di-
polar and quadrupolar. The latter has been considered
by Fujara et al.***! for a formalism showing the analogy
of quadrupolar order experiments to quasielastic neutron
scattering. These papers, however, are referring to rota-
tional diffusion or jumps of molecules, i.e., to local reori-
entations.
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