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Number of metastable states of a chain with competing and anharmonic N -like interactions
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We investigate the number of metastable configurations of a 4 -like model with competing and anhar-
monic interactions as a function of an effective coupling constant q. The model has piecewise harmonic
nearest-neighbor and harmonic next-nearerst-neighbor interactions. The number M of metastable states
in the configuration space increases exponentially with the number N of particles: M ~exp(vN). It is
shown numerically that, outside the previously considered range ~t)~ & —', v is approximately linearly de-

creasing with il for ~il~ &1 and that v=0 for ri) 1. These findings can be understood by describing the
metastable configurations as an arrangement of kink solitons whose width increases with q.

I. INTRODUCTION

One of the characteristics of amorphous structures is
the existence of a complex energy landscape in the
configuration space of a classical N-particle system with
N))1 (cf. Fig. 1). It is believed that the number M of
minima in this space increases exponentially with N,

M (N) ~ exp(vN),

where v is of the order of unity. ' This feature may
inhuence both static and dynamical properties, such as
heat capacity and viscosity. The relaxational behavior of
fragile and strong glasses was related to quite diferent
landscapes with many and few metastable configurations,
respectively.

To establish a precise relationship between a given to-
pology of a landscape and the physical quantities of the
corresponding system is a formidable task and has not yet
been accomplished. In this paper we content ourselves
with the investigation and characterization of the
landscape itself. More precisely the validity of (1) will be
investigated for a particular model, which allows one to
study the dependence of the maximum configurational
entropy

pot. energy

0(N

config. space

FICz. 1. Schematical representation of the potential-energy
landscape.

v= lim —lnM(N)
1

N

on a coupling parameter. This type of question is already
rather difficult and only very few results can be found in
the literature. An early study was performed by Hoare
and McInnes, who numerically found 36 and 988 meta-
stable configurations for a 13-particle system with Morse
and Lennard-Jones potential, respectively. For a soft
sphere model with r ' pair potential, La Violette and
Stillinger found v—=0.07 and —assuming that the prefac-
tor in (1) equals 1—Stillinger and Weber found v=0. 16
for a modified, finite-range Lennard-Jones system with
finite volume and 32 particles. Furthermore, they found
a significant increase of v with decreasing density for the
latter system. The reliability of these numerical results
is not at all clear. There is, for instance, no control
whether all metastable configurations have been detected.

Under these circumstances simple models, which nev-
ertheless exhibit a complex energy landscape, are useful.
The simplest models are chains of particles with compet-
ing and anharmonic interactions such as, e.g., the N
model. Another example is a model with piecewise har-
monic nearest neighbor and harmonic next-nearest-
neighbor interactions as introduced by Reich crt and
Schilling. Even if it may be pathological for certain
physical quantities, it behaves N -like with respect to the
number of metastable states. Under certain conditions on
the coupling constants all metastable configurations are
in a one-to-one correspondence to aO spin configurations
of Ising spins o.; =+1. In this case there are 2 metasta-
ble configurations, and v=ln2. Surprisingly, this simple
model has some properties in common with glassy ma-
terials. For instance, two-level systems and their corre-
sponding density of states were analytically derived,
which leads to a power law for the specific heat at low
temperatures. ' The spatial decay of the autocorrelation
function of the Ising spins is nonexponential. ' The
reader is referred to Ref. 11 for a review of this model
and its static and dynamical properties.

For a N model with infinite range interactions -(which
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can be interpreted as an infinite-dimensional model) a
similar relationship between the metastable states and Is-
ing spins has been proven recently. ' However, permuta-
tional invariance of the interactions leads to a high de-
generacy of the energies of the metastable configurations,
such that the energy landscape is less complex. In con-
trast to this, the model studied in Ref. 8 has a very com-
plex energy landscape. Haner and Schilling' found
analytically a maximum stress I „such that there are al-
ways exponentially many metastable configurations for
I (I,„. The corresponding v(I) shows a staircaselike
behavior with an infinite number of plateaux.

In this paper the latter model is used to investigate v as
a function of the coupling parameter of the competing in-
teractions together with a properly chosen stress on the
chain. Interpreting the N -like model as a coarse grained
free energy with temperature-dependent coupling con-
stants, the dependence of v leads to a temperature depen-
dence of the number of metastable states in the free-
energy landscape. We find that this dependence differs
qualitatively from the pressure dependence of v.

There are very few models for which the maximum
configurational entropy can be evaluated analytically.
Also in the present one, we have to resort to numerical
calculations: The quantity M(X) will be approximated
by only evaluating the periodic configurations of period
N. It is known that this yields the correct answer in the
limit N~ ~ but for finite X, it is difficult to estimate the
reliability of the approximation. Therefore, the results
are compared with those obtained by a transfer-matrix
method, as well as by a formal scattering method due to
Kovacs and Tel' that can be implemented in a closely re-
lated dynamical system. '

This paper is organized as follows. In Sec. II we
present the model and discuss some of its crucial proper-
ties. Section III deals with numerical methods to deter-
mine v approximately. The results deduced from
different methods are compared with each other. The un-
derlying physics of the numerical results is elucidated in
Sec. IV, where an excellent lower bound to v is obtained
by describing metastable configurations as an arrange-
ment of defects in states that are stable for all values of
the coupling constant and an upper bound is derived us-

ing dynamical system theory. Section V contains a dis-
cussion of the results and some conclusions.

that have been related to spatial chaos. '" In the follow-
ing we will not distinguish between both interpretations.

For V& we choose a'piecewise harmonic interaction,

Vi(v)= —,'Ci {[v —a+ —a sgn(v —c)]

V~(v) =
—,'C2[v b] —with C2%0 . (4b)

C& and C2 are elastic constants and the other model pa-
rameters become obvious from Fig. 2.

Let us repeat some of the most important properties of
this model (details can be found in Refs. 8 and 11). The
metastable configurations at T =0 K (not to be confused
with metastable phases at finite temperatures T ) 0 K)
are of particular interest. A configuration Iv;} of the
chain with internal stress I is metastable if it is a station-
ary configuration:

([v;})=I for all n,BV
Vn

and if the phonon frequencies are non-negative, i.e., the
Hessian matrix is positive sernidefinite. Due to the piece-
wise harmonic potential V„ it is easy to prove that the
second condition holds for all stationary configurations,
provided that C& )0 and Cz & —

C& /4. For smaller
values of Cz, there are only unphysical configurations
with U; =+~.

Analogous to the discussion in Ref. 8, the first condi-
tion gives rise to the nonlinear difference equation

2y(v„—c)+(v„,—c)+(v„+,—c)=4(v„—c), (6a)

with

@(x)=—(2y+2)c+ +2bI
C2

+2(y —1)[a++a sgn(x)] (6b)

y
1

[c —a+ —a sgn(v —c)] } with C, )0

(4a)

and for V2 a harmonic one,

II. THE MODEL

We consider a chain of X identical classical particles
which interact with their nearest- and next-nearest neigh-
bors. The potential energy is given by

V(Iv;})=g [V, (v, )+ V2(v;+v;+, )] .

a)

Vp"

b ~2C

U; may be interpreted either as the bond length between
adjacent particles or as a scalar displacement of the ith
particle from a lattice point at R, . In the latter case we
obtain a type of model that has been intensively studied
in the seventies in order to describe phenomena associat-
ed with structural phase transitions. ' ' The former in-
terpretation is useful as a concept for structural glasses

2, ] cL2C~ y

FIG. 2. Nearest- and next-nearest-neighbor potential; {a)
double-well-like potential, (b) single-well potential. a+ and a
are related to a» by a+ =(a2+al )/2.
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and

Ciy=1+
2C2

(6c)

tion 0 2n~~2n nd 0 2n+1~ o 2n+1, due to the choice
of the internal stress.

III. NUMERICAL METHODS AND RESULTS

Note that cIi(u„—c) is a nonlinear function of (v„—c) and
depends parametrically on the model parameters and on
the internal stress I.

Using a Green's-function method for the infinite chain,
(6) can be rewritten as

u„([o.;}) c=—A +B g r)i'o„+;, (7a)

with

r)= —y[1 —(1—y )'r ]

and the self-consistency condition (SCC)

o „=sgn[u„( [o, } ) —c] .

(7b)

(8)

In the following, the internal stress I is adjusted to such a
value that

A =0,
B =a (1—r)) '

( I+g),
4(v„—c)=—r)

' (I+g) a sgn(v„—c) .

(9a)

(9b)

(9c)

It follows immediately from (7) and (9a) that the SCC is
invariant under the transformation o, —+ —o;. This sym-
metry is not crucial, but it is convenient from a technical
point of view. Although the symmetry does not hold for
arbitrary stress we believe that the g dependence of v
does not change qualitatively in that case.

Equation (7) states that the metastable configurations
are uniquely characterized by the location of the particles
relative to the cusp of V&. Thus, each metastable state
can uniquely be characterized by a double-infinite se-
quence of pseudospins o.;=+1. Its energy, written in
terms of the spin variables, has the form of the energy of
a 1d Ising model where lng takes the meaning of the
length scale of the spin-spin interaction. In Sec. IV, the
language of spin chains will be used to derive an analyti-
cal lower bound for the configurational entropy.

For a given sequence [o.; } the solution (7) has to fulfill
the SCC (8). In Ref. 8 it was shown that this is true for
all sequences, provided that ~i)~ & —,'. In that case the
number of metastable configurations

M(N, i))=card[ [cr; } ~ [cr, }fulfills (8) for .all n } (10)

is given by

M(N, i)) =2

For ~g~ ) —,
' we expect M (N, g) to decrease with increas-

ing ~i) . The critical value g, =
—,
' corresponds to the criti-

cal p, =
—,
' in the model of Ovchinnichov and Onischyk, '

but the coincidence of the numerical values is fortuitous.
Since the condition C, )4~Cz ~

for metastability implies

~g~ &1 we have to investigate M(N, r)) for —,
' &

~r)~
& 1

only. Without loss of generality we choose g) 0. The
case g (0 can be reduced to positive g by the transforma-

The main problem in calculating M(N, 71) from (8) is
the nonlocality of the self-consistency condition, i.e., the
impossibility to evaluate the infinite sum in (7) exactly.
One has to approximate the problem in such a way that
the sum can be evaluated. This has been done by impos-
ing periodic boundary conditions on the chain. Thus, the
infinite sum of the SCC reduces to X terms only and for a
fixed period N, at most 2 sequences need to be investi-
gated.

Period-X configurations are defined by v„+&= vn or
equivalently by o.„+&=o.„ for all n. Subsequently the
infinite sum involved in the SCC reduces to a rational
function of degree N in g,

~ g (m+q — )~, , (»)
k=O

and the SCC becomes

8„—sg nPN(pn on +1. . .pn+N 1 (13)

A periodic sequence described by the "unit cell"
(o o. . .o & i) is allowed if and only if (13) is satisfied for
n =0, . . . , N —1. Only in this case, it represents a meta-
stable configuration. Since all sequences are allowed for
g =0, a periodic sequence is not allowed if

sgnP&(o, . . . cr, ; r))&s gnP~( rc, . . .o;;0) (14)

for any cyclic permutation of (cro. . .o ~,). The
configuration is forbidden for r) ) r), (oo. . .o ~, ), where

is the smallest zero of any of the polynomials
P&(o, . . .cr, ;r)) (c.f. Fig. 3). The determination of zeros

1 N

of P& is done numerically. For fixed % one can decide
after one computer run for any periodic configuration up
to which value g, it is allowed. The symmetry between
o.; and —o., reduces the numerical effort. Table I shows
the number of unrelated sequences (cr i. . . cr &) which
have to be checked and the corresponding number of
roots for several N. Given g, the number of allowed

0.6

0.4

0.2

0.0

—0.2
C4

—0.4

—0.6
0.0 0.2 0.4 0.6 0.0 1.0

FIG. 3. The polynomials involved in the SCC for the period-
ic configuration [cr; }=(1,1, —1, —1, 1, —1, —1) and its cyclic

permutation s.
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TABLE I. Number of polynomials to check when evaluating
the consistency condition for periodic configurations.

Period
length

10
15
20
21

Number of
different configurations

39
607

13 602
25 472

Roots to find

390
9105

272 040
534912

period-N configurations approximates M(X, g). The re-
sult for v(N, ri) is displayed in Fig. 4 for several values of
N.

Near g= —,
' the curves for diAerent N coincide, whereas

large discrepancies exist in the limit g~1 . This is quite
natural, as the number of allowed configurations is rapid-
ly decreasing with g, so that the statistics becomes bad in
this limit. Moreover calculations with even N overesti-
mate M(g), as untypically many extremely stable kink
configurations (cf. Sec. IV) contribute in this case. This
elan'ect becomes most severe in the limit g~1

Since it is difIicult to estimate the error of the results
for large g, the latter have been compared to results ob-
tained by two other methods: a transfer matrix me-thod'
and a "scattering method". ' '

The transfer-matrix method operates on the whole set
of all sequences. Truncating the sum in (7) at ~i =k
reduces the SCC to a local problem. ' This approxima-
tion allows to determine finite forbidden subsequences of
length 2k+1. An infinite sequence is said to be forbid-
den at level k if it contains at least one forbidden block of
length l ~2k+1. It has been shown' that v is approxi-
mately given as logarithm of the largest eigenvalue of a
2 +'-dimensional transfer matrix, which operates on the
set of subsequences of length 2k + 1.

The scattering method is in some sense complementary
to the preceding one. Only finite symbol sequences are
considered, but the SCC is evaluated exactly. Being in-
spired by numerical scattering experiments, ' it consists
in determining finite allowed symbol sequences of length
N, by fixing vo and v

&
to some appropriate value and

1.0

0.8

FIG. 5. Invariant set of the two-dimensional (2D) map that is
constructed in such a way that any orbit in its invariant set cor-
responds one-to-one with a metastable configuration of the
chain. The instable boundaries are labeled by B;. For details of
the construction the reader is referred to Ref. 11.

checking if the SCC is satisfied exactly for all i N. This
corresponds to investigating finite configurations with
one end fixed. The initial conditions must be located on
the instable boundaries of the invariant set of the related
two-dimensional map (cf. Fig. 5). ' ' Since v,. is calculat-
ed by (6) and not by a truncation of (7), no approximation
is made in the evaluation of the SCC.

In the limit of large N for the first and the third ap-
proach, and large k for the second approach, all methods
converge to the same value for v. Their rate of conver-
gence is nevertheless diferent, and there are advantages

1.0

0.8

0.6

0.4

~ 0.Z

0.6
1.0

0.0
0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0
0.0

I

0.2
I

0.4 0.8 1.0

FIG. 4. Numerical results for the maximum configuration
entropy v when approximating the configurations by periodic
ones; (o ) N = 14; ( ) N = 15; (0) N =20; (6 ) N =21.

FIG. 6. Survey over the results for the maximum
configurational entropy v obtained by different numerical and
analytical methods; (E) numerical calculation by periodic
configurations with N =21; ( ) numerical calculation by the
transfer-matrix method with k =7; () numerical calculation by
the scattering technique with N =16 for

3
& q &0.5, N =20 for

0.5~g &0.65, and %=30 for g~0. 65; (solid line) analytical
lower bound for v by counting the number of allowed kink
states; (dotted line) analytical upper bound by a connection be-
tween v and the fractal dimension of the invariant set of the 2D
map.
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IV. DEFECT METHOD

In this section we present analytical methods for the
calculation of a lower and an upper bound of v(i)). The
calculation of the lower bound elucidates the physical
mechanism that leads to the decrease of v with increasing
effective coupling constant g. An upper bound is derived
using a formal argument from the theory of dynamical
systems. Both bounds converge in the limit q~1
Thus, it is possible to verify the numerical finding that v
vanishes linearly in this limit.

Let us begin the derivation of the lower bound with the
remark that both "ferromagnetic" spin configurations,
{o,=+1I and {o,= —1I, fulfill the SCC up to i)=1.
For our choice of the internal stress and for g) 0, these
two configurations represent the twofold degenerate
ground states. An elementary defect is an Ising domain
wall defined by

—1, for n &no

+1, for n ~no, (15)

where no —
—,
' is its position. For this defect configuration

the SCC holds up to i)=1. Substituting (15) into (7) we
obtain

1/2
v„=c +o.„B.

1 —g

1 1
X exp —n —

no
—— ln

2

Hence the defect width is

and shortcomings due to conceptual differences between
them.

In Fig. 6 the numerical results of the three methods are
compared. For g~0. 7, the predictions of the different
calculations are in excellent agreement. In this range, the
errors of all the methods are small.

The scattering method allows more easily than the oth-
er ones to approximate a metastable state by longer sym-
bol sequences (length of 30 instead of 15 for transfer ma-
trices and 21 for periodic configurations). Moreover,
there is the possibility to include finite-size scaling into
the calculations. These data can be expected to be the
most reliable ones for relatively high values of g. Ac-
cording to these data, v(i)) is, in a first approximation for
the range 0.4&g& 1, a linearly decaying function of g
which vanishes for g = 1. The linear approximation
seems to be quite good for q )—,', but due to the resolution
of our calculations it is di%cult to get detailed informa-
tion on its quality. In contrast there are outspoken devia-
tions from linear decay for —,

' &g& —,'. Using the good
resolution of periodic configurations with X =21 to plot
logio[ln2 —v(i))] against logio(i) —

—,'), one discovers that
these deviations are due to a scaling law for the number
of orbits to be forbidden at a certain value of g. This law
also fixes the asymptotic behavior of v(i) ) for i)~—,

'+. '

1w(i))= ln
71

(17)

Now, let us consider a configuration with a pair of defects
at n = —

—,
' and n = I + —,':

—1, for 0&n &l+1
+ 1, otherwise . (18)

This configuration describes a finite domain of l minus
signs in an infinite domain of plus signs. The SCC is
fulfilled only for g with

1 'g 2'g ~ 0 (19)

as can be verified by inserting (18) into (7) and using con-
stants as given in Eqs. (9a) and (9b) to explicitly check (8).
Doing this one observes that spins adjacent to the defects
first violate the SCC and that both defects in (18) lead to
the same critical value g.

Note that l =1 yields the critical value g, =
—,'. For

i)) —,
' the inequality can only be satisfied for l ) lo(rj),

where

lo(il) =ln 2
1 —9

M(N, i)) ~a (21)

i.e.,

v(r)) =ln(a) (22)

for i)=i)&, where a is the largest (with respect to its
modulus) zero of the polynomial

x'—x' ' —1=0 . (23)

Eliminating l from (19) and (23), an implicit equation for
lna(rl) is found:

lna= ln(a —1) .
ln7l

lnil —in[(1 —i) )/2]
(24)

Its numerical solution leads to the v(i)) curve shown in
Fig. 6 by the solid line.

Besides Io„=+1I and {o„=—1I there are many
more configurations that are metastable up to il= 1 [e.g.,
any 2X-periodic alternating configuration o.; =+1, for
2nN ~i ((2n +1)N and o, = —1 otherwise]. These
configurations and those that can be related to them by

Since in[2/(1 —rI)] grows rapidly with il, the distance be-
tween the defects has to increase faster than the defect
width w(i)), in order that the SCC holds. Since the num-
ber M of metastable configurations is related to the num-
ber of defects, it is obvious that M decreases with g due
to the decrease of the defect concentration. This rela-
tionship will be worked out now.

Equation (20) defines a critical value i)& for given l. At
all configurations composed of plus and minus

domains with size 1') I are allowed. Thus, M(N, il&) is
the number of possibilities to decompose N into blocks of
size l'~ l. This is a well-known problem from combina-
torics. One obtains
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Here, M (N) denotes the number of allowed sequences of
length N, as it is given in (1). Using (2) and observing
that the dimension of the invariant set of a two-
dimensional map can never exceed 2, one obtains

v= lim —ln(g )= ——Indi~ —lnq .1 a~y2 D
E 2

(26)

This upper bound is given by the dotted line in Fig. 6.
Note that both bounds are tangent in the limit g —+1
proving that v vanishes linearly with slope —1:

v(r) ) = 1 —g+ 0 (I —g) for g —+ I

V. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the number M (N, q)
of metastable configurations of a chain ofiV particles with
competing and anharmonic interactions as a function of
an effective coupling constant g. For g & —,

' it had already
been shown that v(q) =ln2. For —,

' ~ g ~ 1 three different

numerical methods yield an approximately linear de-
crease of v with increasing g.

In addition we have described the metastable
configurations as an arrangement of defects. For
3&/~1 the spacing betweenadjacent defects has to
exceed a critical length lo(g). Counting all configura-
tions of defects with neighboring distance bigger than lo,
we find a lower bound for v(q), which is exact for g= —,

'

and takes the value 0 for q=1. Using a mapping of this
problem to a dynamical system, an upper bound for v(g)
has been derived. Both bounds are tangent at g=1,
proving that v(g) vanishes linearly with slope —1. For
q ) 1 it has previously been shown that v=0.

The N model with infinite-range interaction studied
by Ovchinnikov and Onischyk' also exhibits an energy

inserting defects are neglected. Therefore, the above re-
sult for v(q) is only a lower bound.

An upper bound is obtained by the following reason-
ing: The metastable states of the chain correspond to the
orbits in the invariant set of a two-dimensional map. " In
this picture any allowed finite sequence I

o.; I;, uniquely
corresponds to a square with side length g . The posi-
tion of the square is uniquely determined by the symbols
cr, (cf. Fig. 5). This means that the invariant set is an "in-
complete Cantor set" with scaling q and a fractal dimen-
sion D. M(N) corresponds to the number of boxes with
side length g in the Cantor set, ' i.e.,

(25)

landscape with exponentially many metastable config-
urations, which are classified by Ising-spin configurations.
For this model one can show that spin configurations
Io; I for which g;o;=0 represent metastable
configurations for all values of the coupling constant. In
the thermodynamic limit N —+ ~ they constitute the full
measure. Therefore,

v=ln2 (2g)
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for all coupling parameters.
The reason for this trivial g dependence in contrast to

v(q) for our model may be explained as follows. In case
of infinite-range interactions the force acting on a particle
n depends only on the "magnetization" g;o „i.e., it is in-
dependent of n, whereas for the chain of particles the
force is proportional to g;g~" '~o, Any permutation of
the o.; changes the force in case of the chain. Therefore,
the high degeneracy of the infinite-range model is re-
moved. In particular, the energies of the (~&2) config-
urations with g;a; =0 (for N even) are spread over the
full energy scale. Increasing g, one configuration after
the other will become unstable leading to a decrease in v.
It is not obvious to us why the decay is approximately
linear. It would be interesting to compare our results
with a true N model with finite-range interactions.

Compared with the pressure-dependence for g & 3,
'

the g dependence of v presents significant differences. In
the former case an infinite number of plateaux exists
where v(p) is constant. Our results for v(rI) do not give
any evidence for the existence of plateaus for —,

' &q~ 1.
We believe that the number of metastable configurations
changes continuously and strictly monotonically with g
and that consequently the quality of the energy landscape
changes "smoothly. "

To summarize, the energy landscape of the one-
dimensional model exhibits exponentially many local
minima (metastable configurations) for q ( 1. The corre-
sponding maximum configurational entropy v decreases
roughly linearly for —,

' &q&1. The description of meta-

stable configurations by defects is appealing and may in
principle be extended to more general systems.
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