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Equivalency of the Casimir and the Landau-Lifshitz approaches
to continuous-media electrodynamics and optical activity on reAection
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The controversial discussion on the existence of the specular optical activity phenomenon is reexam-
ined. We prove here that the effect is predicted by approaches based both on the Casimir and the
Landau-Lifshitz material equations and that these equations are in fact equivalent if crucial terms con-
taining the derivatives of the nonlocal susceptibilities are taken into account in the derivation. Polariza-
tion azimuth rotation in the rejected wave of the scale 2 X 10 —2 X 10 rad may be expected in absorb-
ing optically active crystals. We also show that specular optical activity is intrinsically linked with the
transmission effect.

The phenomenon of optical activity, i.e., circular
birefringence and circular dichroism affecting the polar-
ization state of light propagating through a medium,
is a basic and comprehensively explained optical
phenomenon. Nevertheless, the controversial discus-
sion' on the existence of optical activity on "reflection"
from media exhibiting optical activity in transmission has
not been completed to our knowledge. Moreover, we be-
lieve that the understanding of the electrodynamic for-
biddance of this phenomenon, ' ' which was thought to
be backed by experimental results ' and, which has been
a widely accepted point of view for several years, is not
correct and should be reexamined. Fresh interest in the
topic of specular polarization effects in solids has been
raised recently by (a) the prediction and subsequent con-
troversial experimental verification ' that specular op-
tical activity may be observed in some high-T, supercon-
ductors and (b) positive observation of specular optical
activity from an cx-HgS crystal. ' In fact the question of
optical activity touches on a subject of a more general na-
ture and greater importance, namely which is the correct
material equation for the electrodynamics of a medium
with nonlocal optical response'?

In this paper we will approach the problem of optical
activity on reflection from first principles. This will allow
us to derive the correct forms of the material equation for
two different treatments and to prove that specular opti-
cal activity is an allowed effect. The first treatment tradi-
tionally begins from the material equation known as the
Landau-Lifshitz equation D=eE+y[VXE], ' and the
second from the Casimir material equation, P =y~E+08;
M=g E.' It has already been established that adequate
description of optical activity in transmission may be
done equally successfully using either of these different
starting points. At the same time these two approaches
have led to contradictory results in the treatment of opti-
cal activity on reflection. ' ' Specifically, the Casimir
formulism predicts no optical activity for normal
reflection, while consideration of the Landau-Lifshitz
equations leads to the existence of the phenomenon.
Different authors have expressed conflicting opinions:

While Natori and Silverman and Badoz expected no op-
tical activity on normal reflection from an interface with
an optically active medium, Bokut' and Serdyukov' and
Val'kov, Romanov, and Shalaginov did not deny the
effect and Schlagheck appealed for experimental
verification of the controversial theoretical results.

In fact there have already been several attempts to
resolve this problem by direct observation of the effect.
The experiments concerning optical activity on normal
reflection undertaken by Takizawa in a crystal of TeOz
(Ref. 4) and by Luk'yanov and Novikov in a crystal of
Lil03 (Ref. 6) gave negative results. The failure to get
positive results in these experiments was, as we now un-
derstand, wrongly and prematurely considered as a de-
cisive argument in favor of the Casimir approach. Our
recent experimental results' show that in strongly opti-
cally active crystals of a-HgS, in a region of strong ab-
sorption, optical activity on normal reflection exists and
arises as a polarization azimuth rotation effect. We also
believe that, in fact, positive observation could not be
achieved in Refs. 4 and 6, since in both experiments it is
likely that the experimental accuracy was below the value
of the eff'ect which might be expected.

We now understand that contradictions appearing in
the use of the two treatments originate from the fact that
the forms of the Casimir and the Landau-Lifshitz materi-
al equations used in Refs. 1 —3, 5, and 7 were derived
from different starting points. Consequently, the condi-
tions of their validity are different. Here we will show
that the Casimir and Landau-Lifshitz approaches are in
fact two forms of one general material equation and con-
sequently both are equally correct. We will also prove
that the phenomenon of optical activity on reflection at
normal incidence is an inevitable consequence of optical
activity "in transmission. " Polarization azimuth rotation
on reflection however may be found in strongly absorbing
materials only.

In order to examine the problem from first principles,
we must first of all obtain the appropriate forms of the
Maxwell equations on which the Casimir and the
Landau-Lifshitz approaches are based. They may be de-
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rived from the most general form of the averaged micro-
scopic equations for electromagnetic fields

[VXE]=——1 BB
c Bt

(V B)=0,

coordinates. The dependence of g; and g," on (t —t')
rejects medium "memory, " while dependence on r' indi-
cates response nonlocality. We can rearrange this equa-
tion eliminating the magnetic field of the light wave by
virtue of the first Maxwell equation:

[VXB]=— + J,c Bt c

(V E)=477p, (4)

B(r, t) = —f dt'[V XE(r, t')] . (12)

The material equation can be rewritten in the equivalent
form

where E and B are, respectively, the electric-field
strength and the magnetic induction in the medium and J
and p are the current and electric charge density, which
are bound by the equation of continuity:

Hereafter, since we are interested in optical phenomena,
we assume that there are no free charges, external electric
currents or static magnetic fields involved and the media
considered have no permanent magnetic moment.

The main difference between the Casimir and the
Landau-Lifshitz approaches is the use of difFerent vari-
ables in the material equations. While the Landau-
Lifshitz approach operates with the strength of the elec-
tric field of the light wave and electric induction of the
medium, the Casimir approach, which is designed to
serve mostly magnetic problems, also involves the mag-
netic moment of the medium. In some sense the Casimir
approach is more general, since it allows treatment of
static magnetic-field phenomena. At the same time in the
optics of nonmagnetic materials, specifically for the prob-
lem in question, there is no difFerence in their validity.
We will show this below.

In order to develop the Landau-Lifshitz approach from
the beginning, we substitute the following new variables
into (1)-(5):

apJ=, D=E+4~P .ai'
This leads to the Maxwell equations in the form

[VXE]=——1 BB
c Bt

(V B)=0,

D, (r, t)= f dp f d~e;'!'(p, r p, r)E—(r p, t —~—),
0

(13)

where e,''' is a linear form of g," and g,". The time-
domain Fourier transform here results in

D;(r, co)= f dpeI!'(p, r —p, co)E (r —p, co),

where

(14)

e'; '(p, r —p, co) =
2~ o

d ~ e'; '(p, r p, ~)e—xp(i co~) .

(15)

The electromagnetic wave E;(r p, co) an—d the optical
response function in (14) may be expanded as a series in
powers of p:

E, (r —p, co)=E;(r,co) —p&[c)E;(r,co)/c)r, ]+ .

e' '(p, r —p, co ) =e'. '(p, r, co )

p([deI '(p,—r, co)/drl ]+ (17)

We keep here only the first spatial derivatives, adopting
the so-called first-order spatial dispersion approxirna-
tion, ' sufIicient for description of the optical activity
effect. If we introduce the dielectric tensor e;~ and the
nonlocality tensor y;~&,

e,"(r,co)= fdpe' '(p, r, co),
(18)

y; ((r, co)= f dpp(e' '(p, r, co),

D;(r, co) =e;, (r, co)EJ(r, co)

the material equation can now be presented in the
Landau-Lifshitz form:

[VXB]=-
c Bt

(V D)=0,

(9) +V([y;JI(r, co)E (r, co)]+

where the last term may be decomposed

(19)

where D is the electric induction of the medium. For
completeness the material equation D=D(E, B) must be
derived from the constitutive equation

V( [y;Jt (r, co)E&(r, co)]= [VIy;~I(r, co)]EJ(r,co)

+y;.,(r, co)[VIE~(r, co)] . (20)

D;(r, t)= fdr'f dt'g, .(r, r', t —t')E (r', t')

+ fdr' f gj(r, r', t t')B, (r', t'), (ll)—.

where the invariance against time translation, the nonlo-
cality of the response, and the causality principle are
presupposed. Here g; and g,, are the optical response
functions with the lower indices labeling the Cartesian

The simplification of neglecting the first part of the
right-hand side of (20) results in the shortened form of
the Landau-Lifshitz material equation

D, (r, co) =e, (r, co)E, (r, co)+y,,&(r, co)V&E, (r, co), (21)

which is often used to describe propagation phenomena,
such as natural optical activity. This simplification is
justifiable only when the characteristic length of the vari-
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[VXE]=——i as
c at

(22)

ation of y, I(r, co) is sufficiently longer than the light
wavelength A, , i.e., ~Vy(r, co) (( ~y(r, co)/X~, and there-
fore not acceptable in the theory of reAection when
boundary effects are described and material parameters
such as y,"&(r,co) change dramatically from one medium
to another.

Now, using the same starting point we will derive
the Casimir material equations. ' Substitution of
J=c)P/c)t+c[V XM], D=E+4irP, and H=B 4nM—

into (1)—(5) leads to the use of variables adopted in this
approach. This results in the following form of the
Maxwell equations:

shortened form (28) and (29) of the Casimir material
equation with the full form (19) of the Landau-Lifshitz
Eq. , while if the full forms (19) and (26) and (27) are
used, this contradiction does not appear.

Evidently, being derived from the same basic princi-
ples, Eqs. (19) and (26) and (27) must produce the same
results in the description of wave phenomena and more-
over one of them may be transformed into the other and
vice versa. In order to prove this, we mention here that
the contribution to the current density associated with
the susceptibility y in (27) is proportional to VVy E
and, consequently is a second-order spatial dispersion
term and must be neglected, i.e., y should be set to zero.
By calculation of the current I in both approaches

(V B)=0,

[VXH]=-
c at

(V.D)=0 .

(23)

(25)

J;= i —coI(1 /4 ir)[ e,
.(r, co)

—5; ]E (r, co)

+V) [y, i(r, co)E, (r, co)]]. ,

J;= ico[y—t~(r, co)E, (r, co)+Vi[y~ji(r, co)E, (r, co)]]

+ ce,i„Vi[y„,(r, co)E.(r, co)],

(30)

(31)
Having one more variable H in comparison with the
Landau-Lifshitz set of the Maxwell equations, two ma-
terial equations must be introduced here, namely
M=M(E, B) and P=P(E, B). As above, each of these
constitutive equations should be presented in an integral
form similar to (11). Again by exclusion of the magnetic
induction B of the light wave, we can get the desired
Casimir material equations:

I', (r, co) =yt', (r, co)E (r, co)+V([y~~((r, co)E~(r, co)], (26)

P; (r, co) =y~ (r, co)E (r, co)+yf~((r, co)VIE (r, co),

M(r, )co=y; (r, co)E (r, co)+y;,1(r, co)V&E, (r, co) .

(28)

Here also the simplification above should not be made
when boundary effects are described and the complete
form (26) and (27) should be used.

In Eqs. (26) and (27) there is no consideration of ab-
sorption and other limitations particularly arising from
the fluctuation-dissipation theorem and the principle of
microscopic reversibility. ' We only presume in (16) and
(17) that the material parameters and the fields vary slow-
ly in the scale of the typical dimensions of the area form-
ing the optical response at a particular point.

Now we come to the question of the equivalency of the
Landau-Lifshitz and the Casimir material equations. As
we have already mentioned above, it was considered as an
established fact that these two different approaches lead
to contradictory results in optics, specifically in the pre-
diction of specular optical activity. ' ' We point out
here that this delusion results from comparison of the

M, (r, co)=y; (r, co)E~(r, co)+V, [y;,&(r, co)EJ(r, co)] . (27)

Since we have two material equations, we have four opti-
cal susceptibilities g;, y, t, g, , and y, &, in comparison
with only two e, and y, &

in the Landau-Lifshitz presen-
tation. Again, the last terms in (26) and (27) may be
decomposed and the contributions proportional to the
spatial derivatives of y~l and y; &

may be neglected when
propagation phenomena are considered:

the remaining tensor coefficients in the Landau-Lifshitz
material equation may be expressed in terms of the
Casimir coefficients (as in the particular case of the
Casimir presentation):

e(r, c)o=5; +4vry;" (r, co),

y; &(Jr, )co=4vr[y;Ji(r, co)+(ic/co)e;&„g„j(r,co)] .
(32)

The problems appearing from the fact that the three sus-
ceptibilities g~, y~, and y represent only two material
parameters e and y are resolved because only the linear
combination y,,&(r, co)+(ic/co)e, &„y„,(r, co. ) is important
in optics, since only it acts in the wave equation and only
it may be measured. Consequently one can arbitrarily
choose one of these linearly linked parameters.
Specifically the Landau-Lifshitz Eq. (19) follows from the
Casimir set (26) and (27), if y„j =0.

As an illustration we consider below the simplest iso-
tropic case (yf~ =yt'o, ., yf~& =y~e, ,&, y,, =y 5, ,

y, &=ye, &, and e, . =e5; ), where the L Lmaterial equ-a-

tion takes the form

D=eE+ [EXVy ]+y[EXV],
and the Casimir Eqs. (26) and (27) are

(33)

P =y~E — yi'B+ [E X Vyi'],
C

M=y E.
(34)

(35)

Here the magnetic field B=(c/ico)[VXE] is reintro-
duced in order to obtain the usual Casimir form. ' As a
rule ' ' the shortened form of the Casimir equation is
used and the term [EX Vy ] is neglected. Again the argu-
ments produced above do not allow this simplification in
boundary problems.

Now we are in a position to show how the correct ma-
terial equation inevitably leads to the existence of the
phenomenon of specular optical activity. We will prove
this for the simplest example of an interface between a
vacuum and an isotropic, gyrotropic medium. The
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Landau-Lifshitz approach will be used, i.e., the Maxwell
Eqs. (7)—(10) and material Eq. (31). For simplicity, step-
like behavior of e and y near the interface plane at z =0
is assumed, i.e., e= 1 and y=0 at z &0 and E&1 and
y&0 at z )0.

Evidently the form of the boundary conditions is
material-equation dependent. The correct procedure for
obtaining them has been developed in Ref. 7 and will be
used below. From the Maxwell equation
[VX8]=(1/c)BD/Bt, by integration over the area of a
closed loop partially immersed in the optically active
medium (z )0) and partially remaining in the vacuum
(z &0), in the limit as the loop size vanishes, the material
equation for the magnetic induction of the Einstein-
Maxwell wave may be found:

[(B' ' —B' ')Xn]= —( —y)
BE

c at
(36)

where the unit vector n is normal to the plane, and the
indices (1) and (2) label the vacuum and gyrotropic medi-
um, respectively. The right-hand side of this boundary
condition is associated with the induced surface current.
It arises only if the term [EXVy] in the material equa-
tion discussed above is taken into consideration. Similar-
ly from the Maxwell equation [V XE]= —( I /c)BB/Bt we
get the second boundary equation:

[(E'"—E' )Xn]=0 . (37)

Optical wave reAection coefficients may now easily be cal-
culated for the normal incidence condition. The electric
field in the vacuum E' "is given by

E"'= E;exp( i cot +ik—z)

R+ of the circularly polarized waves are equal to

I —n+
1+n ~

(42)

The polarization state of the waves may be presented in
terms of ellipticity angle g=(1/2)sin (s3/so) and angle
of rotation of the polarization azimuth
a=(1/2)tan '(sz/s& ), where s (m =0.. . 3) are the
Stokes parameters: so=E+E+ +E E*, s& =E~E*

—E E' . If the incident wave is linearly polarized and
the polarization change of the rejected waves is small
(5g„«~,5a„«~) then

6g, +i6a„= ky
(1 —e)

(43)

We shall note here one important peculiarity predicted
by the formula (43); optical activity on refiection from the
interface between two media with close dielectric con-
stants may be very strong, since the denominator of the
right-hand side of (43) tends to zero when the dielectric
constants on either side of the border converge (i.e., e
tends to 1 in the case above). The border between a per-
fect optically active crystal and an amorphous layer of
the same material (exhibiting no optical activity) would
be the most evident but not the only example. A similar
enhancement of the specular polarization effect has al-
ready been mentioned for refiection from nonlinear aniso-
tropic media. '

Close similarity between Eq. (43) and the formula
describing the optical activity phenomenon in transmis-
sion,

+E,exp( i cot i kz ) +c—.c. —, (3&) ky.
6g, + ) na, — y

I. wz (44)

+e E, exp( icot+iq z—)+c c. , (39)

where e+ ——I/v'2. (i+ij) are the right and left circular
polarization vectors (i and j are the unit vectors along the
x and y axes). Ignorance of the difference between the
left and the right wave vectors leads to the loss of the
phenomena of optical activity on reAection. We can
now express the boundary conditions for the circularly
polarized components of the incident (i), the refiected (r)
and transmitted (t) waves:

E;~+E„~=E,~ )

E,+ —E„+=n+ .E,+

(40)

(41)

where E; „+= (e+E, „) are the magnitudes of the
eigenwaves. Thus the reAection amplitude coefficients

where E, and E„are correspondingly the magnitudes of
the incident and the rejected waves and k =co/c. In an
isotropic, gyrotropic medium the eigenwaves are circular-
ly polarized and have different wave vectors given by
q~ =kn~, n+ =+(ky/2)+[@+(ky/2) ]'~, ' i.e., the
electric field of the transmitted light has the following
form:

E' I=e~E, ~exp( icot+iq~z)—

can be seen. It is clear from (43) and (44) that polariza-
tion change in transmission is inevitably linked with spec-
ular effects and that one may be expressed in terms of the
other:

a(5~, +i5a, )
(5g„+i5a„)=—

~1—e Bz
(45)

B( g5„+i5a„)
az (1 —~) az

y5(z),

B(5g, +i 5a, )

az

(46)

(47)

In the last equation we have taken into account that the
propagation phenomenon is considered for z )0, where
the medium is homogeneous and y is presumed to be in-
dependent of z. It may now be clearly seen from Eq. (46)
that By/Bz is indeed responsible for specular optical ac-
tivity and consequently this contribution must not be ig-
nored either in the Landau-Lifshitz material Eq. (19) or

Here the term B(5a, )/Bz is known as specific optical ro-
tatory power in units [rad/cm]. However, there is a
dramatic difference between the two phenomena. In or-
der to make it clear we take derivatives of Eqs. (43) and
(44) with respect to z:
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the Casimir-type Eqs. (26) and (27). In our case of step-
like behavior of e and y, By/Bz =y5(z). Here 5(z) is the
Dirac delta function and the reflected light polarization
change appears when the wave reaches z =0. Eventually
any longitudinal inhomogeneity of the medium resulting
in a coordinate dependence of y will lead to the alteration
of the reflected light polarization. If the transitional sur-
face layer is significantly thinner than the light wave-
length, the resulting eA'ect on the reflected light polariza-
tion may be expressed in the form

k + ay
( 5g„+i5a„)= J dz

1 6 —oo Bz
(48)

In some sense the specular eAect is "the complex conju-
gated phenomenon" with respect to optical activity in
transmission [see (45)]. It may lead to both polarization
plane rotation and light elliptiz ation. Specifically a
linearly polarized incident wave reflected from a trans-
parent medium (Imte}=0, ImIy} =0) becomes ellipti-
cally polarized but no polarization azimuth rotation may
be observed. Polarization azimuth rotation in the
reflected wave may only appear as a result of reflection
from an absorbing crystal where either ImIy } or Im[e}
exists. Table I summarizes the features of both the
e6'ects.

For optically active crystals such as a-HgS, ZnP2,
LiIO3, Te02, and Bi,2SiOzo specific polarization rotation
po~er in the transparent range is 10—500 deg/mm, i.e.,
2 —80 rad/cm, while e is always around 6—10. Thus
5g„= [A /n(1 —e) ]B(5a, )/Bz and an ellipticity angle may
be expected in the range of 4X10 —2X10 rad. Cor-
respondingly the relative intensity coming from a
"crossed" ideal analyzer is = (5g„), i.e.,
2X10 "—4X10 . As far as we are concerned, one of
the possible explanations for the failure of detection of
specular optical activity in the experiments, Refs. 4 and
6, is that the experimental accuracy in Refs. 4 and 6 was
probably below the value of =(5il„) =4X10, predict-
ed by (43), which is indeed a very small effect.

For absorbing crystals the refleeted wave is elliptically
polarized with diA'erent polarization azimuth with respect
to the incident wave. By expressing the imaginary part of
e in terms of the absorption coefficient g, one can esti-
mate the polarization azimuth rotation as

TABLE I. Relationships between the optical activity
phenomenon and the material parameters of isotropic media.

Re[1—e }
Im[1 —e}

Re[y}

Optical activity "on reflection"
Elliptization
Rotation

Im[y}

Rotation
Elliptization

Re[a}
Im[e}

Optical activity "on transmission"
Rotation Elliptization
Rotation Elliptization

B(5a, )6a„=
2~(1—n )

(49)

Yu.P.S. thanks the Royal Society, London for financial
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i.e., specular rotation is proportional not only to the
specific rotation in transmission [B(5a, )/Bz ], but also to
the strength of absorption. In a range of strong absorp-
tion, where g may be as big as 10 —10 cm ', and the ro-
tation power is stronger than in the transparent range,
typically 1000—10 000 deg/mm, (i.e. , 200 —2000 rad/cm),
the polarization azimuth rotation on reflection may be in
the scale of 2 X 10 —2 X 10 rad, which is accessible by
Inodern polarization-sensitive detection techniques. Re-
cent positive experiments on observation of specular po-
larization rotation in a-HgS (Ref. 13) confirm this esti-
mate and the whole treatment derived above.

Summarizing in conclusion, it is shown here that both
the Casimir and the Landau-Lifshitz approaches to the
electrodynamics of optically nonlocal media are
equivalent if the crucial terms containing the derivatives
of the nonlocal susceptibilities are taken into account.
Both of them inevitably predict the existence of optical
activity on normal reflection from an interface with a
medium exhibiting optical activity in transmission. Po-
larization azimuth rotation on reflection may be found
only in optically active crystals in an area of sufhcient ab-
sorption. In optically transparent media only elliptiza-
tion of initially linearly polarized light may be expected
with normal refleetion.
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