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Bauer's expression for the difference between the expectation values of an arbitrary quantum-
mechanical operator with the physical interacting ground-state wave function and its corresponding
noninteracting Kohn-Sham wave function is obtained here by a very simple and general derivation via
the constrained-search formulation of density-functional theory. Our proof does not require U-

representability or a coupling-constant integration. We show that the following expression of Bass for
the kinetic part of the exact exchange-correlation energy E„,[n]: T„,[n]=aoBE„,[n]/Bao, where

ao =A /me is the Bohr radius, can also be derived by a constrained-search proof and is equivalent to
the following expression of Levy and Perdew: T„,[n] = (BE„,[n~ ]/BA ) l„, E„,[n], w—here
nz(x, y, z)=A, n (Ax, ky, kz). When an approximate E„, is employed, the two expressions will yield the
same result for the corresponding T„, if certain coordinate scaling relations, involving the electronic
charge, are satisfied. Moreover, the Levy-Perdew relation has the advantage that it is applied at full
electronic charge (e) and full electronic mass (m). Corresponding relations are also exhibited for the
correlation hole. We discuss the high- and low-density limits of T„„generalize our results to spin-
density functional theory, and present numerical estimates of T„, for atoms, evaluated within the local
spin density, gradient expansion, and generalized gradient approximations.

I. INTRODUCTION

Today, most applications of density-functional theory'
are performed by using the Kohn-Sham formalism.
Therefore it is of interest to know the difference

('eI„Il w l'q I„I)—('q I„', l
2 l'eI„', ), (l)

where A is an arbitrary quantum-mechanical operator,
O~„'~ is the exact Hohenberg-Kohn interacting ground-

state wave function for electron density n, and %'~„'~ is the
corresponding Kohn-Sham noninteracting wave func-
tion. Bauer obtained this difference" by introducing a
special effective potential in the Kohn-Sham Hamiltonian
and by using the coupling-constant integration ap-
proach at fixed n. ' In this paper we derive the
difference within the constrained-search formulation of
density-functional theory, in a very simple way, without
reference to any effective potential or to any coupling-
constant integration. Furthermore, our derivation is
more general because it does not require the assumption
of U-representability.

Bass used Bauer's relation for the above-introduced

difference to deduce an expression for the kinetic part of
the exchange-correlation energy, T„. We will demon-
strate here that Bass's expression for T„ is equivalent to
the one of Levy and Perdew, ' and at the very end of Sec.
II, we shall derive Bass's expression in essentially two
steps by constrained-search theory, without recourse to
Bauer's relation.

II. THEORY

Let us employ the constrained-search representation
and define rV „'( as that wave function which minimizes[(n

( aT+pV„+y 3 ) and yields the density n:

(r%(„'~)lctT+PV„+y A lr%(„'~))

=min &'Pl~T+P~„+) ~ lq'),
%~n

where T and f'„are the operators for the kinetic and
electron-electron repulsion energies, respectively, and 2
is an arbitrary general quantum-mechanical operator. ( 2
is not generally assumed to be a one-body multiplicative
external potential. ) It follows then that %I„'I is the famil-
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iar interacting Hohenberg-Kohn wave function and
is the familiar noninteracting Kohn-Sham wave

function. In anticipation of Bauer's result, we shall
define the exchange and correlation energies with y in-
cluded. To make the definition more general, we also in-
clude a and P. Namely,

T„,[n]= rE„", [n]l 0
y 1 1 (9a)

By using Eq. (8) and setting 3 =T, we quickly obtain
the following expression for the kinetic part of the
exchange-correlation energy:

rE'P[n]=(rq "Ipv Irq") —pU[n]

rE [n]= &rq'P]IaT+PV„+y a rq;„P]&

—(rq "] aT" +Pv„+y a lrq;„']),
with

(3)
or

T„,[n]= rE,"[n]l 0,ar
where T„,[n] is defined by

[n] (odyl, 1 ITIO@I,1) (oqyl, ol Tloqil, 0)

(9b)

rE„'P[n) = ( rqi[„P]laT+PV„+y 3 lrqI[,'P])

—(rql[„'] IaT+y A lr%'[„] ) —pU[n] . (5)

The factors a and p may be considered to change the in-
verse of the mass and the square of the charge of the elec-
tron.

We now assert that Bauer's relation is obtained as a
direct consequence of Eq. (5) by utilization of the fact
that r@[„P] is defined via the minimization in Eq. (2). In
other words, the definition of ~%[„'~] as an optimizing
wave function implies its stationary character:

U[n]= ,' f—fdrdr'n(r)n(r')Ir —r'I

so that the total exchange-correlation energy
rE'; P[n]= rE„' P[n] +rE~ P[n] is

Equation (9b) follows from Eq. (9a), because in the special
case of 3 = T, the wave functions 4' and +' are
identical and therefore the exchange part E "[n] [Eq.
(3)], of rE„", [n] [Eq. (5)] is independent of y. Equation
(9a) is equivalent to the equation of Bass, as demonstrat-
ed shortly.

To derive Eq. (9) directly via the constrained-search
formulation of density-functional theory, without refer-
ence to Bauer's relation, we exploit the fact that ~+[„*~] is
defined by a minimization in Eq. (2) to obtain

, &' q'
[]I aT+v„l'q'[. ]'&1.=.=0,

so that the differentiation of Eq. (5) with respect to a, at
y =0 and p= 1, leads to

so that

& q'[„P]laT+pv„+y& I"q [.P]&I„=,=0, a OE„[n]
Be

=&'q "ITI'q "&—&' q''lf'I' q"
&[n] [n] [n] [n]

=T„,[n] . (12)

xc [n] [n] [n] [n]
rE 'P[n]=(rqI, PI JIrqj, P) (r@OIA lrl,p, o) Next, the insertion of the identity

which means

xc y =0 [n] [n]rE'P[n]l = =&'q'I&l'q P&

[n] (8)

8 E„'[n]
Be a=1

g 0E1+r, l [n]
ay

arE„' [n]
ay

(13)

which is valid for A = T, into Eq. (12) gives Eq. (9a).
The equivalence of Eq. (12), and therewith of Eq. (9a),

with Bass's equation for T„becomes clear if one explicit-
ly writes

(aaO)( —
—,'e )g V,

for aT (with aO as the Bohr radius and e as the charge of
the electron). The chain rule then leads to

a OE„',' [n]
=aO ' =T„,[n] .

A= 1 Ba0

8 E '[n]
Be

(14)

The rightmost equality in Eq. (14) constitutes Bass's
equation. Again, the fact has been used that ~%'[„'~] is
defined by a minimization [Eq. (2)].

We now show that Eq. (9) is equivalent to and follows
from the Levy-Perdew relation for T„„which is

Equation (8), for a=p= 1, is Bauer's relation, our desired
result.

Equations (7) and (8) remain valid if the familiar nonin
teractl, ng Kohn-Sham wave function +[„']is employed, at
all y, instead of r%[„] in the definition of rE„,P[n] If.

is employed instead of r%[„'] in Eqs. (3)—(5), then
oq [.] replaces rq'[. 0] on the right-hand-side of Eq. (7) In
any case, the right-hand side of Eq. (8) is the same at
e=1 regardless which of the two definitions for the
Kohn-Sham wave function is used, even though
BrE„,'P[n]/By depends upon our choice at values of y
other than zero. We have chosen ~%[„'] for our original
definition of the Kohn-Sham wave function because ~%[„']
is the one which is implied in Bauer's work through his
particular use of the coupling-constant integration. The
equivalence of our rE„", according to Eq. (5) and Bauer's
definition is demonstrated in Appendix A.
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or

g OE1, 1[ ] OE1, 1[n]
A. =1

(15a)

(15b)

E„,'[n]= &4(„') f'(ao)+ I „I(P(„')&

—
& e(„') I T(ao)Ie(„') &

—U [n],
where, consistent with Bass,

T(ao) = —aoe g —,
' V;,

(23)

where

nq(x, y, z)=k n(Ax, Ay, Az) . (16)

(Equation (15a) implies Eq. (15b) because'0 OE„"[n&)
=& E"[n]. ) For the proof of the equivalence of Eqs.
(9) and (15), observe that

f'„=—,
' e' g I r, —r, I

lW J

and, consistent with the constrained-search approach,

4(„) minimizes &T(ao)+0'„& and @(„) minimizes just
& T(ao) &, at fixed n, where ao is the Bohr radius. It fol-
lows that

Ogy1, A. Ogpu, , 1

[n] [n]

which leads, according to Eq. (4), to

OE1, 2.
[ ]

—g
—1 OE2, , 1[ ]

(17)

(18)

I

[&4(„')IT(ao)+V„I'Il(„') &

Bao
l—&4(„') T(ao)I@(„')&]I ~

so that

(24)

Next, the combination of Eq. (18) with the following
coordinate scaling relation of Levy and Perdew"' and
Yang, '

(]E„,"(n] . BT(ao]

Bao ao[n] g [n]

OE],A.

[ ) g
—2 OE1, 1[

gives

E"[n ]=A, E ''[n]

(19)

(20) or

BT(ao)
0 @ 0 (25)

8 E, '[n]
T„,[n] =

A. =1
(21a)

or

Finally, the combination of Eq. (20) with Eq. (15a) yields
REX( [n] (( g g g

ao =
& p(') I T«o ) I p(.') &

—
& +(.) I T«o )

I @(.) &

aa,
= T„,[n],

which is the relation of Bass.

(26)

B E '[n]
T„[n]=

A, =1
(21b)

which is the same as Eq. (12) and therewith equivalent to
Eqs. (9) and (14). Equation (21b) follows from Eq. (21a),
because 4 ' is equal to ]p' for all A, (A, )0) and there-
fore E„'[n] [Eq. (3)] is independent of A, . Note, by the
way, that Eq. (2la) is equivalent to

T„,[n]= E,"[n]— E,'~[n]Iti0 1 P (22)

which follows directly from the minimizing nature of
]II'~ [Eq. (2)] and from the definitions (4) and (10). Equa-

tion (22) is distinguished from Eqs. (12) and (2la) by the
fact that the coefficient p, belonging to pf'„, is varied in

Eq. (22), while the coefficient a, belonging to aT, is
varied in Eq. (12) or varied as A, in Eq. (21a). By replac-
ing E,"[n] and E,'~[n] by E„", [n] and E„",~[n], re-
spectively, in Eq. (22), a relation equivalent to Eq. (21b) is
obtained.

We conclude this section by noting that Bass's expres-
sion for T„,[n] follows directly from a differentiation of
the constrained-search definition for the exchange-
correlation energy. Simply define E„,[n] by

III. DISCUSSION AND NUMERICAL RESULTS

For practical purposes it is important to point out that
the exposition in Sec. II reveals that T„,[n], obtained
from an approximate E,"[n], will be the same with Eq.
(15) as with Eqs. (9), (14), or (22) provided that the ap-
proximate E,"[n] satisfies Eqs. (18) and (19), what thus
can be considered as a requirement an approximate
E"[n] has to fulfill. An approximate E, ~[n] to a

given approximate E"[n], as it occurs in Eqs. (18) and
(19), is obtained from the approximate E "[n]by replac-
ing the inverse of the electron mass (1/m, ) by (a/m, )

and the square of the electron charge (e ) by (pe ). Fur-
ther, Eq. (15) has the advantage that it can be employed
with an approximate E,"[n], which is expressed in
atomic units and thus not expressed in terms of the mass
or the charge of the electron. Incidentally, it is quite easy
to construct E,"[n ]f2rom E,"[n]; it literally takes no
more than a few minutes. With this in mind, new nonun-
iform as well as uniform coordinate scaling properties of
E,"have recently been elucidated. ' ' '

In the high-density limit' [A,~ ~ in Eq. (16)], it has
been shown' ' that E, —A, , where E,[n]= E,"[n].
(The correlation energy per electron tends to a constant
for a finite system and becomes proportional to ink. for an
infinite metal. ) Then, by Eq. (15a),
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TABLE I. T„ the correlation contribution to the total interacting kinetic energy: The GGA is that
of Ref. 18. The GGA' is as modified in Ref. 12. The exact results are from Ref. 21 (1 hartree=27. 21
eV).

T, (eV)
Atom

H
He
Li+

B 2+

Li
Be

LSD

0.3
1.9
2.4
2.7
2.6
3.8

0.6
2.4
2.9
3.3
3.1

4.4

0.1

1.0
1.2
1.3
1.3
2.0

GGA'

0.1

1.0
1.1
1.2
1.3
2.0

Exact

0.0
1.0
1.1

1.1
1.7
2.0

lim T, [nq]/( E, [n—q])=1, (27)

where T, [n] = T„[n]. (Note that there is no kinetic con-
tribution to E„[n].) In the low-density limit' P —+0 in

Eq. (16)], it has been shown' '' that E, —X. So, by Eq.
(15a),

lim T, [n~]l( E, [n~])=—0 . (28)
A.~O

Equations (27) and (28) have been derived by Perdew. '

The constrained-search derivation of Eqs. (11)—(14) is
easily generalized to spin-density functional theory: Just
replace n (r) by n t (r), n &(r), with the result

r, =(4vrnao/3)

is the local-density parameter,

g=(nt —n ) )l(nt +n ) )

is the local-spin polarization, and

s = ~Vn ~/2kFn

(31)

(32)

(33)

a
T, [nt, n~]= —fdms (n, O)r, F,(r„g,s),' Br,

(34)

is the reduced-density gradient [with kF=(3vr n )'~ ]. By
Eq. (29) the GGA for T, [n t, n t ] is

T, [nt, nt]=ao E, [nt, ng] .
()Qp

(29)
which generalizes the expression of Perdew' to nonzero

The generalized gradient approximation (GGA) for
E, [nt, n&] is

E, [nt, n ~
]=fdms ( nO) F(r„g, s), (30)

where e (n, O)= —(3e /4m. )(3~ n)' is the uniform-gas
exchange energy (with n = n

&
+ n ~ ),

Replacing F,(r„g,s) by its expansion to zeroth or
second order in s yields the local-spin density (LSD) and
gradient-expansion (GEA) approximations, respectively.
Tables I—III display atomic values for E, and T, from
the LSD and GEA, as well as results from the generalized
gradient approximation (GGA) of Perdew and Wang. '

TABLE II. —E„or —1 times the correlation energy, and T„ the correlation contribution to the total interacting kinetic energy.
See caption of Table I. The GGA values of —E, are nearly exact for the neutral atoms from H to Ar. Note that the LSD overesti-

mates —E, by about a factor of 2, while the GEA predicts the wrong sign.

Atom LSD

—E, (hartree)
GEA GGA GGA' LSD

T, (hartree)
GEA GGA GGA'

H
He+
He
Li+
B 2+

Li
Be+
Be

Ne6+

N
Ne
Ar

Zn" +

Zn'+
Zn
Kr
Xe

0.022
0.030
0.113
0.135
0.150
0.151
0.173
0.224
0.334
0.427
0.743
1.424
1.800
2.578
2.655
3.269
5.177

—0.044
—0.114
—0.125
—0.260
—0.401
—0.222
—0.344
—0.314
—1.186
—0.567
—0.780
—1.534
—3.576
—2.624
—2.467
—3.024
—4.685

0.007
0.007
0.046
0.051
0.054
0.058
0.062
0.094
0.123
0.199
0.382
0.771
0.924
1.485
1.525
1.914
3.149

0.006
0.006
0.042
0.045
0.046
0.051
0.054
0.086
0.104
0.181
0.351
0.707
0.824
1.368
1.406
1.767
2.918

0.012
0.018
0.068
0.087
0.100
0.095
0.112
0.138
0.231
0.276
0.496
0.973
1.307
1.832
1.873
2.324
3.738

0.022
0.031
0.087
0.108
0.122
0.113
0.132
0.162
0.259
0.305
0.530
1.013
1.346
1.870
1.906
2.361
3.772

0.005
0.006
0.038
0.043
0.046
0.048
0.053
0.073
0.104
0.159
0.313
0.631
0.792
1.250
1.282
1.613
2.666

0.005
0.006
0.038
0.042
0.044
0.047
0.051
0.072
0.096
0.155
0.307
0.614
0.755
1.218
1.250
1.573
2.599



47 EXPECTATION VALUES IN DENSITY-FUNCTIONAL THEORY, . . . 1171

TABLE III. T„the correlation contribution to the total interacting kinetic energy, evaluated for the
scaled two-electron exponential density n

~
=n

~ =(A, /~)exp( —2A, r ). See caption of Table I.

LSD
T, (hartree)

GEA GGA GGA'
&, /( —&, )

GGA'

0.5
1

2
6

12
24

0.0323
0.0516
0.0758
0.1234
0.1581
0.1957

0.0438
0.0684
0.0966
0.1454
0.1758
0.2033

0.0241
0.0335
0.0416
0.0511
0.0561
0.0611

0.0245
0.0339
0.0413
0.0473
0.0485
0.0488

0.70
0.82
0.91
0.98
1.00
1.00

This GGA was constructed nonempirically via a real-
space cuto6' of the spurious long-range part of the gra-
dient expansion for the correlation hole. A minor
modification' (GGA ) of this functional, which displays
the proper high-density scaling, is also considered.
Atomic Hartree-Fock densities' n&(r), ni(r) have been
employed in Eqs. (30) and (34) to construct Tables I and
II.

Table I shows that the LSD and GEA overestimate T,
for the light atoms, where T, is known exactly. In
nonlocal-density functional calculations of T„we find
GGA and GGA' to be more realistic. Table II shows
that, for many atoms, T, —E, . Table III displays the
correct high-density scaling of T, in the GGA'; the
analogous table for E, was presented by Levy and Per-
dew. ' The more accurate results for T, in neutral atoms
are probably those of the GGA, which seems to predict
the more accurate values for E, . ' '

The correlation energy is often written as

e p, ([n t, n i ];r,r')
E, [n&, n&]= fdrn(r) Jdr'

2 lr' —r

(35)

n, ([n];r, r') = 1+ A. p([ n, ~ i];Ar, Ar') li (38)
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is related to Eq. (37) in a similar way as Eqs. (15) and (14)
are related for T„,[n]. Equations (37) and (38) are of in-
terest because it is p, which is most often approximated
in the literature, whereas it is n, which is related directly
to the second-order density matrix of the real system (full
electron charge). As in the case of T„,[n] [Eqs. (15) and
(14)], Eq. (38) has the advantage that it can be applied if
p, is given in atomic units and thus if the mass and the
charge of the electron do not appear explicitly. In the
special case of the uniform electron gas, Eq. (38) reduces
to Eq. (7) of Ref. 21. For the derivation of Eq. (38), see
Appendix B.

E, [nt, nt] —T, [nt, ni]
n, ([n&, ni ];r,r')

dr n(r) dr'
2

(36)

Consistent with Eqs. (29) and (36), it can be shown ' that

8
n, ([n&, ni];r, r')= 1 —ao p, ([nt, ni];r, r') .

Bao

Equation (37), a generalization to nonuniform n(r) of Eq.
(90) of Wang and Perdew, helps to explain why the
GEA is not as bad for T, as it is for E, (Table II): The
most spurious and most long-ranged (lr' —rl —+ ~) gra-
dient contribution to p, does not depend upon ao and
thus makes no contribution to the GEA for T, .

The equation

where p, ([nt, n&];r, r'), the density at r' of the correla-
tion hole about an electron at r, is an average over the
coupling constant (as in Appendix A) of the Coulomb
hole n, ( [n &, n i ];r, r'), which describes the physical
correlations at full electron change. Moreover,

APPENDIX A

We here demonstrate that our definition for the
exchange-correlation energy in Eq. (5), i'E„, [n], for
a =p= 1, is the same as Bauer's, which is displayed in his
paper through the coupling-constant integration formula.
In the process we generalize a constrained-search proof
of the coupling-constant integration formula at constant
n. ' To begin, note that

(r%(„~) T+pV„+y A lrC (J)')

=
& '+(.~jl V„l'+(„~j), (Al)

because, by definition [Eq. (2)], r%'~ minimizes
( T+pV„+y 2) when p'=p. Next, integrate both sides
of Eq. (Al) from p=0 to 1, and then subtract U [n] from
both sides of the resultant expression to obtain

(r%(„')l T+ V„+y& lrq'(„') )

—(r%'(i„o)l T+) a ~e,'„', ) —U[n]
rqy&P p. r% & —U n
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Equation (A2) shows the equivalence of both definitions
of the exchange-correlation energy; the left-hand-side of
Eq. (A2) is our rE„", , while the right-hand-side is the cor-
responding expression of Bauer. n, P([n];r, r') = — n," [n &&];

—r, —r' (86)

with X being the number of electrons [n && is defined ac-
cording to Eq. (16)]. This leads to

3

APPENDIX B

To derive Eq. (38), first define

I, ~([n];r, r')=I" 'P([n];r, r') —1 ' ([n];r, r') . (Bl)

In Eq. (81), I '~([n];r, r') is the second-order density ma-
trix of the wave function %(„~) so that I ' ([n];r, r') is
the second-order density matrix of %~„'~. The Coulomb
hole n, ([n'];r, r') is given by

21,'~( [n ];r, r')
n, '~([n];r, r') =

n(r)

Now, through a coupling-constant integration ' (see also
Appendix A), the corresponding averaged correlation
hole

p, '~([n];r, r')= f dP'n, ~([n];r, r')
0

gives the correlation energy E, '~ by

3

f dto
/3

0 e
1f dcon, ~ ([n];r, r')

0

d 'n, '~ n;r, r'1 p

0

n,'" [n &&];
—r, —r'

1= —p, ~([n];r, r') .

which reduces to Eq. (40) in Ref. 14 for a = 1.
From Eq. (83) it follows that

1

p,"([n &&];r,r')= dion, ' ([n z&];r,r'),
0

and with Eq. (86),
3

p, ' [n ~ti];
—r, —r'. /3 /3,

(87)

(89a)

(89b)

p, 'P([n j;r, r')
E, '~/P= f drn(r) fdr'

2 [r—r'/
(84)

Equation (89b) is the equivalent of Eq. (86) for p, '~ in-
stead of n, '~ Differ. entiation of Eq. (89a) results in

n, '~([n];r, r')

0 a, P0(„')(r„r2, . . . , r„)
3N/2

o i i /3 /3 /3
g/ I'1, I'2, . . . , INa a 'a' '(X N (85)

If
p, '~([n];r, r') in Eq. (84) is replaced by n, '~([n];r, r'),

the electron-electron repulsion part of E, '~//3 is ob-
tained [see Eqs. (35) and (36); there n, ([n];r, r')
=n,"([n];r,r') and p, ([n];r,r')=p,"([n];r,r')].

In Refs. 10—15, it is shown that

d1+P /3' i i /3 /3
p, ' [n z&];

—r, —r', (810)

which is identical to Eq. (38) for a =P= l. Note that, for
an approximate p,",Eqs. (37) and (38) or (810) give the
same n,"provided Eq. (89b) holds for the approximate

p,".Again, an approximate p, '~ is obtained from a given
approximate p,"by replacing the inverse of the electron
mass (1/m, ) by (a/m, ) and the square of the electron
charge (e ) by (/3e )
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