
PHYSICAL REVIEW B VOLUME 47, NUMBER 17 1 MAY 1993-I

Mechanism of hole attraction in the extended Hubbard model
A. V. Sherman

Institute of Physics, Estonian Academy of Sciences, Riia 1/8, EE2$00 Tartu, Estonia
(Received 10 June 1992)

The expansion in the Cu-0 hybridization energy, t, usually used for the simplification of the
extended Hubbard Hamiltonian, is shown to meet with difficulties for the known parameters of
Cu02 planes of cuprate perovskites. An expansion in a power series in At, A 0.1, is suggested,
which is applicable for these values of parameters and in which the Hubbard repulsion and the
Cu-0 hybridization are considered on an equal footing. A Hamiltonian obtained with the help
of the expansion for the lower part of the energy spectrum, is equivalent to the t-J Hamiltonian
and the corresponding states are some generalizations of the Zhang-Rice singlets. The Hamiltonian
contains terms describing a static attraction between holes and for reasonable sets of parameters the
attraction is approximately equal to a half of the superexchange constant.

The extended Hubbard model is widely accepted for
the description of Cu02 planes of high-T, perovskite su-
perconductors. The main demand to any model claim-
ing such description is the existence of a superconducting
pairing mechanism. And, indeed, a number of computer
experiments in different versions of the model in small
lattices indicates the existence of such a mechanism con-
nected with an attraction between holes (see, e.g. , Ref. 2).
However, it is not easy to elucidate the role of different
terms of the Hamiltonian and different processes in the
results of these experiments. Besides, sometimes the in-
fluence of a comparatively small lattice size also remains
unrevealed. As a result, there is still no generally ac-
cepted point of view of the attraction mechanism.

In this Brief Report it is shown that even the sim-
plest version of the extended Hubbard model, containing
the Cu-0 hybridization and the Hubbard repulsion on
copper, can explain the attraction for an infinite lattice.
With some modifications the mechanism is retained in
model generalizations, which gives grounds for hoping
that at least a part of the attractive potential between
holes in Cu02 planes is connected with this mechanism.
In some respect it is similar to the bond-breaking mech-
anism of the static hole attraction in the t-J model.
Moreover, it is shown that in a wide range of material
parameters, including the ones presumably realized in
La2Cu04, the considered model can be reduced to the
one-band t-J model and the corresponding hole states,
forming the low-energy part of the spectrum, are some
generalizations of Zhang-Rice singlets.

The Hamiltonian for the model is given by
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(+a/2, 0), (0, +a/2); and a is the copper lattice spacing.
The Hubbard repulsion on oxygen is supposed to be in-
corporated by the Hartree approximation.

The values of parameters usually cited in the litera-
ture for LasCu04 are as follows: U = 8 —10eV,
1—5eV, and ~t~ = 1—1.5 eV.s Because of the smallness of
~t~, the usual way for the simplification of the Hamilto-
nian consists in the usage of some version of perturbation
theory with an expansion in t (and in 4, if 6 —t).
This procedure gives effective Hamiltonians which are
some generalizations of the t-J Hamiltonian. However,
an analysis of these series shows that for the values of
parameters cited above these expansions meet with the
following diKculty. Because of large numeric factors,
terms of higher order appear to be comparable to, or
even larger than, the lower-order terms. In particular,
at U —E, E » ~t~, when the expansion starts from
second-order terms, one of these terms describing the
interaction of spins on copper and surrounding oxygen
sites was supposed to be responsible for the formation
of the Zhang-Rice singlets as the lowest hole states of
the energy spectrum. However, among the fourth-order
terms there is an analogous term with the coefFicient
—64t [4 +(U —A) s+(U —6) 22K '+(U —A) 'A 2]

which is larger in absolute value than the coefBcient in the
second-order term 8t2[A ~ + (U —4) ] for the param-
eter values mentioned. Besides, the terms have opposite
signs, which makes questionable the results of Ref. 4. In
this approach terms of various orders contribute to the
interaction of holes. Under such conditions it is practi-
cally impossible to elucidate the sign of the interaction.
The difhculty is certainly connected with the fact that
the hybridization is actually not small.

To overcome the difficulty let us represent Hamiltonian
(1) in the form

where d~ and p~ +& are the creation operators of
electrons in the 3d 2 y2 orbitals of copper and the
2p orbitals of oxygen, respectively, with spin o
+j.; 4 ) 0 is the Cu-0 promotion energy; U is the
Hubbard repulsion on copper; t is the Cu-0 hybridiza-
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(2)
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is the Fourier transform of the operator Pi,
(Pk/2~N) P & exp(ik m) p +s, the factor Pi,
(1+ [cos(ks, a) + cos(k„a)j/2) ~2 ensures the fulfillment
of the commutation relations for the Fermi operators,
A = N Pkexp(ik. m)P&, Ao --0.96, A = 0.14, a
being one of the vectors of primitive translations; other
components of A are small and, therefore, omitted. The
operators P do not form a complete set of oxygen oper-
ators for Cu02 planes; however, the complementary op-
erators form a conservative subsystem and are omitted in
(2). It is clear that the one-site part of the Hamiltonian
should be taken as the zero-order Hamiltonian and the
two-site part as perturbation in the perturbation expan-
sion. The characteristic energy scales of these two parts
of the Hamiltonian are 2tAO = 2eV and 2tA —0.3 eV,
respectively. Thus the applicability conditions for the
perturbation theory expansion are much better than for
the expansion in powers in t. Actually, the former expan-
sion is applicable for the entire range of the parameters
cited above. Another merit of the expansion is the possi-
bility of limiting it to first- and second-order terms, while
to obtain relevant terms the usual expansion has to be
prolonged up to fourth-order terms.

Let us introduce the following notation for the relevant
eigenfunctions of H

Imlso. ) = (arsis' + aisadmi~)lv ),

lm2s) = a2sl (P,+]d,—i g,—]d,+1)
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1
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(3)
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where lv ) is the site vacuum state. The eigenenergies
of the two-electron triplets lm2), Im2o ), E2q, and of the
four-electron state lm4), E4, are equal to 4 and U+2A,
respectively. The eigenenergies E„,of H and the ampli-
tudes a„„for other eigenfunctions (3) are found from the
corresponding systems of two (one- and three-electron
functions) and three (two-electron functions) linear equa-
tions. In this notation, n, 8, and i are the number of
electrons in the state, the solution, and the component
numbers, respectively. For n = 2, 3 the solutions with
s = 1 are the corresponding ground states. For the men-
tioned values of parameters the degenerate ground state
of the zero-order Hamiltonian consists of different prod-
ucts of these two site states.

Apparently the state lm2, s = 1) is the generalization
of the Zhang-Rice singlet state. 4 The latter is obtained
from the former if a2i2 and asis are set to be equal to
zero. For the considered values of parameters these coef-
Gcients are not small, which leads to a marked difference
between the two states.

It is easy to express Hamiltonian (2) in terms of vec-
tors (3). The application of the operator perturbation
theory to it gives the effective Hamiltonian acting in the
subspace of the ground states of the zero-order Hamilto-
nian and describing the low-energy part of the spectrum,

H, rr =2th n4ii ) lm+ a, 31o)(m+ a, 21llm21)(m31o I+ —) s s +

m ~1
( /iiimsrim+a, S + f2&ms&m+a, 2 + 73&m2rim+a, 2)

—) ) p4« lm31o')(m31crllm+ a', 21)(m+ a', 31cr'Ilm+ a, 31cr)(m+ a, 21I
maa' oo'

—) ) ps lm31, —o')(m31, —crllm+ a', 21)(m+ a', 3lo llm+ a, 31o')(m+ a, 21I
maa' oo'

—).).psn &1m+a' 21)(m+a' 31allm+a 310)(m+a 21I
maa'

where

('
Z = 4(2tA. )' ) E4+ E2s —2Esi

p, =(2th )' —) " +

A=(2tA )'l ) E4 + Eis —Esi —E2i

1 A

2 E4+ E2r, —2Esi) '

3 CI

4E4+ E2q —2Esi) '

2 '3 2~48sr l0!5+ +-
, Ess + E2s' Esl E21 2 Ess + E2t Esl E21)



47 BRIEF REPORTS 11 523

qs = 2(2tA. )2)
3s

p4 = (2tA )2 )(.yi

2
~6SSI

+ E1s —2E21

Q! 1 A41s . + I 51

E2a —E21 2 E2t —E21)
'

2 ( ~51 i Oll2 2
= (2tA ) I

b' —ocr
2t 21 4+ 21 31)

A
ps =(2tA )' ) 2

421
E32 —E31)

'

1 2 2~ls = Ct2sl a311Ct312(Ct2s2 + +2ss) ~2 C1312 311)
2

1 (1
o3s = ct312

I
ct211ctlsl t1213c11s2

I
ct311

I
&211ctls2 ct212ctla1

)(1)(1)(1)(1
O'4ss' =

I
Ct211ass2 —Ct212Oss1

I I
C1312a2s'3 a311a2s'1 I+I Ct213&3s2 — Ct211Ctssl I I

C1312Ct2s'1 —&311Ct2s'2
I

vr2 ) ( 2 ) ( 2 ) g 2 )

(1 & ( 1
O5s —&311

I
Ct211Ct3s2 Ct212Ct3s1

I
Ct312 I C1213&ss2 Ct211&ssl)I)

(1 l (1 l ( 1 ) (1
ossa' =

I
o211ctss2 ct212ctssl

I I
ct211t11 '2 &212&la'1 I+I &213ctss2 &211ctss1 I I

&211c11 '1 &213ctl '2
r& 2 r i 2 )& 2 r

n 3 = Im3lo)(m31crI, n 3 = ) n 3, n 2 = Im21)(m21I,

1
s = s* +ios" = Im31cr)(m31, —oI, s' = —) on

The tildes near the sums over a, a' and over s, 8' mean
that a P a' and the term with s = s' = 1 is omitted.

The first two terms in the right-hand side of Eq. (4)
are the transport and the Heisenberg term of the t-J
Hamiltonian written in terms of the Hubbard operators
which are built from the vectors of the considered basis
Im31cr) and Im21). The three last terms in (4), describ-
ing the conditional hole transport, also resemble the so-
called pair-hopping terms sometimes included in the t-J
Hamiltonian. 3

If for a moment the first term in Hamiltonian (4) is ne-
glected, it can be shown that the second and third terms
of the Hamiltonian provide a static interaction between
holes. The interaction can be elucidated with the follow-
ing broken-bond arguments in some respect analogous to
the ones adduced for explaining the static hole attraction
in the t-J model . Two holes on adjacent sites remove
seven bonds connecting sites with the site states Im31o)
and introduce six bonds connecting sites with the states
Im31o), Im21), and a bond connecting sites with the
states Im21). When the holes are far from each other,
the respective numbers of the bonds are 8, 8, and 0. The
di8'erence in the energies between these two cases is

EIs = —J/4 —2p1 + 2p2 —2'.

E~ ( 0 and E~ ) 0 correspond to attraction and repul-
sion, respectively, between holes.

The dependences of E~, J, and t' = 2tA n411 on 4
at U = 6Aot and on U at 6 = 2Aot are shown in Figs. 1
and 2. In the entire range of 4 in Fig. 1 E~ ( 0 and
IE~I = (0.3 —0.5)J. A static attraction close in value
is experienced by the holes in the t-J model, if the term
—(J/8) P n n ~~ is included in the t JHamiltonian. -
Together with the above-mentioned identity of the trans-
port and Heisenberg terms and the similarity of the static
attraction mechanisms, it means that for the range of pa-
rameters presumably realized in cuprate perovskites the
extended Hubbard model with Hamiltonian (4) and the
t-J model are very close.

From Figs. 1 and 2 it can be seen that E~ may be-
come positive for smaller values of 6 and larger values
of U, and the similarity of the two models disappears
(the static interaction in the t Jmodel is always -nega-
tive). The interaction is mainly determined by the terms
proportional to n11 in J and p1, and to o.51 in p2 [see
(5)]. The first terms are connected with the virtual tran-
sitions Im31o) + Im+ a, 31, —o) ~ Im21) + Im+a, 4).
Their contribution into E~ is always negative, since the
configuration with holes on adjacent sites enlarges the
number of bonds connecting the three-electron states,
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FIG. 1. Dependences of the static interaction energy of
holes, E~, the superexchange constant J, and the e8'ective

hopping constant of holes, t', on the Cu-0 promotion energy
D when the Hubbard repulsion on copper U = 6. Here and in
Fig. 2 the value Apt is taken as the unit of energy, Ao = 0,96,
and t is the Cu-0 hybridization.

the initial states of the transition. The term pro-
portional to n5& is connected with the virtual transi-
tions Im31o) + lm+ a, 21) ~ lm2) + lm + a, 31o) or
lm2o) + lm+ a, 31, —o). Its contribution is always pos-
itive, as the adjacent arrangement of the holes reduces
the number of bonds connecting sites with three and two
electrons.

Thanks to the pointed-out similarity of the extended
Hubbard and the t remodels f-or the parameter range of
interest, the results obtained for the latter can be trans-
ferred to the former. In particular, it can be concluded
that the static hole attraction leads to the coupling of
holes at least in the region of large and intermediate val-
ues of J/t' Since thi.s conclusion is mainly based on the
results obtained on small lattices and the finite-size effect
reveals itself apparently in the coupling energy (see Ref. 9
and references therein), an attempt has been undertaken
to calculate the energy for an infinite lattice. The cal-
culations employ the spin-wave approximation~ ~i and
the Lanczos procedure with selecting the largest wave
function components. The procedure gives the lower
estimate for the coupling energy. As a preliminary in-
formation on the obtained results it can be said that at
least in the range J/t' & 1 and at least for the function
of d orbital symmetry with zero wave vector there is a
coupling of holes with the coupling energy approximately
equal to IE&l.

In conclusion, let us discuss possible limitations of the

FIG. 2. Dependences of EI3, J, and t' on U at 4 = 2.

considered expansion and its connection with earlier re-
sults obtained with the help of the expansion in a power
series in t For .parameter values close to those of in-
terest there are two regions where the considered ex-
pansion fails. The first is determined by the inequality
20ltl & 6 when the denominators Eqs —Eqq, Est —Esq in
the second-order terms (5) become of the order of 2A ltl.
This case has been considered in Ref. 7 where it has been
shown that the case cannot be described by the one-band
t Jmode-l. The second region is the case 6 —U and
the possible failure of the expansion manifests itself in
the large value of the second-order quantity J which be-
comes comparable to, or even larger than, the first-order
quantity t' in the region (Figs. 1 and 2). This behav-
ior is connected with a small value of the denominators
E4+ Egg —2E3$ in J and p~.

From the obtained results it can be seen that the lowest
hole state has a large admixture of the Zhang-Rice sin-
glet and the first excited hole states are triplets. Thus,
in spite of the diKculties mentioned, the expansion in
powers in t gives a qualitatively correct description of
the one-hole spectrum. However, the quantitative differ-
ences may be considerable for the La&Cu04 parameter
values. For example, at U = 6Aot and 6 = 3Aot the
formulas t' = 4t~AoA~[26 + (U —4) ] (Ref. 7) and
J = 4t (U —4) [U + (U —6) ], obtained from
the expansion in t, give t' = 0.6Aot, J = 0.26Aot, the
values which are more than 2 times larger than those in
Fig. l. Of course, the main defect of the expansion in
t lies not in quantitative inaccuracy but in the diKcul-
ties on describing the hole interaction in the considered
parameter range.
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