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Critical exponents for the three-dimensional superfluid—Bose-glass phase transition
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The critical phenomenon of the zero-temperature superfluid—Bose-glass phase transition for
hard-core bosons on a three-dimensional disordered lattice is studied using a quantum real-space
renormalization-group method. The correlation-length exponent v and the dynamic exponent 2 are
computed. The critical exponent z is found to be 2.5 for compressible states and 1.3 for incompress-
ible states. The exponent v is shown to be insensitive to z as that in the two-dimensional case, and

has a value roughly equal to 1.

A disordered boson system provides a prototyp-
ical example of zero-temperature quantum critical
phenomena.l? Experimentally, such a disordered boson
system can be realized in liquid He? in random media,? or
in disordered superconductors* where Cooper pairs can
be modeled as composite bosons. As the amount of dis-
order is varied, these systems exhibit a continuous phase
transition from the superfluid (SF) phase to a disordered
[Bose-glass (BG)] phase. Understanding of this quantum
critical phenomenon has been a subject of a considerable
amount of recent experimental and theoretical studies.

Besides a diverging length scale (the correlation
length) &, the SF-BG transition is also characterized by a
diverging time scale 7. Denoting é as the distance to the
criticality, £ and 7 can be described by the critical expo-
nents v and z, defined by £ o §7¥ and 7 x &% o §7VZ.
From a general scaling argument, Fisher et al.? concluded
that for compressible states z is equal to d, the dimen-
sionality of the system, while z = 1 for systems with
long-range Coulumb interactions in any dimension.® The
critical exponent v cannot be deducted directly from the
scaling theory, but a rigorous lower bound has been es-
tablished, i.e., v > 2/d.% Unfortunately, a standard field-
theoretical renormalization-group (RG) method, which is
proven to be a powerful approach in the study of critical
phenomena, has been eluded so far from being applied
to this SF-BG phase transition. A major difficulty asso-
ciated with this approach is due to the lack of a proper
zero loop (mean field) theory describing the SF-BG tran-
sition at finite dimension,? upon which perturbation se-
ries, such as e expansions, can be developed. For this rea-
son, a different RG formulation, namely, the real-space
RG (RSRG) approach, becomes a useful alternative for
investigating the critical phenomena in disordered boson
systems.

RSRG has been applied previously to one-dimensional
(1D) (Refs. 7 and 8), and two-dimensional (2D) systems.”
In this paper, we apply the RSRG method developed pre-
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viously by Zhang and Ma” to investigate the SF-BG tran-
sition in three dimension. Such a study is important not
only because of its intrinsic theoretical interest, but also
due to its relevance to experiments. Three-dimensional
(3D) disordered boson systems are directly realized in lig-
uid He? in Vycor, aerogels, xerogels, and other random
media.® While present experiments are mainly focused on
the effect of disorder on the finite temperature superfluid
phase transition, refined experiments are hopefully capa-
ble of extracting information about the zero-temperature
critical point in the near future. It is clearly desirable to
perform calculations for critical exponents in 3D which
characterize the physical properties of the system in the
vicinity of the transition.

In.the following we shall briefly outline the RSRG
scheme which has been presented in detail in Ref. 7. The
RSRG scheme yields, when applied to the 1D systems,
no (nontrivial) fixed point, indicating the instability of
the superfluid phase against any amount of disorder for
hard-core boson systems, in agreement with other 1D
RG calculations® and exact results.!® For 2D and 3D
systems, it gives a nontrivial fixed point separating the
superfluid phase and the disordered phase. In 2D, the
critical exponent z was found to be about 1.7 for com-
pressible states and about 0.9 for incompressible states.
Since z is close to 2 and 1 in these two cases, and since it
increases slowly with increasing block size,” this calcula-
tion can be viewed as supporting evidence of the scaling
prediction by Fisher et al.? in 2D. The critical exponent
v is found to be quite insensitive to the type of states,
and is roughly equal to 1.4.7 This value of v satisfies the
rigorous lower bound of Chayes et al.,® and is also con-
sistent with other numerical estimates.!’ The product
zv for incompressible states may be directly compared
with data obtained from experiments on superconductor-
insulator phase transitions in homogeneous amorphous
films.»7 For 3D systems, on the other hand, no system-
atic computation has yet been performed to our knowl-
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edge. Other numerical methods used for 1D and 2D sys-
tems, such as exact diagonalization!! or quantum Monte
Carlo simulations,'? seem quite formidable for 3D disor-
dered systems within the present computational capacity.
Thus, the RSRG method provides a unique way to probe
the physical properties of the 3D SF-BG transition.

The system under consideration is a lattice model of
hard-core bosons with random potential,’

H=—tY (blbj +Hec)+ > (W; —pblb; , (1)
(i23) J

where b; and b; denote boson creation and annihila-
tion operators at lattice site j. (¢,j) indicates nearest-
neighbor summation and W is the random on-site po-
tential with (independent) Gaussian distribution. The
hard-core constraint is enforced by the requirement that
at each site the occupation number b;f b; equals either 0
or 1. While it is clearly a simplification to the realis-
tic systems, this model is believed to have captured the
essential physics of the zero-temperature SF-BG phase
transition.!2

This hard-core boson model is equivalent to a quantum
spin—% XY model with transverse random fields,!

H=—J) (SFST+SYSY) - h;S7, (2)
(4,5) J

via the mapping S;f — b;-, S; e b, J < 2t, and
hj < p — Wj. These two equivalent representations of
the problem provide a convenient way to study the un-
derlying physics of the system,”!3 and we will use them
alternatively throughout our discussions.

Our real-space RG method consists of the following
steps.

(i) Break the lattice into blocks of size n,.

(i) Compute the block spin which is given by two
low energy eigenstates of the block Hamiltonian. Since
S = 3 ;5% (corresponding to the particle number
Ny, =3, b;bj in the boson language) is a good quan-
tum numjber, eigenstates of H are also simultaneously
eigenstates of S* (INp). As described in Ref. 7, this can
be accomplished either by (a) selecting the lowest states
of two chosen subspaces of particle number g and ¢+1, or
by (b) selecting the two lowest states among the ground
states of the block Hamiltonian for each subspace of a
definite number of particles. The two states chosen in
this way are found to have adjacent particle number ¢’
and ¢’ + 1. The field acting on the block spin is given by
the energy difference between the two states. In general,
the block fields will follow a different distribution than
that of site fields. We chose to keep track of only the
mean h = h; and the variance h = (hZ — 7i2)1/2 of the
renormalized field, and thus map it onto a Gaussian.

(iii) Calculate the effective couplings between the block
spins, which is given by the nearest-neighbor couplings
of the site spins between two adjacent blocks. Due to the
presence of disorder, couplings between block spins are
also randomized in the RG iterations. However, these
block couplings are found to always be positive, and the
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renormalized system remains unfrustrated. This allows
one to approximate the block couplings by its mean, and
thus confine the RG iterations within the original param-
eter space.

(iv) Repeat the RG iteration defined above to find fixed
point(s) and compute critical exponents.

Here we compute the exponents z and v for 3D sys-
tems. For computational details, see Ref. 7. In procedure
(a), fluctuations in particle number at any given region
are one. Since the block size is fixed and it allows only a
discrete set number of particles occupying a block, states
described by such a procedure are incompressible. Pro-
cedure (b), which is valid only at the “particle-hole sym-
metrical” filling (half boson per site in our case), where
density is conserved through statistical fluctuations in
the random fields,” yields a compressible ground state.

In the present work we used a simple-cubic lattice with
block size ny, = 2 x 2 x 2. Gaussian random fields were
generated numerically and typically an average of 3 x 103
random configurations was performed. In a previous
work,” calculations for 3D systems were carried out only
for the incompressible state with ¢ = 6. Here we com-
plete the study for the incompressible states with other
q values, and investigate the compressible states as well.
Results for fixed points and critical exponents are sum-
marized in Table I. For incompressible states with other
q values, they can be obtained through the “particle-hole
symmetry.””

As anticipated, critical exponents obtained for incom-
pressible states at a different density have roughly the
same value, indicating that the same universality class
is probed. Similar to that in the 2D case, the critical
exponent v in 3D is shown to be rather insensitive to
the procedures adopted, roughly equal to 1.0. The crit-
ical exponent z, on the other hand, is quite different for
the compressible and incompressible states. The present
RSRG calculation yields z = 2.5 and 1.3 for the com-
pressible and incompressible states, respectively.

Our results for v in both compressible and incompress-
ible states satisfy the lower bound of Chayes et al.,% and
provide the first systematic calculation on critical expo-
nents for 3D systems. The general scaling argument sug-
gests that z = d if the system is compressible.? For sys-
tems with long-range (Coulomb) force, dimensional anal-
ysis indicates that z = 1 in any spatial dimension.’ If one
assumes that they belong to the same universality class
as those incompressible states considered here, this value
should be compared with our results obtained through
the fixed ¢ procedure. Our RSRG results for z in 3D
deviate more from these scaling predictions than those

TABLE I. Results for fixed points and critical exponents.

State (h/J)* v z
Incompressible (¢ = 6)* 1.6 1.0 1.2
Incompressible (¢ = 5) 2.4 1.0 1.3
Incompressible (¢ = 4) 2.8 1.0 1.3
Compressible 6.0 1.1 2.5

? Calculated in Ref. 7.
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obtained for the 2D case.” The value of z deviates from

the scaling result by 17% for the compressible states, and

by 30% for the incompressible cases. The corresponding
deviation for 2D systems is 15 and 10 %, respectively. It
is worth remarking that within our RG procedure, the
value of z for compressible states differs from that for
incompressible states roughly by a factor of 2 in both
2D and 3D cases. While in 2D this is exactly what the
scaling argument suggested, it is clearly not the case in
3D. Our computation is limited to the cubic block of size
ng = 8, thus we cannot address the question of size ef-
fects. The next isotropic block has the size n, = 3% = 27
for which the calculation is computationally not feasible
for the time being. Thus we are not able to test the direc-
tion in which the result would converge with increasing
block size. Since the RSRG calculation is expected to
approach the exact result as the block size increases,”
such a finite-size study is highly desirable. On the other
hand, from the study of 2D systems’ one expects that
the RSRG estimate for critical exponents itself is rather
insensitive to small changes of the block size.

Although the RG procedure (b) for the compressible
states is valid only at the particle-hole symmetric point,
where particle number is conserved through the statis-
tical fluctuation in random fields, it nevertheless allows
one to probe the parameter space away from this special
point by studying the flow of the RG iterations. The RG
flow diagram is similar to what one gets in 2D with even
block size n,.” Again, the (unstable) fixed point at the
h = 0 axis controls the critical phenomena of the SF-BG
phase transition.

Before closing, we briefly comment about the RSRG
approach to disordered quantum systems. Since the
block states are computed through an isolated block
Hamiltonian, one would worry about the effect of the
(long-range) coherent quantum fluctuations which may
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not be properly taken into account. A procedure to over-
come this difficulty by incorporating different boundary
conditions for the block states has been recently sug-
gested, and has been applied to noninteracting fermion
systems.!* While a direct application of such a RG
method to a disordered system has not been possible
within present computational facilities, we would like to
remark that by averaging over random configurations one
can partly achieve the goal that one wishes to accomplish
by averaging over the boundary conditions. Indeed, it
seems quite ironic that our RSRG procedure works pre-
cisely in the “strong” disordered regime where the effect
of fluctuations can be incorporated through averaging
over the randomness, and loses its validity as the pure
limit is approached.”

In summary, we have studied a hard-core disordered
boson system in a 3D cubic lattice using a quantum
RSRG method. We have found that there exists a non-
trivial fixed point describing the zero-temperature SF-
BG phase transition. The critical exponent z for incom-
pressible states is about 1.3, and about 2.5 for compress-
ible states. The exponent v is insensitive to z, and is
roughly equal to 1.0. As in the 2D case, only one uni-
versality class is found, and the critical behavior of the
zero-temperature SF-BG phase transition is controlled
by the particle-hole symmetric fixed point.
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